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Abstract

The automated retrieval and integration of
information about protein point mutations in
combination with structure, domain and in-
teraction data from literature and databases
promises to be a valuable approach to study
structure-function relationships in biomedi-
cal data sets.

As a prerequisite, we developed a rule- and
regular expression-based protein point muta-
tion retrieval pipeline for PubMed abstracts,
which shows an F-measure of 87% for the
pure mutation retrieval task on a benchmark
dataset.

In order to link mutations to their proteins,
we utilised a named entity recognition al-
gorithm for the identification of gene names
co-occurring in the abstract, and established
links based on sequence checks. We iden-
tified more than 10Mio genes/proteins in
nearly 3.5Mio abstracts and 260.000 muta-
tions in 80.000 of these abtracts (2.3%). In
52% of cases the identified gene’s sequence
and the mutation are consistent. We eval-
uated the use of mutations in gene identi-
fication in detail on a small test set of 22
abstracts. Identifying the correct gene im-
proved from 77% to 91% when considering
the mutations.

To demonstrate practical relevance, we set
up a mutation screening for five mem-
brane proteins from the family of G protein-
coupled receptors to evaluate a solvation en-

ergy based model for the prediction of sta-
bilising regions in membrane proteins. We
identified 35 mutations in text. 25 out of
35 mutation phenotypes reported in litera-
ture were in compliance with the prediction
of the energy model, which supports a rela-
tion between mutations and stability issues
in membrane proteins.

1 Introduction

Proteins carry out most cellular functions as they are
acting as building blocks for structures, enzymes,
gene regulators, and are involved in cell mobility
and communication (Alberts et al., 2002). Proteins
may interact briefly with each other in an enzymatic
reaction, or for a long time to form part of a pro-
tein complex. The interactions between proteins
are of central importance for almost all processes
in living cells, and are described by numerous dis-
tinct pathways in databases such as KEGG (Ogata et
al., 1999). Malfunctions or alterations in such path-
ways can be the cause of many diseases, when for
instance the biosynthesis of involved proteins is re-
pressed or proteins are not interacting the way they
should. The latter can be due to structural changes
in one of the interacting proteins, caused by point
mutations, i.e. single wild type amino acid substi-
tutions. Indeed, it is already well known that such
mutations are the cause of many hereditary diseases.
Thus the large-scale analysis of point mutation data
in combination with information about protein inter-
actions, protein structure and disease pathogenesis,
might facilitate the study of still unresolved pheno-
types and diseases.



It is envisaged to provide an automated system
for the interpretation of structure-function relations
in the context of genetic variability data. De-
spite the availability of numerous biomedical data
collections, valuable information about mutation-
phenotype associations is still hidden in non-
structured text in the biomedical literature. Thus text
mining methods are implemented to automatically
retrieve these data from the 18 millions of literature
references in PubMed. The extracted knowledge
will be stored in one homogeneous data store and
integrated with already available data from suitable
databases. On the basis of all these combined data,
new hypotheses can be formulated, like the predic-
tion of phenotypic effects induced by mutations. At
the moment, we are populating a database with or-
ganism specific protein-mutation associations which
we envisage to apply on diverse biological prob-
lems, such as the detection of mutation centred gene-
disease associations in human.

2 Background

Genomic variation data has already been collected
for many years. Single nucleotide polymorphisms
(SNPs), which make up about 90% of all human
genetic variation and occur every 100 to 300 bases
along the 3-billion-base human genome, are avail-
able as large collections. Single amino acid poly-
morphisms (SAPs) are often manually extracted
from literature and curated into databases, originat-
ing from wet lab experiments. Additionally, some
structures of such mutations may be revealed in
crystallography experiments and might eventually
end up as distinct structures in the Protein Database
PDB. Of particular interest is the identification of
mutations which have a strong influence on the sta-
bility of proteins. Therefore, the biomedical liter-
ature can be systematically searched for informa-
tion about mutation-phenotype associations by text
mining, which may lead to new insights beyond in-
formation in existing databases. For the text mined
data it is additionally possible to weight or prioritise
information according to their publication date, the
involved authors and the journal. Considering these
meta data can be relevant if for instance an already
published assumption has been proven wrong in a
more recent publication, or for determining whether

a protein is a hot topic or if the information is al-
ready available for years. Furthermore, it is possi-
ble to receive a more detailed view on a protein’s
characteristics, e.g. if a certain interaction only takes
place under specific conditions, or if an interaction is
prevented by the conformational change of a protein
domain triggered by a point mutation.

