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Abstract. This paper presents an ontology reviser plug-in for Protégé.
The plug-in implements several belief base contraction and revision oper-
ations for expressive Description Logics. The operations can be selected
by choosing the desired properties of the outcome from a menu.

1 Introduction

It has been argued that ontologies are necessary for the development of the
semantic web [BLHL01]. In the web context, the role of ontologies is to give
a formal representation for conceptual knowledge. For this reason in 2004 the
W3C 1 has adopted an ontology language (OWL) as web standard. OWL comes
in three flavors: OWL-lite, OWL-DL and OWL-full. The latter two of them have
their semantics based on the well known Description Logics (DLs) SHIF(D) and
SHOIN (D) respectively [Hor03].

Because knowledge in the web is not static the dynamic of ontologies must
be studied also. The study of ontology dynamic is the main goal of a growing
sub-field of the knowledge representation called ontology evolution (see [HS04]
for a good overview).

One important approach to deal with knowledge base (KB) dynamics is be-
lief revision. In belief revision three operations are defined: expansion (B + α),
contraction (B−α) and revision (B ∗α). Expansion simply adds a new sentence
to the KB, contraction removes a sentence from the consequences of the KB and
revision adds a new sentence to the KB maintaining the consistency. Contrac-
tion and revision are defined by sets of rationality postulates (postulates that the
operation must satisfy). An important result in belief revision is the equivalence
between a set of rationality postulates and a specific construction for an oper-
ation. This is result is called the representation theorem for the operation and
the construction. The most influential work in the belief revision field [AGM85]
proved that a set of rationality postulates for contraction/revision is equivalent
to three distinct constructions: partial meet contraction/revision, safe contrac-
tion/revision and epistemic entrenchment. The framework became known as the
AGM paradigm.

1 http://www.w3.org/2004/OWL/



In the past few years some authors have tried to apply belief revision tech-
niques in description logics. In [Flo06] the author proved that AGM paradigm
can not be applied to SHIF(D) and SHOIN (D) . In [FPA06,RW06] the au-
thors presented two different ways to change the AGM paradigm so that it can
be used with SHIF(D) and SHOIN (D) . Both works deal with belief sets
(logically closed sets). Belief sets are usually infinite which makes the problem
computationally impractical. The subfield of belief revision called belief base re-
vision deals with the dynamic of belief bases, which are simply sets of sentences
(not necessarily closed by logical consequence). [Han97b] presents constructions
and postulates for belief base contraction and revision. The constructions for con-
traction can be applied to the logics we are interested in, as shown in [HW02].
However, revision can not be directly applied because it assumes the logic to
be closed under negation. For this reason, in [RW07,RW08] the authors pre-
sented constructions and postulates for belief base revision that are compliant
to SHIF(D) and SHOIN (D) .

In this work we are going to present an ontology reviser that implements
the operations presented in [RW08]. The program is a plug-in for the ontology
editor Protégé 4 2. The implementation uses the OWL API 3 and the OWL DL
reasoner Pellet 4.

In the following we are going to use Greek lower case letters α, β, . . . for
sentences, the upper case letter B possibly with a subscript B1, B2, . . . for sets
of sentences (belief bases), upper case letter words OWL,BIRD, . . . for concepts
in a DL and lower case letter words tweety, hut, . . . for individuals in a DL.

In the next section, we are going to show an example to explain the im-
portance of some postulates for revision. Section 3 will sum up the revision
operators that were implemented. In Section 4 we will briefly explain the con-
structions that are equivalent to these operations. In the last two sections we
are going to explain how the constructions were implemented and suggest some
future work. Screenshots of the plug-in can be found in the last pages of this
paper.

2 Revising an Ontology

Suppose we are developing an ontology and we begin to add axioms to it. First
we want to state that there is an owl called “Huh”, that owls are birds and that
birds fly. As we are writing about birds we think our knowledge base should have
knowledge about penguins also. We write that penguins are birds and we end
up with the following ontology which will be called B:

2 http://protege.stanford.edu/
3 http://owlapi.sourceforge.net/
4 http://pellet.owldl.com/



huh ∈ OWL

OWL v BIRD
BIRD v FLY

PENGUIN v BIRD

Although not explicitly written in our ontology, we can infer that penguins
fly. This is because every model that satisfies the axioms PENGUIN v BIRD
and BIRD v FLY should also satisfy the axiom PENGUIN v FLY . But
we know that penguins don’t fly and suppose we want to make the revision
B ∗ (PENGUIN v ¬FLY ). What should be the result of this revision?

