
Querying Framework Documentation

Abstract

In this paper we discuss about the combination of to powerful tools for documenting object oriented frameworks:

hypermedia navigational models and hypermedia queries. We also present a way for translating queries

performed on top of framework documentation applications, into XML representations, as a way for exchanging

framework documentation not only through the web, but through different information systems.

Specially, we concentrate in integrating OOHDM, a model for designing object oriented hypermedia

applications, with framework documentation applications having hypermedia features, and with OOHQL, an

object oriented hypermedia query language that allows to perform queries on top of these kind of applications.

Our intent is to describe an architecture that, integrating this elements, will allow to create easy-to-use

framework documentation, capable of being exchanged through other systems and work teams.

Keywords: OO-Frameworks, hypermedia queries, XML representation, documentation.

Mauricio Sansano
LIFIA - Universidad Nacional de La Plata

La Plata, Argentina.

50 y 115 - 1er. Piso
(CP 1900) - La Plata, Argentina

Phone / Fax: (++54) 221 - 4228252

Marcos Godoy
LIFIA - Universidad Nacional de La Plata

La Plata, Argentina.

50 y 115 - 1er. Piso
(CP 1900) - La Plata, Argentina

Phone / Fax: (++54) 221 - 4228252

Juan Cappi
LIFIA - Universidad Nacional de La Plata

La Plata, Argentina.

50 y 115 - 1er. Piso
(CP 1900) - La Plata, Argentina

Phone / Fax: (++54) 221 - 4228252

Gustavo Rossi
LIFIA - Universidad Nacional de La Plata

La Plata, Argentina.

50 y 115 - 1er. Piso
(CP 1900) - La Plata, Argentina

Phone / Fax: (++54) 221 - 4228252
*also CONICET and UNLM

1. Introduction.

Nowadays, maybe the most important issue
in software engineering is to achieve a
substantial degree of reusability. This leads
us to the stateoftheart in objectoriented
reusable assets, i.e . objectoriented
frameworks.
Object-oriented frameworks are the state -
of-the-art solution for building high quality
applications in a particular domain, by
systematically reusing an abstract design for
that domain [Fayad99]. A framework
provides a set of abstract and concrete
classes that, when instantiated, work
together to accomplish a given task within
the framework domain. We can assume that
an object-oriented framework is the
implementation of an abstract design
representing a specific domain model. W e
use frameworks in order to create new
applications belonging to the same domain
the framework represents. This way, an
application engineer reuses design,
improving software quality.
However, a framework is not an easy tool to
understand and use. Learning how to use a
framework requires both a deep
comprehension of the framework domain,
and a clear understanding of the framework
architecture. The framework design,
composed by concrete and abstract classes
and the interrelationships between their
instances, must be understood by the
framework user, in order to accomplish the
task of, for example, build a new
application using the framework.
For this reason, framework documentation
has become an important issue in the past
few years. More over, we need not o nly a
strong documentation for any application
framework, but we also need efficient
documentation techniques. We need a well
designed organization of the documentation
and a rapid and easy way to find and access
those documents. The possibility of
perform ing queries on top of framework
documentation, let framework users to

clearly specify which documentation is he
looking for. This search must be more
powerful then a simple text -oriented search.
Lastly, it is also required to produce an
exportable framewor k documentation, in
order to have the possibility of exchanging
documentation through other users or
systems. An XML representation of the
documentation may be used for achieving
this goal.

This paper is organized in the following
way: in section 2 we briefly discuss about
the main issue of documenting frameworks,
and the integration of different
documentation techniques is explained as a
way of improving framework
documentation. In section 3 we present a
hypermedia model for framework
documentation. In s ection 4 we present a
way for querying framework documentation
navigational models and improve
documentation usability. In section 5 we
discuss about how to translate those queries
to an XML representation. Finally in
section 6 we give our conclusions and we
talk about future work we are planning to
do in this field.

