

Time and Space Efficient Content Queries for

Video Databases

C. Makris, K. Perdikuri, S. Sioutas, A. Tsakalidis, K. Tsichlas
Department of Computer Engineering and Informatics,

University of Patras, 26500 Patras, Greece
and

Computer Technology Institute P.O. BOX 1192, 26110 Patras, Greece

Abstract:- Indexing video content is one of the most
important problems in video databases. In this paper
we present a simple optimal algorithm for this
problem that answers certain content queries
invoking video functions in linear time and space in
terms of the number of the objects appearing in the
video. To accomplish this, we make a straightforward
reduction of this problem to the intersection problem
in Computational Geometry. Our result is an
improvement over the one of V. S. Subrahmanian
[10] by a logarithmic factor in storage and is
achieved by using different basic data structures. This
logarithmic save is of great importance in video
databases because vast space is needed to store
videos and metadata for each video. Finally, we
present two time-efficient approaches. We also
compare the CPU times of our algorithms by
presenting experimental results.

Keywords: video databases, data structures,
computational geometry.

1 Introduction

A video database consists of a collection of
videos and a mechanism, which permits the
user to perform certain tasks. A ubiquitous task
in such databases is that of indexing video
content. Informally, we define video content to
be a collection of objects or activities, which
appear in the specific video at certain frame
ranges. An object may be an item, a person or
generally something tangible. An activity is an
action or a relation between certain objects.
There is no difference in the way we handle
objects and activities and so we will refer only
to objects. This information is stored as
metadata and is not extracted from the video in

real time. Thus, we must seek an efficient
organization of the metadata of each video.

We would like our video database to be able
to answer efficiently queries of the form: Find
and report all objects that appear in a given
range of frames. In order to accomplish this we
must store the range sequences, where each
object appears, in a data structure, associate
each of these frames to its respective object and
query this structure. The query segment is used
to extract all the frame sequences intersecting it.
Having found these segments it is
straightforward to find the objects appearing in
this query frame segment. Thus, our query is a
simple intersection query of segments on the
line, where the query is also a segment. The
intersection problem defined above is static
because in a video there is a predefined set of
objects and respective frame segments.

The previous solution was based on a well-
known data structure used extensively in the
domain of Computational Geometry, the
segment tree [4,5,6,7]. This is a very simple and
elegant data structure but exhibits certain
deficiencies in specific geometric problems. If
we assume that each object is appearing in a
sequence of frame segments, then we store each
of these segments in ()nO log nodes of the
segment tree, where n is the number of distinct
endpoints of the frame segments stored in the
segment tree. This is a sheer waste of space if
we imagine that each video may have many
objects associated to many frame segments. In
addition, the solution described in
Subrahmanian may report each of these ranges

()nO log times, which in many cases may be
undesirable.

To remedy these problems we resort to a
more suitable data structure, the interval tree
[5,6,7]. The interval tree uses linear space
because it stores each range only once, as we
show in the following sections.

In section 2 we are going to give a thorough
review of the previous solution while in section
3 certain preliminary data structures are going
to be described synoptically. In section 4 the
data structure is presented and the result is
given respectively. In section 5 a reduction to
another geometric problem is considered while
in section 6, fusion tree methods are applied. In
section 7 we compare the CPU times of some of
our algorithms presenting experimental results.
Finally, in section 8 conclusions are made.

2 The previous solution

Assume that initially we are given a table of n
objects io and the associated frame segments of
a given video v with total number of frames
equal to ()vframenum . We want to organize
this metadata in order to answer efficiently
video content queries.

Assume that [) [)ww eses ,,,, 11 are all the
intervals in this table. Let nqq ,,1 be an
enumeration, in ascending order, of all
members of { }wies ii ≤≤1|, , with duplicates
eliminated. If n is not an exponent of 2, then do
as follows: let r be the smallest integer such that

nr >2 and ()vframenumr >2 . Add a number
of new elements rqqn 21 ,,+ such that

() 12 += vframenumq r and jqq njn +=+ (for

0>j such that rjn 2<+). Now we may
proceed under the assumption that n is an
exponent of 2. The next step is to construct the
indexing data structure that is called the frame
segment tree. This is a full binary tree.