Earlier we said that a revision should add a sentence α, in this case PENGUIN v
¬FLY , to a knowledge base, in this case B. Hence, we must have that α ∈ B ∗α.
This is the first postulate for the revision (success).

(Success) α ∈ B ∗ α

The second thing we said about revision is that it should maintain the con-
sistency. The second postulate for revision, which is called consistency, states
precisely that B ∗ α must be consistent.

(Consistency) B ∗ α is consistent

However, we have not defined what consistency is. In DLs there are two differ-
ent notions of consistency. The first one states that an ontology B is inconsistent
if it has no model. In other words, there is no domain set ∆ 6= ∅ that satisfies all
the axioms. This notion of consistency is closer to classical consistency because
it trivializes the base, any sentence can be inferred from an inconsistent B. The
second notion of consistency states that, if a knowledge base B is inconsistent,
there is some concept in B that is necessarily empty. In this work we will follow
[FHP+06] and call this second notion coherence and use the word consistency
only for the case that B has no model.

Let us go back to our example. We have that penguins are birds and that
birds fly and we want to add that penguins don’t fly. If we add this sentence, our
ontology would still have a model, but the concept PENGUIN can be inferred
to be empty. Hence, the resulting ontology is consistent, but incoherent. One
may argue that incoherences are not errors. However, since the concept penguin
was explicitly mentioned, the fact that it must be empty normally indicates that
there is a modeling error. If we want to deal with this kind of error we must
change our second postulate to a coherence postulate.

(Coherence) B ∗ α is coherent

Suppose that we meet our well know penguin “Tweety” and we add the
sentence tweety ∈ PENGUIN to our ontology. Now if we add PENGUIN v
¬FLY to our ontology it will have an inconsistency.



Until now we have stated that B ∗ α must satisfy success and consistency
or coherence. However, if these are the only postulates for revision, the revision
B ∗ (PENGUIN v ¬FLY ) could be just the single sentence ontology:

PENGUIN v ¬FLY

This ontology is consistent and it contains α. So it satisfies success and con-
sistency. Notice, however, that the fact that “Huh” is a owl (huh ∈ OWL) and
that owls are birds (OWL v BIRD) are not related to the fact that the origi-
nal ontology is inconsistent with the sentence added. We would like to maintain
this kind of sentences. We need a postulate which states that sentences that are
not related, in some sense, with the inconsistency should be kept in the revi-
sion. We need a minimality postulate. One postulate that guaranties this kind of
minimality is core-retainment :

(Core-retainment) If β ∈ B \B ∗ α then there is B′ ⊆ B ∪ {α} such that
B′ is consistent/coherent and B′ ∪ {β} is not consistent/coherent.

With this postulate we are forced to keep at least huh ∈ OWL and OWL v
BIRD from the old ontology. All other sentences are relevant to infer the incon-
sistency and, hence, may be removed.

Now, assume that we have that penguins are birds, “Tweety” is a penguin,
penguins don’t fly, birds fly and that in order to fly one must have exactly two
wings as the following ontology is showing:

BIRD v FLY
PENGUIN v BIRD

tweety ∈ PENGUIN
PENGUIN v ¬FLY

FLY v haveWing ≤2 uhaveWing ≥2

Suppose now that we find out that “Tweety” has only one wing and we want
to add it to this ontology (α is now tweety ∈ haveWing ≤1 uhaveWing ≥1). In
this case, the sentencesBIRD v FLY and FLY v haveWing ≤2 uhaveWing ≥2

can be removed. What is a little bit strange in this example is that the sec-
ond sentence is only relevant to infer inconsistency together with the sentence
PENGUIN v ¬FLY . The relevance postulate tries to capture this intuition.

(Relevance) If β ∈ B \B ∗ α then there is B ∗ α ⊆ B′ ⊆ B ∪ {α} such that
B′ is consistent/coherent and B′ ∪ {β} is not consistent/coherent.

Figure 1 shows an ontology in Protégé representing the situation presented
above. Figure 4 shows the ontology after the revision assuming that the user
chooses to remove the sentence BIRD v FLY .



3 Belief Base Revision

Belief base revision is the study of the dynamics of belief bases. A belief base
is simply a set of sentences. In base revision field three operations for belief
bases are defined: contraction, expansion and revision. Expansion is defined as
B + α = B ∪ {α}. Contraction and revision are not uniquely defined, but are
constrained by sets of postulates. In this work we are going the focus in the
postulates for revision. Postulates for revision do not tell us how to construct
a revision. Constructions for revision are based on constructions for contraction
and they will be informally presented in the next section.