2.1 Databases

Data on mutations have been collected for years, for
numerous species and by different organisations for
diverse purposes. There are many efforts to cope
with the data, which is being made available in a
growing number of databases. The Human Genome
Variation society (Horaitis and Cotton, 2004) pro-
motes the collection, documentation and free distri-
bution of genomic variation information. New mu-
tation databases are reported in the Journal Human
Mutation on a regular basis. There are manually cu-
rated databases like OMIM (Hamosh et al., 2002),
UniProt Knowledgebase (Yip et al., 2008; Yip et al.,
2007), and general central repositories like the Hu-
man Gene Mutation Database (Stenson et al., 2008),
Universal Mutation Database (Broud et al., 2000),
Human Genome Variation Database (Fredman et al.,
2004), MutDB (Singh et al., 2007).

Besides these central repositories, there are small
specialised databases, such as the infevers autoin-
flammatory mutation online registry (Milhavet et al.,
2008), the GPCR NaVa database for natural variants
in human G protein-coupled receptors (Kazius et al.,
2007), or the Pompe disease mutation database with
107 sequence variants (Kroos et al., 2008).

In contrast, unpublished SNPs normally make
their way into large locus specific data repositories.
Since August 2006, there is a wiki based approach
SNPedia in contrast to classical databases collecting
information on variations in human DNA.

2.2 Text mining

Despite the availability of numerous biomedical data
collections, valuable information about mutation-
phenotype associations is still hidden in non-
structured text in the biomedical literature. Thus
text mining methods are implemented to automati-
cally retrieve these data from the 18 millions of ref-
erenced articles in PubMed. Text mining aims to au-
tomatically extract and combine information spread



in several natural language texts and by this generat-
ing new hypotheses. One of the key prerequisites for
finding newfacts(e.g. interactionsor mutations) is
the named entity recognition (NER) in text, the as-
signment of a class to an entity (e.g.protein), as well
as a preferred term or identifier, in case an entry in
a database, such asUniProt, or a controlled vocabu-
lary like theGene Ontology (GO)(Ashburner et al.,
2000) exists. For the task of named entity recogni-
tion usually a dictionary is used, which contains a
list of all known entity names of a class (e.g. human
proteins) including synonyms. For the recognition
of patterns (e.g. database identifiers likeNM 12345)
regular expression can be defined. For the analy-
sis of whole sentences,Natural language processing
(NLP) techniques are used, which aim to understand
text on a syntactic and semantic level. This approach
is often paired with systems which are based on a
set of manually definedrulesor which make use of
(semi-)supervisedmachine learningalgorithms.

Up to now, there have already been diverse exam-
ples for the successful application of text mining to
the mutation retrieval task. Early examples are the
automatic extraction of mutations from Medline and
cross-validation with OMIM (Rebholz-Schuhmann
et al., 2004), and the work by (Cantor and Lussier,
2004), who mined OMIM for phenotypic and ge-
netic information to gain insights into complex dis-
eases. More recently, (Caporaso et al., 2007b) ap-
plied their concept recognition system based on reg-
ular expressions on mutation mining task, and the
automatic Extraction of Protein Point Mutations Us-
ing a Graph Bigram association (Lee et al., 2007)
was reported to find reliably gene-mutation associa-
tions in full text. For identifying gene-specific vari-
ations in biomedical text, (Klinger et al., 2007) inte-
grate the ProMiner system developed for the recog-
nition and normalisation of gene and protein names
with a conditional random field (CRF)-based recog-
nition system. As an answer to the diverse ap-
proaches developed over the past years, a framework
for the systematic analysis of mutation extraction
systems was proposed by (Witte and Baker, 2007).

