
Extracting Semantic Annotations from Moodle Data
Mihai Gabroveanu1 and Ion-Mircea Diaconescu2

Abstract. The purpose of this paper is to provide a solution which
allows automatic reasoning processes over Moodle activities logs, in
order to obtain user-personalized recommendations. Activities logs
are mined for association rules, which are the translated into Jena
Rules. The information is then used by specific learning rules to cre-
ate recommendations for specific users. Using this technique, addi-
tional information is obtained starting from activities database.
Keywords: e-Learning, association rules, Jena, RDF(S), ERDF.

1 Introduction

Nowadays, e-Learning systems are widely used, specially in schools,
colleges and universities but not only. More and more corporations
involve continuous learning in their management systems. A num-
ber of e-Learning systems such as Moodle, Sakai, ATutor, CLIX are
available either open source or commercial either as a standalone ap-
plications or online learning platforms (such as Microsoft Learning
Manager, BlackBoard).

All these systems accumulate a large amount of data suitable for
analyzing the users behavior using data mining technics. The goal of
extracted information is to improve the educational process.

This work describes an extension of Moodle e-Learning system,
which extracts semantic metadata helpful in delivery of user per-
sonalized content. In a previous work ([6] and [13]) we improved
Moodle by adding rules and semantics to enrich the reports genera-
tion. In this work we follow the idea that, additionally to the standard
information that users can see, it is possible to obtain supplemen-
tary information indirectly available (i.e. obtained by processing data
stored in Moodle activity logs). Using this Moodle module, users are
informed about some specific changes or are advised to do some ac-
tions. For example a student can be advised to read some specific
resources in order to obtain necessarily skills for a specific test. This
module is user-based, meaning that all information and suggestions
are made depending of which user authenticates to the system. For
example may be unnecessarily to suggest for some users to follow a
specific course, since they already followed that course, but for oth-
ers users this can be a valid option. In order to create the module we
use Weka to extract association rules from Moodle activities logs and
Jena Rules to infer additional information.

The paper is organized as follows: (1) in the first part explain the
steps followed to extract association rules from Moodle activities
logs; (2) the second part explain the mapping from association rules
to Jena Rules and discuss an improvement for Moodle activities logs;
(3) finally, we describe the architecture of the module implementa-
tion.

1 Dept. of Computer Science, University of Craiova, Romania, e-mail: mi-
haiug@central.ucv.ro

2 Brandenburg University of Technology, Germany, e-mail:
M.Diaconescu@tu-cottbus.de

2 Mining information from Moodle activities logs
E-Learning systems provides databases where information about
students profile, courses, academic results and performed activities
(reading, writing, taking tests) are stored. A huge quantity of data
is collected and can be very difficult to perform a manually ana-
lyze over it. Data mining provides technics and algorithms useful to
perform an automatically analyze over activities logs databases. In-
structors use available data to improve the courses quality or to build
recommendations for system users.

The process of discovering association rules is an important task in
data mining. An association rule provides a relationship among dif-
ferent attributes. Our Moodle module use algorithms for mining asso-
ciation rules in order to identify possible relations between courses,
resources, student activities. Particularly, a selection process regard-
ing the information we are interested to mine is performed. This al-
lows us to obtain only specific association rules which is relevant for
our needs.

2.1 Basic Knowledge on Association rules
In this subsection we presents a basic introduction of concepts related
to association rules and the mining process.

The initial problem of mining association rules was formulated by
Agrawal in [1] and is called the market-basket problem.

Considering T to be a non-empty data table containing transac-
tions, an association rule is an expression with the following form:
A ⇒ B. Formally speaking, this means that transactions including
A will include B as well, with a high probability. A and B are called
the antecedent, respectively the consequent of the rule.

The quality of an association rule is expressed by several mea-
sures. Two of them, namely the support and the confidence are es-
sential [1]:

• the support of A ⇒ B is defined as the percentage of transactions
in T that contain both A and B.