We are going to show the postulates for base revision presented in [RW08]. In
[RW08] six operations for revision were presented. Each of them can be defined
for coherence and for consequence (twelve operations). Most of the postulates
used to define these operations were already presented in the previous section
and the rest of them will be presented now.

Until now we have that a revision should add a new sentence (success), in a
consistent way (consistency/coherence) and should keep sentences unrelated with
the inconsistency (core-retainment/relevance). These postulates do not guaranty
that we can not add irrelevant sentences. We need a postulate that guaranties
that no irrelevant sentences are added to the base:

(Inclusion) B ∗ α ⊆ B + α

Furthermore, notice that, if α is itself inconsistent/incoherent, then success
and consistency can not be satisfied at the same time. We need weaker versions
of them:

(Weak Success) If α is consistent/coherent then α ∈ B ∗ α

(Weak Consistency) If α is consistent/coherent then B ∗ α is consis-
tent/coherent

For now on success will be called strong success and consistency will be called
strong consistency.

We will call kernel revision the revision operations that satisfy core-retainment.
Thus, kernel revision with strong success for consistency is characterized by the
postulates: strong success, weak consistency, inclusion, core-retainment and a
postulate named pre-expansion.

(Pre-expansion) B + α ∗ α = B ∗ α

The revision operations that satisfy relevance will be called partial meet
revision and they also satisfy inclusion and pre-expansion. We can define the
following revision operations:

– kernel revision with strong success for consistency
– kernel revision with strong success for coherence
– kernel revision with weak success for consistency
– kernel revision with weak success for coherence



– partial meet revision with strong success for consistency
– partial meet revision with strong success for coherence
– partial meet revision with weak success for consistency
– partial meet revision with weak success for coherence

The other four operations showed in [RW08] are not real revision operations,
they are called semi-revisions (B?α). A semi-revision [Han97a] was proposed
to be used when one does not want to give the input sentence a higher prior-
ity. For this reason semi-revisions do not satisfy success. Kernel semi-revision
for DLs were studied in [HWKP06]. A kernel semi-revision for consistency is
characterized by the postulates: inclusion, core-retainment, strong consistency,
pre-expansion and a postulate called internal exchange.

(Internal Exchange) If α, β ∈ B then B?α = B?β

Every semi-revision satisfies internal exchange, inclusion and pre-expansion
and we can distinguish the last four operations:

– kernel semi-revision for consistency
– kernel semi-revision for coherence
– partial meet semi-revision for consistency
– partial meet semi-revision for coherence

4 Constructions

In the previous section we presented rationality postulates for revision. In this
section we are going to present constructions that are equivalent to those sets of
postulates.

We are going to present two kinds of constructions for revision: kernel and
partial meet revision. Kernel revisions are equivalent to those sets of postulates
that satisfy core-retainment and partial meet revisions are equivalent to those
that satisfy relevance. All these constructions first add the new sentence α and
then contract the inconsistencies/incoherences. They differ from each other in
how they contract the inconsistencies/incoherences.

4.1 Kernel Revisions

Kernel revisions try to contract the inconsistencies/incoherences by finding all
minimal inconsistent/incoherent subsets of B+α, which is called kernel of B+α,
and then removing at least one element of every one of them.

This construction is equivalent to kernel semi-revision. To satisfy strong suc-
cess we need to protect the input α. We do that by not choosing α to be removed
from B. To satisfy strong consistency/coherence we must protect only the con-
sistent/coherent inputs α.



4.2 Partial Meet Revisions

The strategy adopted by partial meet revision is to find all maximal subsets of
B + α that are consistent/coherent, which will be called the remainder set of
B+α. Then we choose some, at least one, of these sets and get their intersection.

Like in the previous section this construction is equivalent to the partial
meet semi-revision. To satisfy strong success we also need to protect the input
and we do that by choosing every maximal consistent subset of B that contains
α. Furthermore, in order to satisfies the strong consistency/coherence we must
protect only consistent/coherent inputs.

4.3 Representation Theorems

A representation theorem proves that a set of postulates is equivalent to a con-
struction. This means that, in one hand, the construction satisfies all the pos-
tulates in the respective set of postulates. On the other hand, if an operation
satisfies every postulate in this set of postulates then it can be constructed by
the respective construction.