More and more groups are working on mu-
tations in proteins and their involvement in dis-
eases. (Kanagasabai et al., 2007) developed
mSTRAP (Mutation extraction and STRucture An-
notation Pipeline), for mining mutation annotations

from full-text biomedical literature, which they sub-
sequently used for protein structure annotation and
visualisation. (Worth et al., 2007) use structure pre-
diction to analyse the effects of nonsynonymous sin-
gle nucleotide polymorphisms (nsSNPs) with regard
to diseases. Focussing on Alzheimer’s disease, (Er-
dogmus and Sezerman, 2007) extract mutation-gene
pairs, with estimated 91.3%, and precision at 88.9%.
(Lage et al., 2007) realised a human phenome-
interactome network of protein complexes impli-
cated in genetic disorders by by integrating quality-
controlled interactions of human proteins with a val-
idated, computationally derived phenotype similar-
ity score,

3 Methods

Through the combination of different data from lit-
erature and databases it is possible to derive new
facts, e.g. novel gene-disease associations or the in-
fluence of mutations on protein-protein interactions.
The approach is designed in such a way, that it can in
principle be applied to any kind of genetic data for
answering disease centred questions. For the mo-
ment, we concentrate on collecting available high
quality data on protein point mutations from curated
databases and from peer-reviewed literature. For the
latter we will present a flexible approach for both the
specific and high-throughput retrieval of mutations.
In detail, the following tasks have to be performed:
(1) Identify genes/ proteins in abstracts. (2) From
this subset consider only these which additionally
contain information about mutations. (3) Propose
potential protein - mutation pairs. (4) Filter pro-
posed pairs by sequence compliance. (5) Utilise
this information for the refinement of the original
gene/protein identifier.

3.1 Entity recognition

Gene normalisation This module allows for the
automated named entity recognition of genes and
proteins. Our approach performs gene name dis-
ambiguation by using background knowledge to
match a gene with its context against the text as a
whole (Hakenberg et al., 2007). A gene’s context
contains information on Gene Ontology annotations,
functions, tissues, diseases etc. extracted from the
databases Entrez Gene and UniProt. A comparison



of gene contexts against the text gives a ranking of
candidate identifiers and the top ranked identifier is
taken if it scores above a defined threshold. This ap-
proach has been recently extended for inter-species
normalisation and achieves 81% success rate on a
mixed dataset of 13 species (Hakenberg et al., 2008).
Mutation tagging We implemented an entity recog-
nition algorithm (MutationTagger) to automati-
cally extract protein point mutation mentions from
PubMed abstracts. Wild-type and mutant amino
acid, as well as the sequence position of the substi-
tution are extracted by means of both a set of regular
expressions for pattern recognition of 1 or 3-letter-
notations (e.g.E312Aor Glu(312)→Ala), and rules
for the more complex identification of textual mu-
tation descriptions (e.g.Glu312 was replaced with
alanine). Problems concerning the full text repre-
sentations (detecting the correct sequence position
of the mutated residue and unravelling enumera-
tions) have been addressed by additional extraction
algorithms and the implementation of a sequence
check. An evaluation of our method on the test
data from MutationFinder (Caporaso et al., 2007a)
showed comparable success rates of around 89% F-
measure for mutation mention extraction.

3.2 Association of entity pairs

In the process of recognising mutations in text, the
normalisation, i.e. the direct association to specific
proteins, remains a challenge. This is due to the fact
that the abstracts of relevant publications typically
mention more than only one single mutation and
protein. Thus, a mutation-protein association purely
based on their co-occurrence in one abstract is not
sufficient, as it would result in a permutation with a
huge number of false positive predictions. The prob-
lem becomes even more evident, when considering
that both gene and mutation tagging are imperfect,
achieving a precision of 80 to 90% each.

A method is desired, that both disambiguates the
relations of candidate mutations and proteins, and
filters out false positives from the underlying indi-
vidual mutation and protein recognition tasks. There
are approaches which apply a word distance met-
ric for assigning a mutation to its nearest occurring
protein term, which is error prone, as matching mu-
tation and protein do not necessarily have to occur
close to each other in the abstract or even in the

same sentence. The statistical approach GraB is an
excellent tool for the automatic extraction of Pro-
tein Point Mutations using a Graph Bigram associ-
ation (Lee et al., 2007), achieving good results for
most likely mutation-protein association but alone
would also not fulfil the second aspect of filtering
out false positives.
Sequence ChecksMutations are commonly de-
scribed as the substitution of a wild-type by a
mutant amino acid at a given position. Our method
compares the wild-type residue as described in a
mutation mention with the UniProt/Swiss-Prot and
PDB protein sequences for all candidate proteins.
It is important to incorporate sequences from both
repositories, as the sequence numbering can differ
and it is not always evident from a publication’s ab-
stract, which numbering the mutation notation refers
to. To map UniProt IDs to PDB and vice versa, we
used PDB cross-references in UniProtKB/Swiss-
Prot from http://beta.uniprot.org/docs/pdbtosp
and the residue specific comparison between
PDB and SwissProt sequences as provided by
http://www.bioinf.org.uk/pdbsws/ (Martin, 2005).
Only associations between mutations and proteins
with matching sequences are considered.