• the confidence of A ⇒ B is defined as the percentage of transac-
tions in T containing A which also contain B.

Example 1 Table 1 contains courses followed by students. We see
that student having ID 1 followed Web Technologies (WT), Web Ap-
plications (WA) and Web Documents (WD) courses, the student hav-
ing ID 2 followed Web Applications (WA) and E-Business Technolo-
gies (EBT) courses, etc.

An example of association rule is WT ⇒ WD. This express that
some of the students who followed Web Technologies (WT) course,
also followed Web Documents (WD) course. The support of this as-
sociation rule is calculated as:

supp(WT ⇒ WD) =
|{1, 3, 5}|

|T | =
3

6
= 0.50

http://moodle.org/
http://sakaiproject.org/
http://www.atutor.ca/
http://www.im-c.de/en/products/clix/clix-enterprise/
http://learning.microsoft.com/Manager/Catalog.aspx
http://learning.microsoft.com/Manager/Catalog.aspx
http://www.blackboard.com
http://www.cs.waikato.ac.nz/ml/weka/
http://jena.sourceforge.net/

StudentID List of courses
1 WT , WA, WD
2 WA, EBT
3 WT , WD, EBT
4 WA, WD, EBT
5 WT , WD
6 WT , EBT

Table 1. The list of courses

expressing that 50% of students followed both the Web Technologies
(WT) course and the Web Documents (WD) course.

The confidence can be calculated as:

conf(WT ⇒ WD) =
|{1, 3, 5}|
|{1, 3, 4, 5}| =

3

4
= 0.75

and it express that: from all students who follow the Web Technolo-
gies (WT) course, 75% of them also followed the Web Documents
(WD) course.

Rules having support and confidence greater than an user-specified
minimum support (minsup) and respectively a minimum confidence
(minconf) are named strong association rules.

In this work the goal is to obtain only strong association rules in-
ferring new information relevant in our context.

To extract strong association rules many algorithms were pro-
posed. The most popular are: Apriori [2], DHP [12], PARTI-
TION [14], DIC [5].

2.2 Mining Logs to extract useful data
The Knowledge Discovery [10] consist in the following steps: col-
lecting data, preprocessing data, applying the data mining algo-
rithms and post-processing. The mining association rule process in
e-Learning systems [9] follows some steps:

• Collecting data. The Moodle database store detailed logs with all
activities that users performs.

• Data pre-processing. Typical tasks are performed in this phase:
data selection, derivation of new attributes and selection of some
attributes (new attributes are created starting from the existing
ones and only a subset of relevant attributes are finally chosen),
transforming the data format (to a format required by the used
data mining algorithms or framework).

• Applying the mining algorithms. In this phase we need:

– to choose specific association rule mining algorithm;

– to configure the parameters of the algorithm (such as support
and confidence threshold, minsup and minconf);

– to identify table(s) or data file are used in the mining process;

– and to specify some other restrictions, such as the maximum
number of items and what specific attributes can be present in
the antecedent or consequent of the discovered rules.

• Data post-processing. Strong association rules which are obtained
are represented in a comprehensible format.

Our interest is to extract association rules such as:

• 82% of the students who followed Web Technologies (WT) course,
also followed Web Application (WA) course.

• 70% of the students that solve home-works from Web Technologies
(WT) course pass the WA exam.

• 74% of the students that read resource A and B from course E-
Business Technologies (EBT) read also resource C.

In order to extract association rules from Moodle logs we use
an existing data mining tool, namely Weka, which implements sev-
eral algorithms for extracting association rules. For our purpose, we
choose to we use Apriori [2], but also other algorithms can be taken
into consideration. The mined models will be exported into PMML3

(Predictive Model Markup Language). The Predictive Model Markup
Language (PMML) is an XML-based language which provides a way
for applications to define statistical and data mining models and to
share models between PMML compliant applications.

Example 2 Let consider the relational data table obtained from
Moodle logs (Table 2) containing courses followed by students. This
data table is obtained after pre-processing step and corresponding
to transactional data table presented in Table 1.

