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Abstract:- Indexing video content is one of the most 
important problems in video databases. In this paper 
we present a simple optimal algorithm for this 
problem that answers certain content queries 
invoking video functions in linear time and space in 
terms of the number of the objects appearing in the 
video. To accomplish this, we make a straightforward 
reduction of this problem to the intersection problem 
in Computational Geometry. Our result is an 
improvement over the one of V. S. Subrahmanian 
[10] by a logarithmic factor in storage and is 
achieved by using different basic data structures. This 
logarithmic save is of great importance in video 
databases because vast space is needed to store 
videos and metadata for each video. Finally, we 
present two time-efficient approaches. We also 
compare the CPU times of our algorithms by 
presenting experimental results.   
 
Keywords: video databases, data structures, 
computational geometry. 
 
 
1 Introduction 
 
A video database consists of a collection of 
videos and a mechanism, which permits the 
user to perform certain tasks. A ubiquitous task 
in such databases is that of indexing video 
content. Informally, we define video content to 
be a collection of objects or activities, which 
appear in the specific video at certain frame 
ranges. An object may be an item, a person or 
generally something tangible. An activity is an 
action or a relation between certain objects. 
There is no difference in the way we handle 
objects and activities and so we will refer only 
to objects. This information is stored as 
metadata and is not extracted from the video in 

real time. Thus, we must seek an efficient 
organization of the metadata of each video. 

We would like our video database to be able 
to answer efficiently queries of the form: Find 
and report all objects that appear in a given 
range of frames. In order to accomplish this we 
must store the range sequences, where each 
object appears, in a data structure, associate 
each of these frames to its respective object and 
query this structure. The query segment is used 
to extract all the frame sequences intersecting it. 
Having found these segments it is 
straightforward to find the objects appearing in 
this query frame segment. Thus, our query is a 
simple intersection query of segments on the 
line, where the query is also a segment. The 
intersection problem defined above is static 
because in a video there is a predefined set of 
objects and respective frame segments.  

The previous solution was based on a well-
known data structure used extensively in the 
domain of Computational Geometry, the 
segment tree [4,5,6,7]. This is a very simple and 
elegant data structure but exhibits certain 
deficiencies in specific geometric problems. If 
we assume that each object is appearing in a 
sequence of frame segments, then we store each 
of these segments in ( )nO log  nodes of the 
segment tree, where n is the number of distinct 
endpoints of the frame segments stored in the 
segment tree. This is a sheer waste of space if 
we imagine that each video may have many 
objects associated to many frame segments. In 
addition, the solution described in 
Subrahmanian may report each of these ranges 

( )nO log  times, which in many cases may be 
undesirable. 



To remedy these problems we resort to a 
more suitable data structure, the interval tree 
[5,6,7]. The interval tree uses linear space 
because it stores each range only once, as we 
show in the following sections. 

In section 2 we are going to give a thorough 
review of the previous solution while in section 
3 certain preliminary data structures are going 
to be described synoptically. In section 4 the 
data structure is presented and the result is 
given respectively. In section 5 a reduction to 
another geometric problem is considered while 
in section 6, fusion tree methods are applied. In 
section 7 we compare the CPU times of some of 
our algorithms presenting experimental results. 
Finally, in section 8 conclusions are made. 

 
 
2 The previous solution 
 
Assume that initially we are given a table of n 
objects io  and the associated frame segments of 
a given video v with total number of frames 
equal to ( )vframenum . We want to organize 
this metadata in order to answer efficiently 
video content queries.  

Assume that [ ) [ )ww eses ,,,, 11  are all the 
intervals in this table. Let nqq ,,1  be an 
enumeration, in ascending order, of all 
members of { }wies ii ≤≤1|, , with duplicates 
eliminated. If n is not an exponent of 2, then do 
as follows: let r be the smallest integer such that 

nr >2  and ( )vframenumr >2 . Add a number 
of new elements rqqn 21 ,,+  such that 

( ) 12 += vframenumq r  and jqq njn +=+  (for 

0>j  such that rjn 2<+ ). Now we may 
proceed under the assumption that n is an 
exponent of 2. The next step is to construct the 
indexing data structure that is called the frame 
segment tree. This is a full binary tree. 