3.3 Annotation pipelines

The developed mutation retrieval pipeline can be
accessed through two different interfaces (see Fig-
ure 1), which offer dependent on the annotation task,
either a systematic or quick and flexible solution.
The following approaches have been implemented:

• Organism-centred approach (database)

All available mutations for a given organism
will be retrieved in one single literature screen-
ing and stored in the Mutation database. This
approach relies on the large-scale identification
of gene mentions in PubMed abstracts, which
have to be compiled for organisms of interest
prior to a mutation screening. As of now, gene
mention data is available for human, mouse,
and yeast. However, data for additional rele-
vant organisms will be added on a regular basis
in the near future.

• Protein-centred approach (on-the-fly)



Figure 1: Workflow of mutation data retrieval with MutationTagger. A: abstracts mentioning proteins for
given species are tagged for mutations. The filtered data is written to database. B: For a protein of interest
relevant articles are retrieved and tagged for mutations. The filtered data can be exported to HTML or SQL.

It is possible to retrieve relevant data for a sin-
gle gene or a list of genes/ proteins for any
organism. For this purpose, the gene identifi-
cation part performed by the gene normaliser
is replaced by a direct full text search in the
PubMed library using the Entrez Programming
Utilities. Again, the result is a set of abstracts,
which is subsequently processed by the Muta-
tionTagger.

3.4 Improvement of gene normalisation

As described above, we defined the input set of doc-
uments for the organism-centred mutation mining
approach by scanning the whole PubMed database
for abstracts mentioning at least one gene or protein
of a pre-defined species. For this filtering step, we
relied on the gene normalisation techniques of our
gene normaliser, which was applied to all PubMed
abstracts in advance and has shown 85% F-measure
for human genes and slightly lower for other species.
However, the gene normalisation proposes by de-
fault only one single identifier per gene mention,

even if a set of different candidate identifiers was
computed. According to internal ranking mech-
anisms, only the top scoring candidate is consid-
ered. This leads to a possible scenario, where in
some cases the correct identifier is ranked lower and
would be neglected for any subsequent data proces-
sion. In case of our mutation mining algorithm, we
assume that some mutations cannot be associated to
the correct protein, because the gene tagging task al-
ready failed.

On the other hand, it should be possible to im-
prove the performance of both entity recognition
techniques for genes and mutations by combining
the results. The idea is to run both approaches with
low precision thus receiving a high recall, permu-
tate all elements of both sets, and then consider
the intersection of all combinations that fit. Muta-
tion and gene product are considered to be a valid
pair, if the wild-type residues at the mutated posi-
tion in the protein sequence and in the reported mu-
tation match (as described in section 3.1). For all



proposed gene identifiers, protein sequences are ob-
tained and checked for compliance with the reported
wild type amino acid. The score of identifiers that
show a match are increased, which might lead to
a re-ranking of the identifiers for one gene entity.
This could further improve the original gene nor-
malisation approach for candidate entities which are
reported to show a mutation.
ExampleAs shown in Figure 2 our gene normaliser
identified CCP (human crystallin, gamma D; Entrez-
Gene ID 1421) as the top candidate gene name for
abstract PMID 8142383. The mutation tagger iden-
tified a replacement of tryptophan with glycine at
position 191 as the only mutation mentioned in the
paper. None of the protein sequences retrieved for
human CCP showed a tryptophan residue at position
191, which means that this gene identifier was not
supported by mutation information. However, be-
sides human crystallin, there was also cytochrome-
c peroxidase in yeast (EntrezGene ID 853940) pro-
posed as an alternative identifier, which received a
lower score. As the product of this gene showed
a tryptophan residue at postion 191 (according to
PDB sequencing) the score was increased making
it the new top candidate. Indeed, manual curation
of the corresponding literature confirmed, that the
only gene mentioned in the abstract is cytochrome-c
peroxidase in yeast. The same positive re-ranking
finding the correct gene identifier through muta-
tion information was shown for human TP53 in pa-
per 11254385, and human amylase alpha in paper
15182367.