StudentID CourseID
1 WT
1 WA
1 WD
2 WA
2 EBT
3 WT
3 WD
3 EBT

StudentID CourseID
4 WA
4 WD
4 EBT
5 WT
5 WD
6 WT
6 EBT

Table 2. Excerpt from Moodle data

Executing the Apriori algorithm implemented in Weka over the
data depicted below and providing a minimum support value (0.4)
and a minimum confidence value (0.5) as parameters we obtain
two association rules WT ⇒ WD (supp=0.50, conf=0.75) and
WD ⇒ WT (supp=0.50, conf=0.75). Our module translate rules in
the PMML form. By example, association rules obtained after post-
processing step is depicted below:

<?xml version="1.0" encoding="UTF-8"?>
<PMML xmlns="http://www.dmg.org/PMML-3_1">
<DataDictionary numberOfFields="2">
<DataField dataType="integer" name="SudentID"

optype="continuous">
<Extension extender="weka" name="storageType"
value="numeric"/>

</DataField>
<DataField dataType="string" name="CourseID"
optype="categorical">

<Extension extender="weka" name="storageType"
value="string"/>

<Value property="valid" value="EBT"/>
<Value property="valid" value="WA"/>
<Value property="valid" value="WD"/>
<Value property="valid" value="WT"/>

</DataField>
</DataDictionary>
<AssociationModel algorithmName="Apriori"
functionName="associationRules"
minimumConfidence="0.5"
minimumSupport="0.4" modelName="Sudents_Courses"
numberOfItems="2" numberOfItemsets="2"
numberOfRules="2" numberOfTransactions="6">

<MiningSchema>
<MiningField name="SudentID" usageType="group"/>
<MiningField name="CourseID" usageType="active"/>

</MiningSchema>
<Item id="1" value="WD"/>

3 PMML - http://www.dmg.org/pmml-v3-1.html

http://www.dmg.org/pmml-v3-1.html
http://www.dmg.org/pmml-v3-1.html
http://www.dmg.org/pmml-v3-1.html

<Item id="2" value="WT"/>
<Itemset id="1" numberOfItems="1" support="0.667">
<ItemRef itemRef="1"/>

</Itemset>
<Itemset id="2" numberOfItems="1" support="0.667">
<ItemRef itemRef="2"/>

</Itemset>
<AssociationRule id="1" antecedent="1"
consequent="2" support="0.5" confidence="0.75"/>

<AssociationRule id="2" antecedent="2"
consequent="1" support="0.5" confidence="0.75"/>

</AssociationModel>
</PMML>

An advantage os using this representation (PMML) is that it is
XML based, it has a schema and it is easy to translate to another
representation types, XML-based or not. Our solution use an XSLT
transformation to map association rules from PMML representation
to Jena rules syntax.

3 Generate Recommendations in Moodle
In this section, we describe a translation from association rules, ex-
tracted from Moodle activities logs based on support and confidence
factors, to Jena rules. Using such rules, complex reports and recom-
mendations on the page of each authenticated user are created.

3.1 Brief introduction to Jena Rules
Jena is a framework which allows reasoning over RDF(S)
([8], [4]). It use a triple based syntax for rules (e.g.
(?x rdf:type moodle:Student)), and built-ins to repre-
sent user defined operations (actions). Atoms are represented by
RDF nodes, and the used syntax for representing URI’s, variables,
blank nodes and literals (plain or typed) is based on SPARQL. In
Jena rules, components of a triple are: (1) the subject - is the first
node, and it can be variable, URI reference or blank node; (2) the
predicate - the second node of the triple, is expressed by using a
variable or an URI reference; (3) the object - the last node of the
triple, can be a variable, an URI reference, a blank node or a literal.