Each node in the frame segment tree
represents a frame sequence [)yx, , starting at
frame x and including all frames up to, but not
including, frame y. All leaves are at level r,
where obviously ()nOr log= . The leftmost leaf
denotes the interval [)21,qq , the 2nd from the
left represents the interval [)32 ,qq and so on. If
u is a node with two children representing the
intervals [) [)3221 ,,, pppp , then u represents the
interval [)31, pp . Thus, the root of the frame

segment tree represents the interval [)nqq ,1 if

nq is an exponent of 2, otherwise it represents
the interval [)+∞,1q .

Without proof we give below some
elementary results on segment trees.
1. The segment tree uses ()nnO log space
2. Each segment is stored in ()nO log nodes.

The second property of the segment tree is a
cause of problems because of two reasons:
1. There is a sheer waste of space.
2. In the reporting procedure one particular

segment may be reported ()nO log times.
The reporting procedure given by

Subrahmanian is given below. By R we
represent the subtree rooted by the current node.
In the first call of the procedure, R is the whole
tree. The parameters s and e define the
endpoints of the query segment. The variable S
is the output of the procedure. In each node of
the frame segment tree we store a linked list of
the objects. These objects have frame segments
associated to the frame sequence of the specific
node. In this way, if a node’s frame sequence
intersects the query frame segment then the
linked list of this node is appended to variable
S. The frame sequence of a node v is
represented by [)RBvLBv .,. . The right and left
child of the node v is represented by RLINKv.
and LLINKv. respectively.

();,, esRFindOInV
{

;NILS =
if ()NILR = then (){ };;HaltSReturn
else
{

if [) [)()esUBRLBR ,.,. ⊆
then ()()RpreorderSappendS ,=

else
{

if [) [)()()∅≠∩ esUBRLBR ,.,. then
{

();., objRSappendS =
()();,,., esLLINKRFindOInVSappendS =
()();,,., esRLINKRFindOInVSappendS =

}
}

}
() ;;endSReturn

}

The running time of the algorithm is
proportional to the total number of nodes
visited, which may be at most ()nO .

3 Preliminary data structures

This section is devoted to the interval tree. It
allows us to store a set of n intervals in linear
space such that intersection queries can be
answered in logarithmic time.

Let [] niyxS ii ≤≤= 1,, be a set of n closed
intervals on the real line. Let nqqQ ,,1= be
an enumeration, in ascending order, of all
members of { }niyx ii ≤≤1|, , with duplicates
eliminated. An interval tree T for S is a leaf-
oriented search tree for Q where each node of
the tree is augmented by additional information.

We define ()vxrange , where v is a node of
the interval tree, as the interval []rightleft qq , such
that: leftq is the leftmost leaf of the subtree
rooted at v while rightq is the rightmost one.

The node list ()vNL of node v is the set of
intervals in S containing the split value of v but
of no ancestor of v:

() [] () [] (){ }vxrangeyxvsplitSyxvNL ⊆∈∈= ,;,
We store the node list of node v as two sorted

sequences: the ordered list of left endpoints and
the ordered list of right endpoints. Both
sequences are stored in balanced search trees;
furthermore, we provide pointers to the
maximal (minimal) element of the sequence of
right (left) endpoints.

The main power of interval trees stems from
the node lists. The following lemma shows that
interval trees use linear space, can be
constructed efficiently, support insertions and
deletions of intervals and answers intersection
queries efficiently.

Lemma 1: Let S be a set of n intervals.
a) An interval tree for S uses space ()nO .
b) An interval tree for S of depth ()nO log can

be constructed in time ()nnO log .
c) Intervals can be inserted into an interval

tree of depth ()nO log in time ()nO log . The
same holds for deletion.

d) Let S be a set of intervals and let
[]00 , yxI = be a query interval. Let
[] [] []{ }∅≠∩∈= 00 ,,;, yxyxSyxt be the set of

intervals in S intersecting I. Then, given an
interval tree of height ()nO log for S, one can
compute the intersection query t in time

()tnO +log .

Proof. See [6].

4 The new algorithm

We store each frame segment associated to an
object in the interval tree. We must note that it
is not imperative to extend the tree to a full
binary one since this leads to waste of space.

Each frame segment is inserted in the interval
tree. It is stored only in one node and thus we
obtain a logarithmic save in space. This frame
segment is associated with an object. Namely,
the object appears in the frame sequence
defined by this frame segment. In this way,
each segment is related to only one object and is
stored only once.