Each node in the frame segment tree 
represents a frame sequence [ )yx, , starting at 
frame x and including all frames up to, but not 
including, frame y. All leaves are at level r, 
where obviously ( )nOr log= . The leftmost leaf 
denotes the interval [ )21,qq , the 2nd from the 
left represents the interval [ )32 ,qq  and so on. If 
u is a node with two children representing the 
intervals [ ) [ )3221 ,,, pppp , then u represents the 
interval [ )31, pp . Thus, the root of the frame 

segment tree represents the interval [ )nqq ,1  if 

nq  is an exponent of 2, otherwise it represents 
the interval [ )+∞,1q . 

Without proof we give below some 
elementary results on segment trees. 
1. The segment tree uses ( )nnO log  space  
2. Each segment is stored in ( )nO log  nodes. 

The second property of the segment tree is a 
cause of problems because of two reasons: 
1. There is a sheer waste of space. 
2. In the reporting procedure one particular 

segment may be reported ( )nO log  times. 
The reporting procedure given by 

Subrahmanian is given below. By R we 
represent the subtree rooted by the current node. 
In the first call of the procedure, R is the whole 
tree. The parameters s and e define the 
endpoints of the query segment. The variable S 
is the output of the procedure. In each node of 
the frame segment tree we store a linked list of 
the objects. These objects have frame segments 
associated to the frame sequence of the specific 
node. In this way, if a node’s frame sequence 
intersects the query frame segment then the 
linked list of this node is appended to variable 
S. The frame sequence of a node v is 
represented by [ )RBvLBv .,. . The right and left 
child of the node v is represented by RLINKv.  
and LLINKv.  respectively. 
 

( );,, esRFindOInV  
{ 

;NILS =  
if ( )NILR =  then ( ){ };;HaltSReturn  
else 
{ 

if [ ) [ )( )esUBRLBR ,.,. ⊆   
then ( )( )RpreorderSappendS ,=  

else 
{ 

if [ ) [ )( )( )∅≠∩ esUBRLBR ,.,.  then 
{ 

( );., objRSappendS =  
( )( );,,., esLLINKRFindOInVSappendS =  
( )( );,,., esRLINKRFindOInVSappendS =  

} 
} 

} 
( ) ;;endSReturn  

} 
 

The running time of the algorithm is 
proportional to the total number of nodes 
visited, which may be at most ( )nO . 



3 Preliminary data structures 
 

This section is devoted to the interval tree. It 
allows us to store a set of n intervals in linear 
space such that intersection queries can be 
answered in logarithmic time. 

Let [ ] niyxS ii ≤≤= 1,,  be a set of n closed 
intervals on the real line. Let nqqQ ,,1=  be 
an enumeration, in ascending order, of all 
members of { }niyx ii ≤≤1|, , with duplicates 
eliminated. An interval tree T for S is a leaf-
oriented search tree for Q where each node of 
the tree is augmented by additional information.  

We define ( )vxrange , where v is a node of 
the interval tree, as the interval [ ]rightleft qq ,  such 
that: leftq  is the leftmost leaf of the subtree 
rooted at v while rightq  is the rightmost one. 

The node list ( )vNL  of node v is the set of 
intervals in S containing the split value of v but 
of no ancestor of v: 

( ) [ ] ( ) [ ] ( ){ }vxrangeyxvsplitSyxvNL ⊆∈∈= ,;,  
We store the node list of node v as two sorted 

sequences: the ordered list of left endpoints and 
the ordered list of right endpoints. Both 
sequences are stored in balanced search trees; 
furthermore, we provide pointers to the 
maximal (minimal) element of the sequence of 
right (left) endpoints. 

The main power of interval trees stems from 
the node lists. The following lemma shows that 
interval trees use linear space, can be 
constructed efficiently, support insertions and 
deletions of intervals and answers intersection 
queries efficiently. 