Jena rules offers support for a form of
negation-as-failure, expressed by using the noValue
built-in, who’s parameters are the nodes of the triple (e.g.
noValue(?x moodle:passedExam moodle:WT)). Con-
junction is used by default and disjunction is not supported. Three
types of rules are supported by Jena Rules engines, namely forward,
backward and hybrid (forward rules having backward rules in the
head). This paper describe a Moodle improvement dealing with
forward rules executed by a RETE [7] forward engine.

3.2 Mapping association rules to Jena Rules
In order to generate reports and recommendations, we use Moodle
activities logs as knowledge base and a translation from the ex-
tracted association rules to Jena rules is performed. We consider the
association rule, obtained above in the mining process:

82% of the students who followed Web Technologies (WT) course,
also followed Web Application (WA) course.

Using such rules, we can recommend to some students, who al-
ready followed WT course and do not followed yet the WA course, to
consider follow that course, (e.g. in the next semester). Particularly,
for currently authenticated student Tom Miller, we can recommend

him to consider the WA course for the next semester but this is not an
available information for another authenticated student John Smith
who already followed WA course. Newly obtained data is not stored
into Moodle database. Instead, it is used by the Moodle view module
when the page for this student is generated.

The above association rule translate into the following Jena rule:

[R:
(?x rdf:type moodle:Student)
(?x moodle:username moodle:Tomy)
(?x moodle:takenCourse moodle:WT)
noValue(?x moodle:takenCourse moodle:WA)
->
(?x moodle:followCourse moodle:WA)]

We have to note that the second triple of our rule is
dynamically created when the user access a page, and
isn’t part of the association rule. The subject of the triple
(?x moodle:username moodle:Tomy) is obtained by
using the usernames of the current logged users. Using this tech-
nique, we can express user-based recommendations. We don’t want
to recommend a course for a student which already followed that
course. For the rule expressed in Jena, we use the noValue builtin
to check in the working memory the triple denoted by the built-in
parameters and it fails if the triple is found. Assuming that our rule
is expressed as WT ⇒ WA, and denoting with DWT the set of
all students who followed WT course and with DWA the set of all
students who followed the WA course, then have to analyze four
possible situations:

• x is a positive example - x ∈ DWT ∧x ∈ DWA - for our case, this
express that the student already followed the WT course and also
the WA course. This situation is covered: if the student already
followed both courses, then the rule do not fire.

• x is a non-positive example - x /∈ DWT ∨ x /∈ DWA - for our
case, this express that the student hasn’t followed the WT course
or hasn’t followed the WA course. In our rule, if the student hasn’t
followed the WT course, the rule will do not fire, and if the stu-
dent hasn’t followed the WA course then the rule fire only if he
followed the WT course.

• x is a negative example - x ∈ DWT ∧x /∈ DWA - in this case, the
rule fire and we recommend for that student to consider the WA
course.

• x is a non-negative example - x /∈ DWT ∨ x ∈ DWA - in this
case the rule don’t fire, since the student either hasn’t followed
WT course or already followed WA course.

We can note that in the case of a positive and non-negative exam-
ple, the rule do not fire and in the case of a negative example the
rule always fire. For the case of non-positive example, the rule fire
only if the student followed the WT course but not followed the WA
course. We have this situation because we want to recommend some
actions only to students which cover the conditions of the boolean
association rule but do not cover all conclusions.

The rule from the above example has a simple structure: only one
antecedent atom (translating into a condition) and one precedent
atom (translating into a conclusion). Sometimes, rules are more
complex:

74% of the students who get WT course and passed the test T2
have accessed resource Res1 and solved assignment A1.

A result of applying a reasoning using such a rule, can be to guide
the student to read some resources and to do some specific actions in
order to prepare himself for a specific test.

http://www.w3.org/TR/rdf-sparql-query/

There is a need to to make suggestions only for students which ac-
complish all conditions and we need to recommend only those parts
from conclusion which are not accomplished yet. For the student Tom
Miller who follows the WT course, and already accessed resource
Res1, we need only to suggest him to consider solving the assignment
A1. For this case we have also a supplementary condition, expressing
that he hasn’t passed yet the test T2. For the rest of the students, this
recommendation will not be useful. Such statements, from associa-
tion rules, translate into negated conditions in Jena rules.

