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Abstract. Interoperability is a strong requirement in open distributed
systems and in the Semantic Web. The need for ontology integration
is not always completely met by the available ontology matching tech-
niques because, in most cases, the semantics of the compared ontologies
is not considered, thus leading to inconsistent mappings. Probabilistic
approaches has been proposed to validate mappings and solve the in-
consistencies, based on a mapping confidence measure. As probabilistic
approaches suffer from the lack of well-founded likelihood measures of
mapping correctness, we propose a validation approach based on fuzzy
interpretation of mappings, which better models the notion of degree
of similarity between ontology elements. Moreover, we describe a con-
flict resolution method which computes the minimal sets of conflicting
mappings and can be the ground of different validation strategies.

1 Introduction

In the context of the Semantic Web, the available information is organized in on-
tologies. Ontologies are controlled vocabularies describing objects and relations
between them in a formal way, and have a grammar for using the vocabulary
terms in order to express something meaningful within a specified domain of
interest. However, ontologies themselves can be heterogeneous: given two on-
tologies describing a reference domain, the same real entity can be denoted in
the two ontologies with different names or it can be defined in different ways (an
entity of one ontology may be the union of two of the entities of the other ontol-
ogy) whereas both ontologies may be expressed in different languages, though
expressing the same knowledge. In order to achieve the goal of ontology inter-
operability, we need to align heterogeneous ontologies by (semi-)automatically
discovering mappings between the elements in two different ontologies. Most of
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the existing matching techniques do not take into account the semantics of the
compared ontologies, therefore the resulting mappings can not be interpreted as
semantic relations among the ontology elements, which is a necessary condition
to perform integration and, subsequently, query answering over the integrated
schema. Recently, several studies have focused on mapping validation with
respect to the semantics of the ontologies involved and, at the same time, by
maintaining the uncertain nature of mappings. In [1] is proposed a language for
representation and reasoning with uncertain mappings by combining ontology
and rule languages with probabilistic reasoning. This method represents confi-
dence values as error probabilities in order to resolve inconsistencies by using
trust probabilities, and to reason about these on a numeric level. In our previous
work [2] we presented a tool for mapping validation with the help of probabilistic
reasoning. The idea is to assume a semantic interpretation of ontology mappings
as probabilistic and hypothetical relations among ontology elements in order to
build a unique distributed knowledge base from the two independent ontologies
and, subsequently, check for inconsistencies.

Probabilistic approaches for mapping validation suffer of limitations due to
the nature of mappings and the way the probability values are computed. Our
idea is to adopt a completely different interpretation in order to be able to val-
idate mappings even in the absence of a precise semantics and in the presence
of uncertainty. Assuming that an ontology mapping states the generic similarity
of two concepts, we can assert that the objects modeled by the first concept
can be also modeled by the second concept to a certain degree. In other words,
the individuals of the first concept belong to the second concept with a cer-
tain degree, which is exactly the semantics of fuzzy membership functions. The
degree of membership is determined by the strength of the similarity relation,
computed by the same matching technique which produced the mapping. By
using the acquired mappings to create fuzzy individual assertions, we provide
a formal interpretation of mappings. Moreover, on the grounds of the Fuzzy
Description Logics theory, we are able to perform reasoning on the integrated
ontologies in order to detect and solve inconsistencies by mapping refinement,
which is another difference compared to [2].

2 Ontology Mappings and Fuzzy Interpretation

In this section, we provide an introduction to a fuzzy extension of Description
Logics (DL) by adding degrees to DL facts; we call this extension f-DL. This
extension is based on Fuzzy Sets and Fuzzy Logic [3] and on previous work on
fuzzy Description Logics [4, 5].

As usual fuzzy DLs are defined by an alphabet of distinct concept names
(class names) C, role names (property names) R and individuals I. The set
of roles (properties) is defined as RU {R~ | R € R}, where R~ represents the
inverse of R. Elementary descriptions are atomic concepts and atomic roles, and
by using concept constructors we can define complex concept descriptions. More
precisely, if A,C,;D € C, R,S € R and p € N, where A is an atomic concept,



C, D are complex concepts, and S is an atomic role [6], then -SHZN-concepts
are defined inductively by the following abstract syntax:

C,D— L|T|A|CUD|CND|~C|VYR.C|3RC|>pS|<pS

A fuzzy DL Knowledge Base X is a triple X' = (7, R, A), where T is a TBoz,
R a RBox and A an ABox. A TBox is a set of concept subsumption axioms of
the form, C C D and concept equivalence axioms of the form C' = D, where
C, D are f-SHIN-concepts. An RBox is a set of transitive role axioms of the
form Trans(R) and role subsumption azioms of the form R C S, where R, S are -
SHIN-roles, while an ABox is a set of fuzzy concept and fuzzy role assertions of
the form (a : C)<an and ((a,d) : R)>in, or individual equalities and inequalities
of the form a = b or a # b, where a,b € I, 1 € {>,>,<, <} and n € [0, 1].