 
Lemma 1: Let S be a set of n intervals. 
a) An interval tree for S uses space ( )nO . 
b) An interval tree for S of depth ( )nO log  can 

be constructed in time ( )nnO log . 
c) Intervals can be inserted into an interval 

tree of depth ( )nO log  in time ( )nO log . The 
same holds for deletion. 

d) Let S be a set of intervals and let 
[ ]00 , yxI =  be a query interval. Let 
[ ] [ ] [ ]{ }∅≠∩∈= 00 ,,;, yxyxSyxt  be the set of 

intervals in S intersecting I. Then, given an 
interval tree of height ( )nO log  for S, one can 
compute the intersection query t in time 

( )tnO +log . 

 
Proof. See [6].  

 
4 The new algorithm 
 
We store each frame segment associated to an 
object in the interval tree. We must note that it 
is not imperative to extend the tree to a full 
binary one since this leads to waste of space.  

Each frame segment is inserted in the interval 
tree. It is stored only in one node and thus we 
obtain a logarithmic save in space. This frame 
segment is associated with an object. Namely, 
the object appears in the frame sequence 
defined by this frame segment. In this way, 
each segment is related to only one object and is 
stored only once. 

In each node of the interval tree there may be 
many segments stored to its node list. These 
segments are stored sorted in each of these node 
lists. Attached to each such segment is the 
object to which the specific segment belongs. 
The attachment is expressed by a pointer to a 
list of objects corresponding to the specific 
node. In this way, when we find a segment, 
which intersects the query segment I, we 
immediately report the respective object. 

The search for all the segments intersecting 
the query segment is described below. We start 
from the root and search for the two endpoints 
of the query segment. The two paths from the 
root to the two leaves of the interval tree 
comprise the set P. These two paths coincide 
until they reach a node, called split node. The 
leftmost and rightmost leaves of its subtree are 
the endpoints of the query segment I. Let LeftP  
and rightP  be the two paths from split node to 
the left and right endpoints of I respectively. 
Similarly, the set C is defined as the set of 
nodes v where ( ) Ivxrange ⊆ .  

Intuitively, the nodes that belong to the set C 
are defined by the right (left) subtrees of the 
nodes in set LeftP  ( RightP ). Thus, when we are 
reporting the answer corresponding to a query 
segment we may just append the list of objects 
associated to a node, belonging to set C, to the 
answer. In nodes of set P we are obliged to 
search inside the node lists. These node lists, as 
mentioned in the preceding section, are 
organised as binary trees whose leaves are 
connected in a linked list and whose root has 
pointers to the smallest and to the largest 
element (endpoint). In each node list of a node 



in a set P some segments may intersect I and 
some others may not. Because of the fact that 
the segments in the node lists are stored sorted 
we are able to report the answer in these in 
constant time per object. 

The largest or smallest element is accessed in 
constant time through the respective root 
pointers. We then traverse the linked list of 
leaves until we reach a segment that does not 
intersect the query segment. If the node under 

consideration lies on the path to the left 
endpoint we begin the traversal of the linked list 
from the largest element (rightmost leaf). If the 
node lies on the right we begin from the 
smallest element (leftmost leaf). If the node lies 
on both of them, that is, on the path from root to 
the split node of the two paths, we compare the 
endpoints of the query segment to the largest 
and smallest elements and we proceed 
analogously.

 

Figure 1. Example of the contents of a video 
 
 

Figure 2. The frame interval tree with intervals associated with nodes and 
each interval associated with an object 

 
For better comprehension of the above 

method we give a simple example. Assume that 
we have a video and we are interested for only 
5 objects. Each object appears in the video in a 
sequence of series of frames defining frame 
segments. Figure 1 depicts objects and their 
location in a video consisting of 5000 frames. 
Figure 2 depicts the frame interval tree. 
 
 
 

5 Reduction to Dominance 
 
In the preceding sections we associated the 
problem of querying video content with that of 
finding segments that intersect a specific 
segment. In this section we outline a different 
approach to this problem. Specifically, we show 
how to reduce the problem of querying video 
content to the dominance problem. The 
dominance problem is a pure geometrical 
problem.
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Figure 3. Query segment q compared to a frame segment f, (a) q is contained in f,  
(b) q’s left endpoint is contained in f and (c) q contains f. 