We translate this rule into two Jena rules:
[R1:
(?x rdf:type moodle:Student)
(?x moodle:username moodle:Tomy)
(?x moodle:takenCourse moodle:WT)
noValue(?x moodle:passTest moodle:T2)
noValue(?x moodle:accessedResource moodle:Res1)
->
(?x moodle:accessedResource moodle:Res1)]

[R2:
(?x rdf:type moodle:Student)
(?x moodle:username moodle:Tomy)
(?x moodle:takenCourse moodle:WT)
noValue(?x moodle:passTest moodle:T2)
noValue(?x moodle:solvedAssignment moodle:A1)
->
(?x moodle:solvedAssignment moodle:A1)]

Consider having the student Tom Miller, with the username Tomy.
It has followed the WT course (but not the WA course), hasn’t passed
the T2 test, hasn’t accessed the Res1 resource and also hasn’t solved
the A1 assignment. According with those statements, Tom Miller ac-
complish conditions from rules R, R1 and R2. Conform with the rule
R, we recommend him to consider follow the WA course, and accord-
ing with R1 and R2 we recommend him to solve the assignment A1
and to read information refereed by Res1. All those information are
inferred and cannot by obtained directly from the activities logs.

For the general case, a boolean association rule:

A1 ∧A2 ∧ ... ∧An ⇒ B1 ∧B2 ∧ ... ∧Bm

translate into many Jena rules:

R1 : A1 ∧A2 ∧ ... ∧An ∧ ¬B1 ⇒ B1

...........
Rm : A1 ∧A2 ∧ ... ∧An ∧ ¬Bm ⇒ Bm.

The general case, for boolean association rules, already implies
extraction of simple rules having the same conditions and each of
them having the conclusion formed by one of the atoms from the
association rule conclusion:

A simple association rule:

A1 ∧A2 ∧ ... ∧An ⇒ B

translate in the Jena rule:

R1 : A1 ∧A2 ∧ ... ∧An ∧ ¬B ⇒ B

In order to obtain Jena rules from association rules, select only as-
sociation rules having good a probability (strong association rules).
For this reason, a minimum value is selected for both support and
confidence measure factors. For different rule sets, different values
for maximum and minimum factors are set.

3.3 Jena Rules inference submodule
After obtaining Jena rules starting from association rules, the next
step is to use those rules, and Moodle activities logs to infer sup-
plementary information. Jena API contains a module capable of

extracting models used in the reasoning process, directly from a
MySQL database. The inference submodule directly link to the Moo-
dle database and extract all necessarily data from tables, creating
RDF triples which are stored in the working memory. Those triples
represents the initial facts base. At the next step, Jena rules obtained
from association rules, are loaded by the engine into a RuleStore ob-
ject. When the inference process in finished, the working memory
contains new facts obtained by applying rules over initial facts base.
New information (facts) are used to create additional information and
recommendations in the user view page. The new information is tem-
porarily stored, and is processed by the view submodule of the ex-
tension.

3.4 Adding strong negation for Moodle data
We saw that in Jena Rules we use noValue built-in for checking
the existence of some specific facts in the working memory (it im-
plements a form of negation-as-failure). Assuming that our goal is to
find out for some accessed resources (from a specific course), which
of them are considered useful by students, it is possible to obtain both
useful not useful resources. Also it is possible to have an overlap. The
meaningful recommendations address useful resources, therefore we
want to suggest only those resources which are considered useful by
the others. This can be naturally expressed, by using negative facts
(e.g. we can have facts expressing that a resource is marked as not
useful by some of the students). This can’t be expressed by using
negation-as-failure, since a student can mark the resource as useful,
other student mark the same resource as not useful and other student
don’t mark at all. Using negation-as-failure, we may conclude that a
resource is not useful just because it was not marked as useful. This
is not always true: not marking as useful, sometimes means that the
student has not marked the resource since it has no opinion about
that resource at the moment of questioning. This is related to Open
World Assumption (OWA) and Closed World Assumption (CWA).
In the case of CWA, not marking the resource means that we have
a not useful resource. In the case of OWA, not marking the resource
means that it’s status is undetermined.