2. Integrating documentation
techniques.

Framework documentation should address
the requirements of different kind of users,
each of them expecting and requesting
different things from the docum entation.
These users will need different
documentation artifacts that help them
understanding the framework according to
their needs, and allowing them to
accomplish a given task. In this context,
many different documentation techniques
needs to be integrated in order to achieve
the requirements of each documentation
user. For example, we may need to combine
cookbook recipes with class diagrams and
interaction diagrams. We may also want to
combine hot spot cards [Pree95] with

cookbook recipes and patterns used for
documenting the framework design
[Jhonson92], etc. Moreover, we expect
documentation users to be able to combine
different documentation techniques on -the-
fly, allowing users to customize the
documentation in order to fit his/her
specific needs.
Combining different active documentation
techniques requires some way to organize
and link these elements of on-line
information. One way to achieve this
characteristic is to organize the framework
documentation as a hypermedia application.
A hypermedia app lication allows us to
create nodes representing each of the
documentation artifacts (e.g. UML
Sequence Diagrams [UML], cookbook
chapters, CRC cards [Bellin97], etc.) and
connect them using links. We have
designed a complete architecture that allows
us to develop these kind of applications.
This architecture details are described in
[Sansano2000]

3. A hypermedia model for
organizing documentation.

As it has already been explained, the
framework documentation will be organized
by using the hypermedia paradi gm. In this
paper we concentrate in the documentation
required for the standard user of a
framework, the one who needs to build an
application instantiating the framework.
We will now describe one possible
hypermedia model for the framework
documentation application that fulfils this
type of user’s needs. Of course, other
models can be designed to achieve this goal.

Documentation oriented to the standard
user
The standard user needs a kind of
documentation that allows him to instantiate
the framework in a rapid and correct way.
This includes the customization of the hot -
spots as well as the implementation of those
hook methods that the framework defines,
for the resulting application to work

properly. This type of user needs to build -
up a typical applicat ion that belongs to the
framework domain, so for example,
documentation will be composed by
different examples of the framework
instantiation. These examples would be
linked to well-known documentation
artifacts such as CRC Cards, Class
Diagrams and Sequence Diagrams. From
each cookbook item the user can navigate to
the associated example, or to the Class
Diagrams, or to the Sequence Diagrams, or
to the related CRC Cards. Furthermore, we
must provide browsing capabilities among
these documentation artifacts (e.g. we could
browse from the actor in a Sequence
Diagram to the Class Diagram in which the
class of this actor is present, and from the
class in a Class Diagram to the CRC Card
that specifies this class). The possibilities of
navigating through these documentation
tools are shown in the following
navigational diagram:

C o o k B o o k

C h a p t e r I t e m

C l a s s D i a g r a m

E x a m p l e

C R C C a r d

I n t e r a c t i o n D i a g r a m

S t e p

t o C h a p t e r

t o I t e m

t o C l a s s D i a g r a m
t o C R C C a r d

t o I n t e r a c t i o n D i a g r a m

t o C l a s s D i a g r a m

t o E x a m p l e
t o S t e p

t o C R C C a r d

t o I n t e r a c t i o n D i a g r a m

t o I n t e r a c t i o n D i a g r a mt o I n t e r a c t i o n D i a g r a m

t o C R C C a r d

t o C l a s s D i a g r a m

t o S t e p

O v e r v i e w U s e r G u i d eE x a m p l e s I n d e x

t o U s e r G u i d e

t o E x a m p l e I n d e x
t o E x a m p l e

t o C o o k B o o k

Figure 1. Standard User navigational
schema.

Figure 1 shows a navigational diagram in
OOHDM notation [Schwabe96]. This
notation uses boxes to represent no des, and
arrows to represent typed links between
those nodes. As complex documentation

involves sets of objects that are closely
related, we need a way to easily navigate
through these sets. We define a
Navigational Context as a set of nodes that
can be traversed sequentially (interaction
diagrams where a class appear, CRC cards
related with a requirement, etc.). Notice that
the same object (node) may appear in
different contexts so we need to separate the
core information of that document (e.g. a
CRC card) and context-related information
(such as the following CRC in the same set,
or some further explanation regarding the
belonging of the CRC to the set). We use
decorators [Gamma95] for this purpose.
Navigational Contexts help organizing the
navigational space of the documentation
application as explained in [Schwabe98].
Some navigational contexts we can find in
the previous schema are the following:
1. Cookbook Items related to each
example
2. CRC Cards, Class Diagrams and
Sequence Diagrams related to each
Cookbo ok Item
3. Class Diagrams and Sequence Diagram
sorted by class.
4. Cookbook Items sorted by CRC Card.
5. Class Diagrams and Sequence Diagrams

sorted by CRC Card.