The semantics of f-DL are based on fuzzy interpretations. A fuzzy interpre-
tation Z is a pair Z = (AZ,-Z), where the domain AZ is, like the crisp case, a
non-empty set of objects and -7 is a fuzzy interpretation function, which maps

— an individual name o to an object o € AT,
— a concept name C to a membership function CZ : AT — [0,1] !, and
— a property name R to a membership function RZ : AT x AT — [0, 1].

Complex f-SHZN -concepts, roles and axioms are interpreted by extending
fuzzy interpretation, making use of fuzzy set theoretic operators and notions, like
subsethood, from the fuzzy set literature. The complete semantics are presented
in Table 1, where sup is the supremum, inf is the infimum, c is a fuzzy comple-
ment, t is a fuzzy conjunction (t-norm), u is a fuzzy disjunction (t-conorm) and
J is a fuzzy implication.

A fuzzy knowledge base X' is satisfiable iff there exists a fuzzy interpretation
T which satisfies all axioms in Y. Basic inference problems in f-DL are: (i) check
if a fuzzy knowledge base is consistent i.e. has a model, (ii) check if D subsumes
C wrt. X ie X = CC D, (iii) check if a is an instance of C' to degree >,
ie. ¥ = a: Can, where 1 € {>,>, <, <} and (iv) determine the greatest lower
bound of a w.r.t. X, denoted glb(X, a), where glb(X,a) = sup{n | X = a > n}.

2.1 Fuzzy Interpretation of Ontology Mappings

In order to achieve ontology interoperability heterogeneous ontologies should
be (semi-)automatically aligned. The problem called “Ontology Alignment” or
“Ontology Matching” can be described as follows: given two ontologies each
describing a set of discrete entities (which can be classes, properties, predicates,
etc.), find the relationships (e.g., equivalence or subsumption) that hold between
these entities. In a more formal way we could say that a mapping M is a set of
tuples
m; = <C¢, 027 g, Rl>

for i € I, where

! For instance, given an object a € AT and a class name C, C*(a) gives a degree of
confidence (such as 0.8) that the object a belongs to the fuzzy concept C.



Table 1. Fuzzy DL Descriptions and Axioms

Abstract Syntax DL Syntax Semantics
Bottom 1 1T(a)=0
Top T TZ)=1
Intersection cnbD (¢ D)X (a) = t(C%(a), D (a))
Union cubD (¢ u D)% (a) = u(C%(a), D% (a))
Complement -C (=C) (a) = e(C*(a))
Existential Restriction JR.C (3R.C)(a) = SUP,c AT t(R% (a,b), CT (b))
Universal Restriction VR.C (VR.C) (a) = inf, . \z J(RZ (a,b), CT (b))
Min Cardinality Restriction >nR (> nR)%(a) = sup t(_€ R%(a,b;), t {bi #b;})
b1, .bpeAL =1 i<J
Max Cardinality Restriction <nR (£ nR)%(a) = inf J(éJtrl R%(a,b;), u {b; =b;})
by,.bpypreAT - i=1 i<j
SubClass CCD C%(a) < D¥(a)
Equivalent Classes C=D C%(a) = DZ(a)
SubRole RCS R%(a,b) < S%(a,b)
Class Individual 0: Cxn C7 (0% )>an
Role Individual (0,0") : Rxin RZ (0%, 0'F)>an
Disjoint Classes CC-D Cc%(a) <1-D%(a)
Transitive Object Property Trans(R) SUPyc AT t(R* (a, b), RZ (b, ¢)) < R%(a,c)

— C}, C! are the discrete entities from two ontologies, O and O’, between which
a relation is asserted by the mapping;

— n; is a value, which is a part of structure (D, <,0,1), where D is the set
of degrees and Vd € D,0 < d < 1 holds, that denotes the strength of the
relation R;;

— and R; is one of the following relations R = {=, C, J}, that holds between
the entities C; and C/.