 
The d-dimensional dominance problem is 

defined as follows: given a set Q of d-
dimensional points and a query point p, report 
all points Qp ∈′  such that p′  is dominated by 
p. A point ( )dpppp ′′′=′ ,,, 21  is dominated by 

( )dpppp ,,, 21=  if and only if ipp ii ∀≤′ , . 
Here we consider the 2-dimensional dominance 
problem. 

Let [ ]21, fff =  be a given frame segment. A 
query segment [ ]21,qqq =  intersects f if and 
only if one of the following conditions hold: 
(i)  f contains q, that is 2211 fqqf ≤≤≤  (see 

figure 3(a)). 
(ii) f partially intersects q, that is 211 fqf ≤≤  (f 

intersects q on the left) or 221 fqf ≤≤  (f 
intersects q on the right) (see figure 3(b) for 
the first case). 

(iii) f is contained in q that is 2211 qffq ≤≤≤  
(see figure 3(c)). 

From the above cases it is trivial to see that it 
suffices to store the frame segments in a two-
dimensional dominance-searching problem. 
This structure stores each frame segment 

[ ]21, fff =  as a two-dimensional point 
( )21, ff . Then, given a query segment 

[ ]21,qqq =  we find all segments intersecting q 
by querying the structure with ( )21, qq −  (case 
(i)), ( )11, qq −  (case (ii) left partial intersection), 
( )22 , qq −   (case (ii) right partial intersection) 
and ( )21,qq−  (case (iii)). 

The two-dimensional dominance-searching 
problem has an optimal RAM dynamic solution 
using linear space, exhibiting query time 

( )knnO +logloglog  and update time 
( )nnO logloglog , where k is the size of the 

output (number of reported objects in our case) 
([11]).  

The static counterpart of this problem has an 
optimal RAM solution of linear space, and 

( )( )knnO +21logloglog  query time (simple 
combination of persistence and the search 
structure of [3]). 

Finally, in secondary memory an optimal 
dynamic structure has been proposed recently 
([2]) that occupies ( )BnO  disk pages (B is the 
size of a page), supports insertions and 
deletions in ( )nO Blog  I/Os and answers 
queries in ( )BknO B +log  I/O’s. 
 
 
6 The fusion tree solution 
 
First, we will briefly review the data structures 
used in this solution. 
 
6.1 The fusion tree 
 
Let S be an ordered set of n w-bit keys. The 
fusion tree [11] is a dynamic data structure that 
supports ( )nnO logloglog  amortized time 
queries in linear space. This structure is a two-
level data structure where the upper level 
consists of an ordinary B-tree while the lower 
level consists of weighted-balanced trees. The 
amortized cost of searches and updates is 

( )bbnO logloglog +  for any ( )61wOb = . The 
first term corresponds to the number of B-tree 
levels and the second to the height of the 
weighted-balanced trees. 

The main advantage of the fusion technique 
is that we can decide in constant time in which 
subtree to continue the search by compressing 
the b-keys of every B-tree node using w-bit 
words. 
 
6.2 The exponential search tree 
 
The exponential search tree [1] answers queries 
in one-dimensional space. It is a multi-way tree 
where the degree of the internal nodes decrease 
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exponentially as we traverse the levels of the 
tree starting from the root. Auxiliary 
information is stored in each node to support 
efficient search queries. The exponential search 
tree has the following properties: 
1. Its root has degree ( )51nΘ . 
2. The keys of the root are stored in a local data 

structure. During a search procedure, the 
local data structure is used to determine in 
which subtree of a node the search is to be 
continued. 