Introduced in [3], and based on Partial Logic[11], ERDF comes
with a solution to allows such facts. It use strong negation in order
to represent negative information, e.g. not-useful resources. In this
way, the property moodle:usefulResource is represented as a
partial property, and it can represent positive information, negative
information, ambiguous resource, or don’t represent information at
all (undetermined). Moreover, ERDF supports closed and open world
assumption. Some predicates are closed (are totally represented in
the knowledge base), and for those we can infer negative information
if positive information can’t be inferred. Other predicates are partial,
and for those we can express multiple truth values (true, false, over-
determined and undetermined).

A prototype of an ERDF engine was developed and is available
for online4 testing. It is based on Jena and supports strong negation
and a form of negation-as-failure.

4 System Architecture and Implementation
Figure 1 illustrates the overall architecture of the system. The system
contains four specific parts (modules):

• Mining Association Rules module - extract association rules using
Weka API;

4 http://oxygen.informatik.tu-cottbus.de/JenaRulesWeb

http://oxygen.informatik.tu-cottbus.de/JenaRulesWeb
http://oxygen.informatik.tu-cottbus.de/JenaRulesWeb

Web Browser (client)User

Jena Inference
Engine

Moodle Logs

Data pre-
procesing

Mining
Association Rules

(WEKA)

Data post-
processing

Jena
Rules

Translator

Moodle (on Web Server)

View Module

Figure 1. System Architecture

• Jena Rules Translator module - maps association rules to Jena
rules.

• Inference Engine module - interact with the Jena inference en-
gine. It uses the Jena rules obtained from the previous module,
and Moodle activities logs as initial working memory.

• View module - improve user views, by adding new information
obtained from the inference process and possible obtained recom-
mendations.

The Mining Association Rules module connects to Moodle
database, obtains activities logs, select and prepare data in order to
extract association rules. For the mining process, WEKA is used.

Using the second module, association rules which are obtained
from the mining process are then translated to Jena rules. The infer-
ence engine runs as a servlet and uses Jena API and rules obtained
before in order to obtain new information. Finally, a PHP module im-
prove the final view of the authenticated user with new information
and possible recommendations obtained after the inference process.

Some operations are dynamical (e.g. the reasoning pro-
cess, creating views), and others are created timely by a
cron process (e.g. mining logs to obtain boolean association
rules, translate association rules into Jena rules). Before Jena
rules are passed to the inference engine, for each rule, a
triple expressing the identity of the currently logged user is
added (e.g.(?x moodle:username moodle:Tomy)). Also,
new triples regarding authenticated users are added to memory when
a user login to the Moodle system. Multiple users authentication is
supported by adding a new triple for each new authenticated user.
Those triples allow us to identify relevant information for specific
users.

5 Conclusion and future work

The paper describes a Moodle extension used to create improved
views for users by adding recommendations based on the existing

data about user activities. The view is created by using the user-data
as input for a rule-based learning recommendation processing.

Future work include representation of negative facts in Moodle ac-
tivities and using fuzzy association rules instead of boolean associa-
tion rules. In addition, we intend to develop a rule designer module
which allows (for tutors) to create general/specific interest rule based
on diverse criteria. General rules apply to all users of the system (e.g.
create a message for every student which has not passed an exam).

REFERENCES
[1] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami, ‘Mining as-

sociation rules between sets of items in large databases’, in Proceedings
of the 1993 ACM SIGMOD International Conference on Management
of Data, Washington, D.C., May 26-28, 1993, eds., Peter Buneman and
Sushil Jajodia, pp. 207–216. ACM Press, (1993).