In each node of the interval tree there may be
many segments stored to its node list. These
segments are stored sorted in each of these node
lists. Attached to each such segment is the
object to which the specific segment belongs.
The attachment is expressed by a pointer to a
list of objects corresponding to the specific
node. In this way, when we find a segment,
which intersects the query segment I, we
immediately report the respective object.

The search for all the segments intersecting
the query segment is described below. We start
from the root and search for the two endpoints
of the query segment. The two paths from the
root to the two leaves of the interval tree
comprise the set P. These two paths coincide
until they reach a node, called split node. The
leftmost and rightmost leaves of its subtree are
the endpoints of the query segment I. Let LeftP
and rightP be the two paths from split node to
the left and right endpoints of I respectively.
Similarly, the set C is defined as the set of
nodes v where () Ivxrange ⊆ .

Intuitively, the nodes that belong to the set C
are defined by the right (left) subtrees of the
nodes in set LeftP (RightP). Thus, when we are
reporting the answer corresponding to a query
segment we may just append the list of objects
associated to a node, belonging to set C, to the
answer. In nodes of set P we are obliged to
search inside the node lists. These node lists, as
mentioned in the preceding section, are
organised as binary trees whose leaves are
connected in a linked list and whose root has
pointers to the smallest and to the largest
element (endpoint). In each node list of a node

in a set P some segments may intersect I and
some others may not. Because of the fact that
the segments in the node lists are stored sorted
we are able to report the answer in these in
constant time per object.

The largest or smallest element is accessed in
constant time through the respective root
pointers. We then traverse the linked list of
leaves until we reach a segment that does not
intersect the query segment. If the node under

consideration lies on the path to the left
endpoint we begin the traversal of the linked list
from the largest element (rightmost leaf). If the
node lies on the right we begin from the
smallest element (leftmost leaf). If the node lies
on both of them, that is, on the path from root to
the split node of the two paths, we compare the
endpoints of the query segment to the largest
and smallest elements and we proceed
analogously.

Figure 1. Example of the contents of a video

Figure 2. The frame interval tree with intervals associated with nodes and
each interval associated with an object

For better comprehension of the above

method we give a simple example. Assume that
we have a video and we are interested for only
5 objects. Each object appears in the video in a
sequence of series of frames defining frame
segments. Figure 1 depicts objects and their
location in a video consisting of 5000 frames.
Figure 2 depicts the frame interval tree.

5 Reduction to Dominance

In the preceding sections we associated the
problem of querying video content with that of
finding segments that intersect a specific
segment. In this section we outline a different
approach to this problem. Specifically, we show
how to reduce the problem of querying video
content to the dominance problem. The
dominance problem is a pure geometrical
problem.

50004000300020001000

Object 1

Object 2

Object 3

Object 5

Object 4

I1 I2

I3 I4

I10I6 I7 I8 I9

I5

I11 I12

I13 I14 I15 I16

500 750 1000 1250 1500 1750 2250 2500 2750 3250 3500 3750 4500 5000

125 625 1125 1625 2375 3000 3625 4750

375 1375 2625 4125

875 3375

2000 I2,I11,I14

I3 I10

I1,I13 I8 I9

I6 I7 I4 I5 I15 I12,I16

I1 O1
I2 O1
I3 O2
I4 O2
I5 O2
I6 O3
I7 O3
I8 O3
I9 O3
I10 O3
I11 O4
I12 O4
I13 O5
I14 O5
I15 O5
I16 O5

0 250

Figure 3. Query segment q compared to a frame segment f, (a) q is contained in f,
(b) q’s left endpoint is contained in f and (c) q contains f.

The d-dimensional dominance problem is

defined as follows: given a set Q of d-
dimensional points and a query point p, report
all points Qp ∈′ such that p′ is dominated by
p. A point ()dpppp ′′′=′ ,,, 21 is dominated by

()dpppp ,,, 21= if and only if ipp ii ∀≤′ , .
Here we consider the 2-dimensional dominance
problem.

Let []21, fff = be a given frame segment. A
query segment []21,qqq = intersects f if and
only if one of the following conditions hold:
(i) f contains q, that is 2211 fqqf ≤≤≤ (see

figure 3(a)).
(ii) f partially intersects q, that is 211 fqf ≤≤ (f

intersects q on the left) or 221 fqf ≤≤ (f
intersects q on the right) (see figure 3(b) for
the first case).