Another way to represent these relations using bridge rules, as used in distributed
description logics [7], is

C; =Cl:n Ciécgzn Cii(}'{:n

In order to take into account the uncertain and fuzzy nature of the mappings
we define a fuzzy mapping as follows.

Definition 1 (Fuzzy Mapping). Given two ontology elements C; and C., a
fuzzy mapping fm; = (C;, Cl,n;, R;) is a mapping m;, whose value n; denotes
the degree that the semantic relation R; holds between C; and C!, where R; can
be one of equivalence (=) or subsumption (C, 3J).

This way the mappings are formalized as fuzzy knowledge. The basic idea behind
the formalization of mappings as fuzzy knowledge is to use the mappings so as to
create fuzzy individual assertions. In order to do that we must provide semantics
for the mappings and to do so we will use the Fuzzy Set Theory [3]. Let Z be
a fuzzy interpretation, while let Z. be a crisp interpretation. Then we have the
following conditions:



IECi = Cl:in;«=Ybbe Ol — CE(b) =n,
TEC = Clin < YbbeCl - CL(b) >n,
TEC =0 in < YbbeCl - CE(b)<n,

The above definitions imply a procedure by which we can transfer individuals
from the source ontology O to the target ontology O, creating a set of fuzzy
assertions Ajs. This procedure will be described in more detail in the following.

2.2 Fuzzy DL Reasoning with FiRE

In this section we provide a short introduction to the Fuzzy Reasoning Engine
FiRE [8]. FiRE is a prototype JAVA implementation of a fuzzy algorithm for
an expressive fuzzy DL language fx p-SHZN [9]. It allows the user to create a
fuzzy knowledge base, based on the description logic Knowledge Representation
System Specification (KRSS) which was extended to accommodate the fuzzy
elements of fuzzy assertions. The inference services that FIRE supports are: (i)
checking consistency of a fuzzy knowledge base, (ii) entailment of fuzzy assertions
and (iii) subsumption between two fuzzy concepts. In the following of the paper
and in the evaluation procedure we will use the consistency checking inference
service.

3 Mapping Validation

Our approach to mapping validation is articulated in four phases

1. Ontology mapping acquisition. In this phase, we acquire mappings produced
by using an ontology mapping system; the matching system can rely on
syntactic, structural or even semantic matching techniques.

2. Fuzzy interpretation of mappings. In this phase, the acquired mappings are
interpreted as fuzzy assertions as presented in Section 2.1.

3. Fuzzy reasoning over mappings. In this phase, the ontology obtained by en-
riching the second ontology of the mapping with fuzzy individual assertions
produced with the help of the mappings is checked for consistency by means
of a fuzzy reasoning system.

4. Mapping validation and revision. In this phase, mappings are revised accord-
ing to the reasoning results; mappings causing inconsistencies within the new
ontology are refined and given a new strength.

In more detail the validation procedure, takes as input a mapping set (M)
together with the respective ontologies (O; and Os) and creates a new mapping
set (M), which includes refined mappings or discarded ones.

The main algorithm is described by Algorithm-1. Firstly, M is ordered
by descending order. In this way, we first consider the stronger mappings for
which similarity is higher. Then, the algorithm examines each mapping with
the aforementioned order and calculates a strength. If a mapping was refined



Algorithm 1 M’ := fuzzyValidation( M )
input: a mapping set M, and the mapped ontologies
output: a validated mapping set M’
while the degree of some mapping has changed do
sort M w.r.t. the strength n; of each mapping m; = {C;,C,n;, R;} € M
M =0
for m; € M do
newStrength; := computeStrength( m; )
if newStrength; is different than n; then
m; = {C;, Ci, newStrength;, R;}
break
end if
if newStrength is non zero then
add m; to M’
end if
end for
end while
return M’

then the same method is applied again for the old set of mappings plus the new
refined one, since the new degree might cause a new conflict that did not occur
before. This is performed iteratively until all the mappings have been used and
no inconsistencies occur. The final set of mappings is saved in M’.

The method that refines the degree of a mapping is described by Algorithm-
2 and proceeds as follows: A new ontology O’ = (T', R, A’} is created, where
T' =T, R = Ry. The ABox of the new ontology is gradually constructed from
the ABox of O, and by using the current mapping in order to transfer individuals
from ontology O1. More formally, A’ = As U Ay, where Ay is defined as follows:

Ay = {aCZ’Zn| <CI,CZ,,TL,E> € M,0q |:C’,(a)}U
{a:Cl=n|(CyClin,=) € M,0: E Ci(a)}U
{a:C} <n|(C;,Cl,n,Jy € M,01 = C;(a)}.