4 Results

Mutation database In order to establish a muta-
tion database, which will eventually store all protein
point mutations mentioned in PubMed abstracts for
all organisms of interest, a first platform has been
realised, comprising a MySQL database, which can
be accessed by a web-interface.

To populate the database, in a first step the
PubMed corpus is filtered for abstracts mentioning
at least one gene or protein using the named entity
recognition algorithm as described in Section 3.1,
which is currently working for the three organisms
human, mouse, and yeast. This led to a set of set of
3,443,566 abstracts proposing more than 10 millions

Figure 2: Example for gene name normalisation
with the help of mutation mining. Initially, our gene
normaliser proposed the human gene CCP as its
context fits the text best (abstract not fully shown).
However, when comparing the recognised mutation
at position 191 with the sequences of all three candi-
dates, only CCP in yeast contains the wild-type tryp-
tophan at the specified position (PDB entry). After
checking the full text of this publication, we found
that CCP indeed refers to the gene in Saccharomyces
cerevisiae.

of potential protein candidates. In a second step, the
mutation extraction algorithm is applied on this cor-
pus and the retrieved information is transferred into
the database. In total, 258,511 mutations were found
in 78,968 abstracts. Subsequently, for all candidate
genes found in these abstracts, the corresponding se-
quences are obtained and checked for compliance
with the wild type amino acid at the position of
the mentioned mutation, which led to a number of
877,183 potential protein - mutation pairs. Out of
these, 127,384 are supported by sequence (74,722
if multiple mentions of the same mutation in one
abstract are counted as one) in contrast to 131,127
(77,643) mutations which have not passed the se-
quence filter. In summary, from all mutations iden-
tified by the plain algorithm, about 49% could be
supported by gene associations based on sequence
check. These data were retrieved from 41,384 (52%)
abstracts in total.
Evaluation We evaluated our approach on two dif-
ferent tasks: pure identification of a mutation in
a text, and the identification of correct mutation-
protein pairs. An evaluation of our method on
the test data from MutationFinder (Caporaso et al.,
2007a) showed comparable success rates of around
87% F-measure for pure mutation mention extrac-
tion. On the document level, from 182 abstracts con-



taining mutations, 163 were identified, in 4 abstracts
mutation were wrongly predicted. On the mutation
level 741 out of 907 were identified alongside 61
false positives.

To assess the refinement possibilities for falsely
top ranked gene names, from the 182 abstracts we
took the subset of those, the gene normaliser identi-
fied genes from one of the 10 supported species: hu-
man, mouse, yeast, rat, fruit fly, H. pylori, S. Pombe,
C. Elegans, A. Thaliana, and D. Rerio. This led to
a subset of 22 abstracts. In the initial run, the gene
name identifier identified in 17 of 22 abstracts (77%)
the correct gene as the top ranked candidate. How-
ever, after the gene tagging refinement by applying
the sequence filter to all candidate genes, the genes
of 3 more papers were identified correctly replacing
the original and false top candidate. This led to the
correct protein normalisation for 20 out of 22 (91%)
publications. For the remaining 2 publication, the
correct genes could not be identified, as they were
from species, the gene identifier does not yet sup-
port. The suggested genes from mouse were first
falsely predicted, which were then not supported by
the sequence checks. By this the proposed identi-
fiers were brought below the threshold, resulting in
no gene identification at all for these 2 abstracts and
turning the 2 “false positives” to “false negatives”.
On-the-fly vs. database approachWe evaluated
the results of the two access approaches (database
and on-the-fly) for human Aquaporin-1, as part of
the stability analysis of protein membranes (see Sec-
tion 5). The precision of the on-the-fly approach is
expected to be lower, as the first step is more general
due to relying on full text searches instead of entity
recognition. Indeed, in comparison to the unique 20
mutations found by the organism-centred approach,
9 additional mutations were found, of which all were
false positives, actually appearing in Aquaporin-2 or
4. This supports the good precision of the named en-
tity approach for the gene normalisation.