(iii) f is contained in q that is 2211 qffq ≤≤≤
(see figure 3(c)).

From the above cases it is trivial to see that it
suffices to store the frame segments in a two-
dimensional dominance-searching problem.
This structure stores each frame segment

[]21, fff = as a two-dimensional point
()21, ff . Then, given a query segment

[]21,qqq = we find all segments intersecting q
by querying the structure with ()21, qq − (case
(i)), ()11, qq − (case (ii) left partial intersection),
()22 , qq − (case (ii) right partial intersection)
and ()21,qq− (case (iii)).

The two-dimensional dominance-searching
problem has an optimal RAM dynamic solution
using linear space, exhibiting query time

()knnO +logloglog and update time
()nnO logloglog , where k is the size of the

output (number of reported objects in our case)
([11]).

The static counterpart of this problem has an
optimal RAM solution of linear space, and

()()knnO +21logloglog query time (simple
combination of persistence and the search
structure of [3]).

Finally, in secondary memory an optimal
dynamic structure has been proposed recently
([2]) that occupies ()BnO disk pages (B is the
size of a page), supports insertions and
deletions in ()nO Blog I/Os and answers
queries in ()BknO B +log I/O’s.

6 The fusion tree solution

First, we will briefly review the data structures
used in this solution.

6.1 The fusion tree

Let S be an ordered set of n w-bit keys. The
fusion tree [11] is a dynamic data structure that
supports ()nnO logloglog amortized time
queries in linear space. This structure is a two-
level data structure where the upper level
consists of an ordinary B-tree while the lower
level consists of weighted-balanced trees. The
amortized cost of searches and updates is

()bbnO logloglog + for any ()61wOb = . The
first term corresponds to the number of B-tree
levels and the second to the height of the
weighted-balanced trees.

The main advantage of the fusion technique
is that we can decide in constant time in which
subtree to continue the search by compressing
the b-keys of every B-tree node using w-bit
words.

6.2 The exponential search tree

The exponential search tree [1] answers queries
in one-dimensional space. It is a multi-way tree
where the degree of the internal nodes decrease

f1 f2q1 q2

q

f

(a)

f1 f2q1 q2

q

f

(b)

f1 f2q1 q2

q

f

(c)

exponentially as we traverse the levels of the
tree starting from the root. Auxiliary
information is stored in each node to support
efficient search queries. The exponential search
tree has the following properties:
1. Its root has degree ()51nΘ .
2. The keys of the root are stored in a local data

structure. During a search procedure, the
local data structure is used to determine in
which subtree of a node the search is to be
continued.

3. The subtrees are exponential search trees of
size ()54nΘ .

4. The local data structure of each node of the
tree is a combination of van Emde Boas trees
and perfect hashing. As a result we achieve

()nwO logloglog worst-case time cost for a
search query.
Anderson, by using an exponential search

tree in the place of B-trees in the fusion tree
structure, avoids the need for weight-balanced
trees at the bottom while at the same time
improves the complexity for large word sizes.
This structure is a significant improvement on
linear space deterministic sorting and
searching. On a unit-cost RAM with word size
w, an ordered set of n w-bit keys (viewed as
binary strings or integers) can be maintained in

{ }()nwnwnnO logloglog,loglogloglog,logmin +
 time per operation, including insert, delete,
member search and neighbour search. The cost
for searching is worst–case while the cost of
updates is amortized. For range queries there is
an additional cost of reporting the found keys.
As an application, n keys can be sorted in linear
space at a worst-case time cost of ()nnO log .
The best previous method for deterministic
sorting and searching in linear space has been
the fusion tree, which supports search queries
in ()nnO logloglog amortized time and
sorting in ()nnnO logloglog worst–case time.