As it can be noted by the above definition, both the explicit as well as inferred
assertions are taken into consideration (O; = C;(a)). To do so we make use of a
classic DL reasoner and more precisely in the current setting we have used Pellet
[10]. For example, if m; = (C;, C!,0.8,=) and O; |= C;(a) then Ay = ApyU{a:
C/ = 0.8}. After, a new fuzzy individual assertion has been added in O’ we
call FiRE, in order to check for inconsistencies. If an inconsistency occurs the
strength of the mapping is refined, while if an inconsistency does not occur the
old degree is retained. The procedure that refines the strength of the mapping is
refineStrength. This procedure takes as input low level information from the
fuzzy reasoner about what conditions created the inconsistency, and according to
it proceeds with the refinement of the strength of the mapping so as to restore
the consistency in the ontology. For example, a pair of assertions of the form
a:C >0.8and a: C < 0.7 obviously denotes a contradiction.



Algorithm 2 s := computeStrength( m; )
input: m; := {C;,C},n;, R;}
output: the new strength of the mapping
for every individual of C; (Ci(a)) do
add a to C; — Cji(a)
check consistency of O2
if O is not consistent then
remove all individuals of C; added to C;
s := refineStrength(inconsistencyInfo)
else

S =Ny
end if
end for
return s

Example. Consider two simple ontologies, O; and Oz, defined as follows:
01 : MobilePhone C MobileDevice

O3 : Phone C FElectronicDevice
CablePhone C Phone
Cellular Phone = Phone
CablePhone C —Cellular Phone

The two ontologies have been compared by adopting the linguistic component of
HMatch 2.0 [11], which is based on a combination of terminological and syntactic
techniques. The result of the matching process is the following set of mappings:

. map(MobileDevice, ElectronicDevice, 0.7)
. map(Mobile Phone, Phone, 0.6)

. map(MobilePhone, CablePhone, 0.4)

. map(MobilePhone, Cellular Phone, 1.0)

=W N =

Since the validation process works by translating mappings into fuzzy indi-
vidual assertions, suppose that each concept of the two ontologies has at least
one representative individual. In particular, we assume that mp; is an instance of
the concept Mobile Phone and md; is an instance of the concept MobileDeuvice.
Sorted by the strength, one by one mappings are inserted into the second ontol-
ogy as fuzzy individual assertions.

Following the example, the first mapping to be added to Oy is mapping 4,
which is translated into the assertion (Cellular Phone(mpy), 1.0). Since the first
mapping does not cause an inconsistency, the procedure moves to the subse-
quent mapping (1), which is converted into (ElectronicDevice(mdy), 0.7) and
(ElectronicDevice(mpy), 0.7). The latter assertion violates the fuzzy DLs inter-
pretation of subsumption (C' C D <= CZ(a) < D*(a)), therefore making the re-
sulting ontology inconsistent. In this case, the solution is to increase the strength



of ElectronicDevice(mpy) and FElectronicDevice(md;) to 1 in order to sat-
isfy the semantic constraint ElectronicDeviceZ (mpf) > Cellular Phone® (mp?).
The same situation occurs when the assertions corresponding to mapping 2
are added into Oy and the same refinement is applied to restore consistency.
At last, the assertion determined by mapping 3, i.e. (CablePhone(mp), 0.4),
causes an inconsistency because it does not satisfy the semantic constraint
CablePhone® (mpt) < 1—Cellular Phone® (mp?). Giving priority to the stronger
mapping, the latest assertion has to be refined. Since the resulting strength would
be equal to 0, the assertion corresponding to mapping 3 is definitely dropped,
and the mapping is removed as well. The result of the validation process is the
following mapping set:

1. map(MobileDevice, ElectronicDevice, 1.0)
2. map(MobilePhone, Phone, 1.0)
3. map(MobilePhone, Cellular Phone, 1.0)

4 Conflict Resolution

The validation process described in the previous section enforces the inconsis-
tency detection and resolution by refining the strength of the mappings. When
a conflict arises, two or more mappings are involved and, to achieve the con-
sistency, at least one of them must be refined or removed. Generally the choice
among the conflicting mappings is not trivial because it should be driven by
the semantics of the mapped elements. The decision is even a harder task when
is performed automatically, therefore requiring effective heuristics. Moreover,
even when the choice is made by a human expert, there can be different correct
decisions according to different criteria that can be adopted.