Every revision presented in section 3 is equivalent to a construction informally
presented in 4.1 and 4.2. For example the kernel revision with strong success for
consistency of the section 3 is equivalent to the kernel construction that protects
the input of the section 4.1.

For more details about these operations, constructions, their representation
theorems and proofs see [RW08].

5 Implementation

The difficult part of these constructions is to find the kernel and the remainder
set of B + α. In this section we are going to show how we implemented these
operations. To find the kernel we used the algorithms for ontology debugging
presented in [KPSH05,SC03]. To find the remainder set we used Reiter algorithm
[Rei87] in the kernel.

[KPSH05] presents two algorithms to find what the authors call justifications
for a sentence in an ontology: glass box and black box algorithm.

The glass box algorithm depends on the reasoner. It tries to trace the axioms
used to prove the inconsistency. The result is inconsistent/incoherent subset of
the ontology. Glass box algorithm is already implemented in the OWL API with
Pellet:

PelletOptions.USE_TRACING = true;
Reasoner pellet = new Reasoner( OWLManager.createOWLOntologyManager() );
pellet.loadOntology( B );
pellet.getKB().setDoExplanation( true );

The resulting subset is not guarantied to be minimal. To guaranty the min-
imality of this subset we used the black box algorithm. Black box algorithm



(algorithm 1) does not depend on the reasoner. It consists in two parts: the first
(expand) adds axioms until the set becomes inconsistent/incoherent. The second
part (shrink) removes elements one by one and verifies if the ontology remains
inconsistent, if not then the removed axiom must be part of the kernel and so
it is left in the ontology. The black box algorithm returns a minimal inconsis-
tent/incoherent subset of the ontology, in other words, an element of the kernel.
It can be used alone, but it is much more efficient if it is used with the result of
the glass box algorithm forming a hybrid algorithm.

Algorithm 1 Black Box Algorithm

BlackBox(B + α)

1 � First Part (Expand)
2 B′ ← ∅
3 for β ∈ B + α
4 do B′ ← B′ ∪ {β}
5 if B′ is inconsistent/incoherent
6 then Break
7 � Second Part (Shrink)
8 for ε ∈ B′

9 do if B′ \ {ε} is inconsistent/incoherent
10 then B′ ← B′ \ {ε}
11 return B′

To find the other elements of the kernel we implemented the following recur-
sive algorithm:

Algorithm 2 Algorithm to find all the element of the Kernel

Kernel(B + α)

1 � This algorithm returns the kernel of B + α
2 if B + α is consistent/coherent
3 then return ∅
4 min← Hybrid(B + α)
5 B′ ← B′{min}
6 for β ∈ min
7 do B′ ← B′ ∪ kernel(B + α \ {β})
8 return B′

Once the kernel is computed, the remainder set can be computed finding
the minimal cuts (hitting sets) of the kernel. A cut is a set that contains at



least one element of each set in a class of sets. In [Was00] it was proved that a
minimal cut in the kernel corresponds to B minus an element of the remainder
set and vice-versa. Hence, the remainder set can be computed using the Reiter’s
algorithm to find minimal hitting sets of a class of sets [Rei87,GSW89].

5.1 Using the Reviser

When the user opens the revision view inside Protégé, he is given a menu of
postulates to choose (see Figure 1). The user has a choice between success, weak
success or no success, between core-retainment and relevance as minimality con-
ditions, and between strong consistency, weak consistency, strong coherence and
weak coherence. After picking up the desired set of postulates and entering the
new sentence at the Input Editor (Figure 1), the user is given the corresponding
kernel or remainder set as shown in Figure 3. He can then select at least one
sentence from each element of the kernel (Figure 3, left hand side) or select at
least one element of the remainder set (Figure 3, right hand side) and press
Finish. The ontology is then revised accordingly (Figure 4).

The plug-in also offers the possibility of performing kernel or partial-meet
contractions, as can be seen in Figure 2.

6 Conclusion and Future Works

We have presented here a plug-in for Protégé that implements the two operations
for contraction and the twelve operations for revision presented in [RW08]. The
implementation uses the algorithm presented in [HWKP06] using the OWL API
and the pellet reasoner.

At this moment the plug-in is compliant with the build 53 of Protégé 4. We
are trying to make it compliant with the last build of Protégé 4. Future works
also include testing and improving efficiency of the implementation and testing
if it is better to compute remainder sets directly or to use the Reiter’s algorithm
(as we are doing).
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