6.3 The fusion interval tree

Let T be a B-ary tree, that is a tree for which
each node has B sons. We set the branching
factor ()nOB log= . Each node v in ordinary
interval trees such that ()21, xxncav =
(nca=nearest common ancestor), stores the
value () []21, xxvrange = . Thus, in each node v
such that ()21, xxncav = we store the following

B slabs:
(] (] (]21212111 ,,,,,, xkslkkslkxsl BB −===

We define the structure of each node list
()vNL as follows: ()vNL ={s∈S; s spans a slab

of v and s is included in a slab of parent(v)}.
If ()vNLs ∈ , then s spans a continuous set of

slabs kii slsl +,, and s cuts the two bound-
slabs 11, ++− kii slsl . In the slabs kii slsl +,, , s is
stored in an unordered list but in 11, ++− kii slsl s
is stored in an ordered list (see figure 4) of
endpoints that is organized as an exponential
search tree [1]. Thus, the total required space
for the node lists is ()nBO .

v

x1 x2

xrange(v)=[x1,x2]
node v

K1 K2 Ki-2Ki-1 Ki+k Ki+k+1 KB-1

sli-1 sli+k+1

s

B slabs
Figure 4: Depiction of the xrange of a node, of
the slabs and their order inside ordered lists.

Lemma 2: Let ℜ⊆U be an ordered finite

universe and let S be a set of n intervals with
left endpoints in U. To simplify our
applications we assume that nUS == .

a) The fusion interval tree T for S requires
()nBO space.
b) The fusion interval tree T for S can be

constructed in time ()nBO .
c) Intervals (with left endpoint in U) can be

inserted into T in time ()BO . Deletions are
completely symmetric.

d) The intersection query t can be solved in
()tnnO +logloglog time.

Proof:
a) A B-tree for U clearly uses linear space
() ()nOUO = . Furthermore, the total space

required for the node lists is ()nBO since every
interval in S is stored in the B slabs. The space
complexity follows.

b) A B-tree can be built in time () ()nOUO =
and has depth:

() () ()nnOBnOUO B loglogloglogloglog ==
It remains to construct the node lists. We show
how to insert an interval []21, xxs = in ()BO
time. Let v be the nearest common ancestor of
the endpoints of s. This node can be computed
in constant time [9]. It remains to insert the
interval s in the B slabs of node v. Assuming
that s spans a continuous set of slabs

kii slsl +,, and cuts the two bound-slabs

11, ++− kii slsl we can insert the interval s in the
slabs kii slsl +,, , in an unordered list with

()BO cost. However, we have to insert interval
s in the ordered lists of 11, ++− kii slsl . This incurs

()nO log cost since the ordered list of each
slab is organized as an exponential search tree
[1]. Thus, the sequence of insertions of n
intervals require ()nBO time and as a result the
total construction time is () ()nBOnBnO =+ .

c) It is obvious from the construction above,
that we can insert an interval []21, xxs = in

()BO time. The same holds for deletions.
d) We define sets P and C in the same way as

in section 4. P consists of the nodes on the
search paths to x and y and C is the set of nodes
between these paths. Let t the output of
intersection query I. Since [] ()vNLyx ∈, and
[] ∅≠∩ Iyx, implies () ∅≠∩ Ivxrange , t is
defined as follows:

() () () []{ }∑ ∑
∈ ∈

∅≠∩∈∪=
Cv Pv

IyxvNLyxvNLt ,;,

In addition, the fact that Cv ∈ clearly implies
that () tvNL ⊆ . Now consider nodes v such that

Pv ∈ . Recall that we organized ()vNL as two
ordered lists, the list of left endpoints and the
list of right endpoints. Let kxxx ≤≤≤ 21 be
the former list and let kyyy ≤≤≤ 21 be the
latter list. We have to discuss three cases, two
of which are symmetric. Suppose first that

() Ivxrange ⊆ . Then () AvNL ⊆ , since we
know that () []yxvxrange ,⊆ for all
[] ()vNLyx ∈, .

Suppose that () [] Ixxvxrange ⊄⊆ 21, and

01 xx ≤ (the other case is symmetric). Then,
interval [] ()vNLyx ii ∈, intersects I if jyx ≤0 .
We can thus find all such intervals by
inspecting ,, 1−kk yy in turn as long as they
are at least as large as 0x . Hence we can

determine () tvNL ∩ in time proportional to
() tvNL ∩ .

Thus, the time required for the computation
of t is ()tCPO ++ . For the case of a "small"
universe U, which means that U contains only
endpoints of intervals in S, according to [6],

()tOC = since all leaves in C are endpoints of
intervals in t. Since hP 2≤ , where

()nnOh logloglog= , the time bound follows.