The proposed validation technique adopts a naive strategy which gives pri-
ority to the strongest mapping and forces the last added mapping to be refined
or deleted. This solution has the advantage of being efficient in terms of perfor-
mances but does not always lead to the expected results. In fact, for instance, one
may prefer to preserve the highest number of mappings instead of the strongest
ones. The limitation is more evident if we consider mapping deletion as the only
possible way to solve inconsistencies. For instance, consider the two ontologies
defined in the example of the previous section and assume to have the same
mapping set but with the following strength values:

. map(MobileDevice, ElectronicDevice, 0.5)
. map(MobilePhone, Phone, 0.7)

. map(M obilePhone, Cable Phone, 0.8)
map(Mobile Phone, Cellular Phone, 0.6)

W N

The conflicting subsets of mappings in this configuration are (1,2,3) and (3,4),
due to the violation of the fuzzy DLs interpretation of subsumption and nega-
tion, respectively. If we apply a restricted version of the validation procedure of
Section 3 that allows only the deletion of inconsistent mappings, the inconsis-
tency would be solved by deleting all the mappings except for mapping 3, which



is the strongest one. In this case, it is clear that giving priority to the mapping
with the highest value could be not always the expected choice.

To provide a better support for the resolution of mapping inconsistencies,
we propose a different approach, namely the conflict resolution method, based
on the complete analysis of the conflicts. The underlying idea is to compute a
degree of inconsistency of each mapping, i.e. a measure that reflects the number
of times in which a mapping is involved in a conflict. To evaluate this degree,
we consider the inconsistencies in all the possible mapping configurations, that
are the set P(M) of all the subsets of the given mapping set, except the empty
set and the singleton sets. More formally, given a set of mappings M and the set
PM)=PM)\{z e P(M)|xz=0V|z| =1}, we define the conflicting set

C(M) CP(M) as

C(M)={ceP(M)|3Im,m' € csuch that m and m’ cause an inconsistency }

C(M) is built by validating each subset s; € P(M) through the validation proce-
dure of Section 3. If the resulting set s} is equal to s; then s; does not contain any
conflict and it is not included into C(M). Otherwise, if s; C s; then a mapping
has been removed to solve an inconsistency, therefore s; is added into C(M).

We define the minimal conflicting set MC(M) of M as the collection of all
minimal subset of mappings which contains a conflict:

MC(M) = {mc e C(M) | 3 mc € C(M) such that mc’ C me}
The degree of inconsistency i,, of a mapping m € M is defined as follows:
im = [{mc e MC(M) | m € mc}|

The assumption is that the higher is the degree of inconsistency of a mapping,
the more benefit we will get by removing it from the mapping set. Therefore, the
strategy behind this conflict resolution method is to preserve as much as possible
the mappings by detecting and deleting those which participate in the highest
number of conflicts. After computing the degree of inconsistency, all the map-
pings are added into the second ontology as fuzzy individual assertions and the
resulting ontology is checked for consistency. If an inconsistency is detected, the
mapping with the highest degree of inconsistency is removed and the resulting
ontology is again checked for consistency. The step is repeated until consistency
is achieved.

Let us describe this method with the aforementioned set of mappings that
are not correctly validated by the strength-based ordering approach. The com-
putation of the degrees of inconsistency produces the following results:

P(M) ={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),(1,2,3),(1,2,4),...}
c(M)  ={(1,2),(1,3),(3,4),(1,2,3),(1,2,4),(2,3,4), (1,2,4),(1,2,3,4)}
MC(M) = {(1,2),(1,3)(3,4)}

i = ‘{(172)7(173)”:27 i2:|{(1,2)}‘ =1, i3 = 2, g =1



All mappings are added into the resulting ontology and, subsequently, map-
pings 1 and 3 are removed before consistency is restored. Compared with the
results of the strength-based ordering approach, this method detected the actual
incorrect mapping (3) and produced the configuration with the largest number
of mappings. Moreover, in the context of semi-automatic validation tools, the
analysis performed with this method can report to the user the actual minimal
sets of conflicting mappings, in order to better support the decision process.

5 Related Work

Recent work [12] have focused on mapping validation as a post-processing task
over mappings produced by other matchmaking tools. Grounded on the theories
of the Distributed Description Logics, the process consists in translating map-
pings into bridge rules (i.e. inter-ontology semantic relations) and check for the
consistency of the resulting distributed knowledge base. The approach does not
handle the inherent uncertainty of mapping caused by the possible inaccuracy
of the heuristics adopted by the matching techniques.