3. The subtrees are exponential search trees of 
size ( )54nΘ . 

4. The local data structure of each node of the 
tree is a combination of van Emde Boas trees 
and perfect hashing. As a result we achieve 

( )nwO logloglog  worst-case time cost for a 
search query. 
Anderson, by using an exponential search 

tree in the place of B-trees in the fusion tree 
structure, avoids the need for weight-balanced 
trees at the bottom while at the same time 
improves the complexity for large word sizes. 
This structure is a significant improvement on 
linear space deterministic sorting and 
searching. On a unit-cost RAM with word size 
w, an ordered set of n w-bit keys (viewed as 
binary strings or integers) can be maintained in 

{ }( )nwnwnnO logloglog,loglogloglog,logmin +
 time per operation, including insert, delete, 
member search and neighbour search. The cost 
for searching is worst–case while the cost of 
updates is amortized. For range queries there is 
an additional cost of reporting the found keys. 
As an application, n keys can be sorted in linear 
space at a worst-case time cost of ( )nnO log . 
The best previous method for deterministic 
sorting and searching in linear space has been 
the fusion tree, which supports search queries 
in ( )nnO logloglog  amortized time and 
sorting in ( )nnnO logloglog  worst–case time. 
 
6.3 The fusion interval tree 
 
Let T be a B-ary tree, that is a tree for which 
each node has B sons. We set the branching 
factor ( )nOB log= . Each node v in ordinary 
interval trees such that ( )21, xxncav =  
(nca=nearest common ancestor), stores the 
value ( ) [ ]21, xxvrange = . Thus, in each node v 
such that ( )21, xxncav =  we store the following 

B slabs: 
( ] ( ] ( ]21212111 ,,,,,, xkslkkslkxsl BB −===  

We define the structure of each node list 
( )vNL  as follows: ( )vNL ={s∈S; s spans a slab 

of v and s is included in a slab of parent(v)}. 
If ( )vNLs ∈ , then s spans a continuous set of 

slabs kii slsl +,,  and s cuts the two bound-
slabs 11, ++− kii slsl . In the slabs kii slsl +,, , s is 
stored in an unordered list but in 11, ++− kii slsl  s 
is stored in an ordered list (see figure 4) of 
endpoints that is organized as an exponential 
search tree [1].  Thus, the total required space 
for the node lists is ( )nBO .  
 

v

x1 x2

xrange(v)=[x1,x2]
node v

K1 K2 Ki-2Ki-1 Ki+k Ki+k+1 KB-1

sli-1 sli+k+1

s

B slabs  
Figure 4: Depiction of the xrange of a node, of 
the slabs and their order inside ordered lists. 

 
Lemma 2: Let ℜ⊆U  be an ordered finite 

universe and let S be a set of n intervals with 
left endpoints in U. To simplify our 
applications we assume that nUS == . 

a) The fusion interval tree T for S requires 
( )nBO  space. 
b) The fusion interval tree T for S can be 

constructed in time ( )nBO . 
c) Intervals (with left endpoint in U) can be 

inserted into T in time ( )BO . Deletions are 
completely symmetric. 

d) The intersection query t can be solved in 
( )tnnO +logloglog  time. 
 
Proof:  
a) A B-tree for U clearly uses linear space 
( ) ( )nOUO = . Furthermore, the total space 

required for the node lists is ( )nBO  since every 
interval in S is stored in the B slabs. The space 
complexity follows. 

b) A B-tree can be built in time ( ) ( )nOUO =  
and has depth: 



( ) ( ) ( )nnOBnOUO B loglogloglogloglog ==
It remains to construct the node lists. We show 
how to insert an interval [ ]21, xxs =  in ( )BO  
time. Let v be the nearest common ancestor of 
the endpoints of s. This node can be computed 
in constant time [9]. It remains to insert the 
interval s in the B slabs of node v. Assuming 
that s spans a continuous set of slabs 

kii slsl +,,  and cuts the two bound-slabs 

11, ++− kii slsl  we can insert the interval s in the 
slabs kii slsl +,, , in an unordered list with 

( )BO  cost. However, we have to insert interval 
s in the ordered lists of 11, ++− kii slsl . This incurs 

( )nO log  cost since the ordered list of each 
slab is organized as an exponential search tree 
[1]. Thus, the sequence of insertions of n 
intervals require ( )nBO  time and as a result the 
total construction time is ( ) ( )nBOnBnO =+ . 

c) It is obvious from the construction above, 
that we can insert an interval [ ]21, xxs =  in 

( )BO  time. The same holds for deletions. 
d) We define sets P and C in the same way as 

in section 4. P consists of the nodes on the 
search paths to x and y and C is the set of nodes 
between these paths. Let t the output of 
intersection query I. Since [ ] ( )vNLyx ∈,  and 
[ ] ∅≠∩ Iyx,  implies ( ) ∅≠∩ Ivxrange , t is 
defined as follows: 