7 Experimental Results

We implemented the solution described in the
second approach (let T2 the CPU time) and the
one of V. S. Subrahmanian [10] (let T1 the
CPU time) in Visual C++ 6.0 and we executed
the two programs in Pentium based PC with the
following hardware and software
characteristics.

• 200MHz Pentium
• 48 MB of RAM
• 1,2 Gbyte hard disk space
• Windows 98 Operating System

We ran several types of ()esRFindOInV ,,
queries and the time improvement seems to be
significant as we show below.

In order to count the execution time of our
algorithms we used the ()clock function
included in <time.h> header. This function
counts the number of executed cycles for the
time period that the computation took place for
the answer of a given query. We finally divided
that number of cycles by CLOCKS_PER_SEC
of system in order to evaluate the CPU TIME in
seconds (or msec). In order to evaluate a non-
zero number of cycles we included the
procedure above within a while–loop of
10*CLOCKS_PER_SEC dividing finally the
cycle-number we found by the loop’s number
we computed.

Table 1 and figure 5 below show the results
of the execution of nine ()esRFindOInV ,,
queries, in a set of various number of
multimedia objects (each multimedia object is
appeared a constant number of times):

Table 1: CPU times of the two algorithms
n (number of

multimedia objects)
T1

(msec)
T2

(msec)
50 16,93157 6,78163
100 19,93157 7,29554
150 21,68646 7,599257
200 22,93157 7,815003
250 23,89735 7,982237
300 24,68646 8,118714
350 25,35363 8,23395
400 25,93157 8,333636
450 26,44134 8,421451

time interval multimedia queries

0
10
20
30

0 200 400 600

n (number of multimedia
objects)

C
PU

 T
IM

E

T1
T2

Figure 5: A comparison of the CPU times of

two algorithms

8 Conclusion

We have discussed in this paper a way to store
video metadata in order to perform efficiently
content queries. Metadata specifies either
objects or activities in the video. Because of the
vast space needed for a video database it is
essential to save as much space as possible.

The solutions we suggest are space optimal
and perform efficiently video content queries.
All the proposed structures are currently being
implemented and the results so far are
promising. Our next step for future continuation
of this work is an extensive experimental
evaluation of various structures for several
classes of selection queries.

References

[1]Anderson, A. Faster deterministic sorting

and searching in linear space. In Proc. of
37th Annual IEEE Symposium on
Foundations of Computer Science (FOCS),
1996.

[2] L. Arge, V. Samoladas, J.S. Vitter. Two
dimensional indexability and optimal range
search indexing. In Proceedings of the
ACM Symposium Principles of Database
Systems (PODS), 1999.

[3] Paul Beam and Faith Fich. Optimal Bounds
for the Predecessor Problem. In
Proceedings of the Thirty First Annual
ACM Symposium on Theory of Computing
(STOC), Atlanta, GA, May 1999.

[4] Bentley J.L. Solution to Klee’s Rectangle
Problem. Carnegie-Mellon Univ., Dept. of
Computer Science, unpublished notes,
1977.

[5] Mark de Berg, Marc van Kreveld, Mark
Overmars, Otfried Schwarzkopf.
Computational Geometry: Algorithms and
Applications. Springer-Verlag, Heidelberg,
1997.

[6] K. Mehlhorn. Data Structures and
Algorithms 3: Multi-dimensional Searching
and Computational Geometry. EATCS
Monographs on Theoritical Computer
Science, Springer-Verlag, 1984.

[7] F.P. Preparata, M.I. Shamos.
Computational Geometry: An introduction,.
Springer-Verlag, New York, 1985.

[8] H. Samet. The Design and Analysis of
Spatial Data Stuctures. MA: Addison-
Wesley, 1989.

[9]B. Schieber, U. Vishkin. On finding lowest
common ancestors: simplifications and
parallelization. SIAM J. of Comput.,
17:1253-62, 1988.

[10] V.S. Subrahmanian. Principles of
Multimedia Database Systems. Morgan
Kaufmann Publishers Inc., pp. 179-213,
1998.

[11] Dan E. Willard. Applications of the fusion
tree method for Computational Geometry
and searching. In Proc. 3rd Symposium on
Discrete Algorithms (SODA), pp. 286-296,
1992.

	Computer Technology Institute P.O. BOX 1192, 26110 Patras, Greece