[2] Rakesh Agrawal and Ramakrishnan Srikant, ‘Fast algorithms for min-
ing association rules’, in Proc. 20th Int. Conf. Very Large Data Bases,
(VLDB), eds., Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, pp.
487–499. Morgan Kaufmann, (12–15 1994).

[3] Anastasia Analyti, Grigoris Antoniou, Carlos Viegas Damasio, and
Gerd Wagner, ‘Negation and Negative Information in the W3C Re-
source Description Framework’, Annals of Mathematics, Computing
and Teleinformatics, 1(2), 25–34, (2004).

[4] D. Brickley and R.V. Guha. RDF Vocabulary Description Lan-
guage 1.0: RDF Schema. W3C Recommendation February 2004.
http://www.w3.org/TR/rdf-schema/.

[5] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur,
‘Dynamic itemset counting and implication rules for market basket
data’, in Proceedings ACM SIGMOD International Conference on
Management of Data, pp. 255–264. ACM Press, (May 1997).

[6] Mircea Diaconescu, Sergey Lukichev, and Adrian Giurca, ‘Semantic
Web and Rule Reasoning inside of E-Learning Systems’, in Proceed-
ings of 1st International Symposium on Intelligent and Distributed
Computing, eds., C. Badica and M. Paprzycki, Studies in Computa-
tional Intelligence, Craiova, Romania, (18-20 October 2007). Springer.

[7] C. Forgy, ‘Rete – A Fast Algorithm for the Many Pattern / Many Object
Pattern Match Problem’, Artificial Intelligence, 19, 17–37, (1982).

[8] Klyne G. and Caroll J.J. Resource Description Framework (RDF): Con-
cepts and Abstract Syntax. W3C Recommendation 10 February 2004.
http://www.w3.org/TR/rdf-concepts/.

[9] Enrique Garcia, Cristobal Romero, Sebastian Ventura, and Toon
Calders, ‘Drawbacks and solutions of applying association rule min-
ing in learning management systems’, in Proceedings of the Interna-
tional Workshop on Applying Data Mining in e-Learning (ADML’07),
(September 2007).

[10] Jiawei Han, Data Mining: Concepts and Techniques, Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2005.

[11] Heinrich Herre, Jan O. M. Jaspars, and Gerd Wagner, ‘Partial Logics
with Two Kinds of Negation as a Foundation for Knowledge-Based
Reasoning’, in What is Negation?, eds., D.M. Gabbay and H. Wansing,
Kluwer Academic Publishers, (1999).

[12] Philip S. Yu Jong Soo Park, Ming-Syan Chen, ‘An effective hash-based
algorithm for mining association rules’, in Proceedings of the 1995
ACM SIGMOD International Conference on Management of Data, pp.
175–186, San Jose, Canada, (1995).

[13] Sergey Lukichev, Adrian Giurca, and Mircea Diaconescu, ‘Empower-
ing moodle with rules and semantics’, in Proceedings of 3rd Workshop
on Scripting for the Semantic Web (SFSW2007), eds., T. Heath S. Auer,
C. Bizer and G. A. Grimnes, Innsbruck, Austria, (6 June 2007).

[14] Ashok Savasere, Edward Omiecinski, and Shamkant B. Navathe, ‘An
efficient algorithm for mining association rules in large databases’,
in Proceedings of 21th International Conference on Very Large Data
Bases (VLDB’95), eds., Umeshwar Dayal, Peter M. D. Gray, and Sho-
jiro Nishio, pp. 432–444. Morgan Kaufmann, (September 1995).

http://www.cs.waikato.ac.nz/ml/weka/

	Introduction
	Mining information from Moodle activities logs
	Basic Knowledge on Association rules
	Mining Logs to extract useful data

	Generate Recommendations in Moodle
	Brief introduction to Jena Rules
	Mapping association rules to Jena Rules
	Jena Rules inference submodule
	Adding strong negation for Moodle data

	System Architecture and Implementation
	Conclusion and future work