( ) ( ) ( ) [ ]{ }∑ ∑
∈ ∈

∅≠∩∈∪=
Cv Pv

IyxvNLyxvNLt ,;,

In addition, the fact that Cv ∈  clearly implies 
that ( ) tvNL ⊆ . Now consider nodes v such that 

Pv ∈ . Recall that we organized ( )vNL  as two 
ordered lists, the list of left endpoints and the 
list of right endpoints. Let kxxx ≤≤≤ 21  be 
the former list and let kyyy ≤≤≤ 21  be the 
latter list. We have to discuss three cases, two 
of which are symmetric. Suppose first that 

( ) Ivxrange ⊆ . Then ( ) AvNL ⊆ , since we 
know that ( ) [ ]yxvxrange ,⊆  for all 
[ ] ( )vNLyx ∈, . 

Suppose that ( ) [ ] Ixxvxrange ⊄⊆ 21,  and 

01 xx ≤  (the other case is symmetric). Then, 
interval [ ] ( )vNLyx ii ∈,  intersects I if jyx ≤0 . 
We can thus find all such intervals by 
inspecting ,, 1−kk yy  in turn as long as they 
are at least as large as 0x . Hence we can 

determine ( ) tvNL ∩  in time proportional to 
( ) tvNL ∩ . 

Thus, the time required for the computation 
of t is ( )tCPO ++ . For the case of a "small" 
universe U, which means that U contains only 
endpoints of intervals in S, according to [6], 

( )tOC =  since all leaves in C are endpoints of 
intervals in t. Since hP 2≤ , where 

( )nnOh logloglog= , the time bound follows.  
 
 
7 Experimental Results 
 
We implemented the solution described in the 
second approach (let T2 the CPU time) and the 
one of V. S. Subrahmanian [10] (let T1 the 
CPU time) in Visual C++ 6.0 and we executed 
the two programs in Pentium based PC with the 
following hardware and software 
characteristics. 

• 200MHz Pentium 
• 48 MB of RAM 
• 1,2 Gbyte hard disk space 
• Windows 98 Operating System 

We ran several types of ( )esRFindOInV ,,  
queries and the time improvement seems to be 
significant as we show below. 

In order to count the execution time of our 
algorithms we used the ( )clock  function 
included in <time.h> header. This function 
counts the number of executed cycles for the 
time period that the computation took place for 
the answer of a given query. We finally divided 
that number of cycles by CLOCKS_PER_SEC 
of system in order to evaluate the CPU TIME in 
seconds (or msec). In order to evaluate a non-
zero number of cycles we included the 
procedure above within a while–loop of 
10*CLOCKS_PER_SEC dividing finally the 
cycle-number we found by the loop’s number 
we computed. 

Table 1 and figure 5 below show the results 
of the execution of nine ( )esRFindOInV ,,  
queries, in a set of various number of 
multimedia objects (each multimedia object is 
appeared a constant number of times): 
 
 
 
 
 



Table 1: CPU times of the two algorithms 
n (number of 

multimedia objects) 
T1 

(msec) 
T2 

(msec) 
50 16,93157 6,78163 
100 19,93157 7,29554 
150 21,68646 7,599257 
200 22,93157 7,815003 
250 23,89735 7,982237 
300 24,68646 8,118714 
350 25,35363 8,23395 
400 25,93157 8,333636 
450 26,44134 8,421451 
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Figure 5: A comparison of the CPU times of 

two algorithms 
 
8 Conclusion 
 
We have discussed in this paper a way to store 
video metadata in order to perform efficiently 
content queries. Metadata specifies either 
objects or activities in the video. Because of the 
vast space needed for a video database it is 
essential to save as much space as possible. 

The solutions we suggest are space optimal 
and perform efficiently video content queries. 
All the proposed structures are currently being 
implemented and the results so far are 
promising. Our next step for future continuation 
of this work is an extensive experimental 
evaluation of various structures for several 
classes of selection queries. 
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