4. Querying the Hypermedia
Documentation Model.

Despite the numerous advantages that
organizing framewor k documentation as a
hypermedia application has, we want to
point out another powerful capability we
are adding to framework documentation
field. An important problem when
navigating large hypermedia documentation
webs, is the loosing of perspective. It is
very easy to get lost and disappointed when
trying to find the desired information about
the framework. In fact, this problem is a
consequence of a much more huge problem,
that is navigating a hypermedia application
where a lot of nodes are involved, tryi ng no
to get lost and finding the right information
as soon as possible. Most of the time, the

user doesn’t follow a direct path to the node
or set of nodes containing the information
his is looking for.
Many techniques and tools have been
proposed in orde r to help hypermedia users
in this issue. But maybe one of the most
interesting tools in this context are
hypermedia queries. Having the possibility
of querying a hypermedia application and
select the desired information specifying a
query, using some kind of declarative user -
oriented query language, gives users a
powerful tool for rapidly accessing
hypermedia information, and saving time
during navigation.
So we are going to aloud documentation
users not only to organize framework
documentation in a hyperm edia application,
but also to query this hypermedia
application for directly access to
documentation nodes.
For allowing this querying capability stated
above, we are going to use the OOHQL
(Object Oriented Hypermedia Query
Language) defined in [Diaz97]
[Gordillo98]. OOHQL is a declarative
hypermedia query language. Using OOHQL
the user can easily perform queries on top
of an object -oriented hypermedia
navigational model, composed by node and
link types, as defined in [Sansano99].
As an example of what we have recently
stated, we present the following two
queries, expressed in OOHQL, to be
performed on top of the object -oriented
navigational model presented before.

The first OOHQL expression retrieves all
nodes of type CookBookItem (Item in figure
1) having a link connecting them with a
node of type CRCCard whose className is
Collection.

1) select CookBookItem

from cp: CookBookItem ,
 crc: CRCCard
where (crc className = Collection)
 and
 Related_By(cp, toCRCCard, crc)

Here, className is a message (i.e. a getter
message) who answers the name of the
class the CRCCard node is representing.

The second OOHQL expression retrieves
all nodes of type Example having an
Interaction Diagram referencing the class
ApplicationModel.

2) select Example

from e: Example,
 id: InteractionDiagram,
 crc: CRCCard
where
(crc className = ApplicationModel)
and
Related_By(crc,InteractionDiagram, id)
and
(exists (path(e , id)))

Note here the use of quantifier exists
without having to specify a specific link
types path.

Lastly, the third OOHQL expression
retrieves all nodes of type HotSpotCard and
all nodes of type DocPattern, documenting
class Collection, where that hot spot was
implemented using the Template Method
Pattern [Gamma95]. This q uery is supposed
to be performed on top of the navigational
model corresponding to the framework
designer view, that we did not present in
this abstract, but we decided to include this
query as another example of how to use the
path operation when we want to specify the
desired link types path.

3) select HotSpotCard,

 DocPattern
from hsc: HotSpotCard ,
 crc: CRCCard ,
 dp: DocPattern
where (crc className = Collection)
 and
 (dp name = TemplateMethod)
 and
 path(crc, toHotSpotCard, hsc,
 toDocPattern, dp)

Once executed, the query result can be
viewed as a sub -hypermedia web, that is, a

subset of the source hypermedia
application, composed by nodes and links
satisfying the query predicate. Of course,
the framework documentation application
has different user’s views, as we stated
before, and the query result has the same
properties than the corresponding view.
This way, the same query can have different
results according to the user’s view on top
of which the query has been performed.

5. Towards the Web: Translating
OOHQL query results to an XML
representation.

In the past few years, XML [w3c] has
evolved to become a standard format for
exchanging information between syst ems,
allowing to define flexible data definition
schemas within a particular application
domain. Many of these schemas has
become standards for exchanging
information in different domains. Another
advantage of this new representation
mechanism, it is that allows to clearly
separate the way in which data is
represented from the way in which the same
data will be visualized. More over, we can
define different visualizations for the same
XML representation, depending on many
different characteristics, as for e xample: the
user profile, the visualization platform, the
data ordering, etc.
In our case, we are interested in defining a
way for representing a query result in XML.
This will allow us to standardize the way in
which we can interchange documentation
between different systems, not only through
the web, but through any other required
communication platform. The query result
will be composed by a set of nodes and
their outgoing links, that we can consider as
a subset of the queried hypermedia
application, or in other words, a sub -
hypermedia application. This XML schema
will be more than a simple schema for
representing nodes and links, will be
enhanced with the elements required for
expressing framework documentation, like
for example, the way in which we ar e going

to represent CRCCard nodes, Class
Diagrams nodes, Documentation Patterns
nodes, etc.
So, the resulting architecture for
exchanging framework documentation
between different systems, or between
people who work with the same application
framework (of course, within the same
application domain) will be composed by
the following steps:

1. Create (if it doesn’t exist), the
hypermedia documentation
application for a given framework,
using the DocFramework presented
in [Sansano2000]. This framework
allows to instantiate a hypermedia
application for documenting an
object-oriented application
framework, using well known
documentation techniques.