5 Application

Predicting effects of mutations based on sequence
Integral membrane proteins play an important role
in all organisms, especially as transporters. Due to
their striking importance, mutations in membrane
proteins are known to be the cause of many hered-

itary diseases, such as cystic fibrosis, or retinitis
pigmentosa. The reason are often conformational
changes in proteins, which may lead to malfunction
of a whole protein complex. Unfortunately, identi-
fied structures for membrane proteins are still rare.
For this reason, we used a coarse grained model
presented by (Dressel et al., 2008) considering se-
quence information only, to assess the influence of
mutations on protein structure.

The approach considers the solvation energy,
which is based on the probability distribution for
each amino acid within the integral part of a mem-
brane protein to be facing the membrane or other
proteins. The amino acid specific property inside
or outside reflects the orientation of the amino acid
side chains with respect to the centre of mass of the
neighbouring residues. For a given mutation, the
approach compares the solvation energies for wild-
type and mutant residues. If the energies differ sig-
nificantly, a destabilising effect is predicted, espe-
cially if the energies are changing from negative to
positive or vice versa.

To quantify the ability of this model to pre-
dict the influence of mutations on the stability of
membrane proteins, we compared already examined
and published effects of mutations with the predic-
tions of the sequence based model. For this pur-
pose, we screened the literature for single point mu-
tations reported for five membrane proteins from
the family of G protein-coupled receptors (bacteri-
orhodopsin and halorhodopsin fromHalobacterium
salinarum, bovine rhodopsin, Na+/H+ antiporter
from Escherichia coli, and human aquaporin-1). As
described in Section 4,Protein-centred approach
and Figure 1B, articles relevant for these proteins
were identified by searching PubMed via the NCBI
Entrez Programming Utilities. Abstracts for each
protein were queried by the protein and gene name
including the synonyms as derived from the corre-
sponding PDB/UniProt entry.

The MutationTagger was applied on these five
sets of abstracts for the extraction of mutation infor-
mation. The application of sequence checks brought
the results down to a reasonable number of proposed
mutations, which were presented as HTML docu-
ments and subsequently manually curated. We only
used the publications where a single point mutation
was discussed in the context of stability or stabil-



ity related function. Double or multiple mutations
were not considered, as the determination of a direct
relation between the reported effect and one of the
mutations is not possible. If an appropriate mutation
was found in the literature, we compared the solva-
tion energies of both wild-type and mutant residues
to decide, if the mutation was stabilising, slightly
stabilising, slightly destabilising, or destabilising.
Example Mutation T93P for bovine rhodopsin was
reported to lead to a conformational change of the
protein. Considering the two solvation energies of
wild type Threonine (-0.66 a.u.) and mutant Proline
(0.08 a.u.) a destabilising effect can be predicted,
although both amino acids are actually classified as
neutral. Without the change of sign from - to +, an
only slightly destabilising effect would have been
hypothesised.
RelevanceWe were able to show the ability of our
mutation mining approach to retrieve publications
containing mutation information for given proteins
at a good precision. Due to the quick and precise
retrieval of mutation data we were able to assess the
soundness of the coarse grained model for the pre-
diction of stabilising regions in membrane proteins.
25 out of 35 mutational effects reported in the liter-
ature for any of these five membrane proteins corre-
late with the predictions based on the solvation en-
ergy. These cases suggest a relation between muta-
tions and stability issues in membrane proteins.
Acknowledgement: We are grateful for financial
support by the EU project Sealife and the BMBF
Format Project CLSD and to Frank Dressel and Dirk
Labudde for discussions on the application.

6 Conclusion

We developed a rule- and regular expression-based
approach that allows for the retrieval of protein point
mutations from the whole PubMed database specif-
ically for any given protein. This flexibility makes
it a powerful tool for immediately finding relevant
data for follow-up studies, as we showed in the ap-
plication on five membrane proteins. In addition,
MutationTagger can be utilised for the species-wide
identification of mutations in proteins mentioned in
PubMed. We started to set up a mutation database
which allows for systematically querying mutation
related information, and finding relevant literature

for subsequent studies. The sequence checks applied
on identified mutations and candidate proteins have
been proven to be an efficient, yet not sufficient fil-
ter for determing mutation-protein associations. The
filter shows good sensitivity but improvable speci-
ficity, especially regarding the species level. Fur-
thermore, we were able to show, that the mutation
information from literature can even further improve
the quality of the gene tagging algorithm we used,
which already showed very good results.
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