As a possible solution to cope with the uncertainty of automatically dis-
covered mappings, probabilistic techniques have been developed. The approach
presented in [13] translates the mapped ontologies into bayesian networks and
treats concept mapping between the two ontologies as evidential reasoning be-
tween the two translated BN. In our foregoing work on mapping validation [2],
starting from the crisp approach in [12], we refined the validation process by at-
taching to mappings a probability measure determined by the confidence value
of the mapping. The probability value is interpreted as the likelihood of the
mapping being correct. The resulting relations are interpreted according to the
probabilistic description logics, which provides consistency check and inference
services in order to perform validation. A similar approach has been presented
in [1], where the combination of a rule-based framework and Probabilistic De-
scription Logic Programs is exploited to validate and merge mappings produced
by different techniques and tools. As in [2], the confidence value is interpreted
as a probability measure of the mapping correctness.

To be effective, probabilistic approaches should be fed with values which
actually state the confidence of the relation, therefore computed on the basis
of well-founded statistical techniques or measures. This turns out to be a rel-
evant limitation because most of the matchmaking tools do not provide such
a measure but only a value representing the degree of similarity between the
mapped elements. The alternative we propose is to exploit the fuzzy interpreta-
tion to handle the uncertainty of mappings but without relying on the confidence
values. In the ontology matching literature, fuzzy theories have been exploited
mainly with the aim of dealing with uncertainty during the process of map-
ping discovery and not for validation. For instance, the method described in [14]
formulates the ontology mapping problem as a rule application problem in the
fuzzy conceptual graph model. In our approach, based on the fuzzy description
logics, the numeric value attached to a mapping is intended as a degree of truth



of the relation. According to the way the numeric value is computed in most of
the matching techniques, the fuzzy interpretation is more suitable compared to
the probability value, especially when mappings represent a generic similarity
relation between the concepts.

Regarding conflict resolution strategies, relevant work have been presented
in the field of ontology repairing in order to provide debugging functionalities
for logically erroneous knowledge bases. In [15], minimal incoherence-preserving
sub-TBoxes (MIPS) are defined as the smallest subsets of an original TBox
preserving unsatisfiability of at least one atomic concept. MIPS are detected
and solved through a tableaux-like technique. Our definition of the degree of
inconsistency adopts the same principle but applied to the mapping conflict
resolution problem.

Other work in dealing with ontology mapping in the fuzzy context has been
presented in [16] where Li et al. have introduced E-Connections integrated into
extended fuzzy description Logics (EFDLs) that couple both fuzzy and dis-
tributed features within description logics and in [17], where Lu et al. propose
a discrete tableau algorithm to achieve reasoning within the logical system of
EFDLs. Unfortunately, not practical implementation of the algorithm is known,
in order to be used in a practical setting for reasoning over such fuzzy mappings.

6 Concluding Remarks

In this paper we have discussed the application of the fuzzy DLs theories to
the problem of mapping validation as a different way of handling mapping un-
certainty with respect to probabilistic approaches. As a result, we described a
mapping validation algorithm based on fuzzy interpretation of mappings in or-
der to detect inconsistencies. Similarly to previous work on mapping validation,
the strategy to solve inconsistencies is a simple strength-based heuristics, i.e.
the conflicting mapping with the highest strength value is preserved. Although
being a fast solution, this naive approach does not lead always to the expected
configuration. To cope with possible different strategies, we proposed a conflict
resolution approach which performs a thorough analysis of all possible inconsis-
tencies and computes the minimal sets of conflicting mappings.

The preliminary results show that the conflict resolution method is effective
and can potentially be applied to any validation semantics (e.g. probabilistic,
fuzzy). Furthermore, other validation strategies can be built on top of it, for in-
stance a strategy to maximize the number of preserved mappings. Regarding the
complexity, it is obviously dependent on the number of mappings involved and,
without further optimizations, the method is applicable only on relatively small
alignments. Future work will be devoted to the development of optimization
techniques, in particular the goal is to reduce the number of mapping subsets to
be validated during the search for the minimal conflicting sets. A possible way
of reducing the search space, and thus the combinatorial space, is to make some
approximations, like the one proposed in [18]. Moreover, the proposed validation
procedure supports only subsumption and equivalence, therefore further inves-



tigation are needed to include other kind of correspondences between aligned
ontology elements.
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