2. Using the OOHQL Query Engine,
perform a query in order to specify
which specific documentation it is
desired to be exc hanged. After this
we obtain the query result, that is a
subset of the hypermedia application
mentioned in the first step.

3. Apply the XML schema to the query
result obtained before. In this step
we obtain a general enough
representation of the framework
documentation for being exchanged
through other entities.

4. Apply the desired XSLT for
visualizing the framework
documentation contained in the
XML files, or export these files to
another system in order to be
interpreted by any other system.
More over, XSLT ca n help filtering
information after performing the

OOHQL query, depending on the
user profile or the query result
client.

The above steps are presented in figure 2.

This architecture makes it possible the
development of XML based documentation
descriptions (based upon specialized
DTD’s) capable of representing complex
design documents contained in the query
result. This XML representation will allow
the exchange of pieces of documentation
across different teams and different
application environments.

6. Conclusions and future work.

We have presented one possible way for
organizing the navigational space of an
object-oriented hypermedia application
used for documenting a framework. These
navigational design is formalized using a
well known object-oriented hypermedia
design model, named OOHDM.

We have shown a way for combining
framework documentation organized into a
hypermedia application, with hypermedia
queries, allowing this way to rapidly access
the desired information by querying the
hypermedia applic ation with a high-level
declarative query language for hypermedia
applications named OOHQL.

The fact of having an XML representation
for framework documentation, or at least,
for query results performed on top of a
hypermedia framework documentation
application, it is a powerful tool for

exchanging and communicating, in a
standard way, framework documentation
knowledge through people working in the
same field.

We are also working in a met -level
notification mechanism that allows us to
keep fram ework documentation updated

when changes in the target framework
occur. This mechanism is quite

implemented and working nowadays.

Figure 2. Documentation interchange architecture.

7. References.

[Bellin97] D. Bellin, S. Simone, “The

CRC Card Book.”, Addison
Wesley Longman, 1997.

[Diaz97] Diaz A., Gordillo S. 1997

“Designing Navigational
Contexts using an OO Query
Language.” Proceedings of
DEXA’97. QPMIDS
Workshop, Toulouse,
France, September 1 -5.

[Fayad99] M. Fayad, D. Schmidt and R-

Johnson (editors): “Building
Application Frameworks.”,
Wiley 1999.

[Gamma95] E. Gamma, R. Helm, R.

Johnson and J. Vlissides:
“Design Patterns. Elements
of reusable object oriented
software”. Addison Wesley,
1995.

[Gordillo98] Gordillo S., Diaz A., “An

object oriented model for
querying hypermedia
applications” published in
Object Oriented Symposium
of the ESDA Conference,
vol. 2. pp 133 -138, ASME.,
Montpellier - France, 1-4
July.

[Jhonson92] R. E. Jhonson. Documenting

Framework using Patterns. In
Proceedings of the
OOPSLA’92, ACM
SIGPLAN Notices, vol. 27,
no. 10, October 1992, pages
63-76.

[Pree95] W. Pree: “Design Patterns

for object -oriented
software.”, Addison Wesley,
1994.

OOHQL
Engine

OOHQL Query Doc
XML

XML
Representation

XSLT1 XSLT2 XSLT3

Documentation
System

Query Result

Hypermedia
Framework

[Sansano99] Sansano Mauricio,

Arambarri Federi co, Diaz
Alicia, Gordillo Silvia.
"Query Execution on an
Object Oriented Hypermedia
System" MISRM'99 October
30 1999. Orlando, Florida.

[Sansano2000]Mauricio Sansano, Marcos

Godoy, Luis Matricardi,
Gustavo Rossi, “An
architecture for documenting
framewo rks.”. Workshop on
Information Technologies
and Systems 2000, 9 -10
December 2000, Brisbane,
Australia.

[Schwabe96] D. Schwabe, G. Rossi, S.

Barbosa, 1996, ”Systematic
Hypermedia Design with
OOHDM”. Proceedings of
the ACM International
Conference on Hyper text,
Hypertext’96, pp. 116 -128.

[Schwabe98] D. Schwabe, G. Rossi: “An

object-oriented approach to
web-based application
design”. Theory and Practice
of Object Systems (TAPOS),
October 1998.

[UML] J. Rumbaugh, I. Jacobson, G.

Booch, “The Unified
Modeling Language
Reference Manual.”,
Addison Wesley, 1998.

[w3c] http://www.w3.org/XML/

