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Abstract. The widespread use of ontologies raises the need to resolve heterogeneities between 
distinct conceptualisations in order to support interoperability. The aim of ontology mapping is, 
to establish formal relations between a set of knowledge entities which represent the same or a 
similar meaning in distinct ontologies. Whereas the symbolic approach of established SW 
representation standards – based on first-order logic and syllogistic reasoning – does not 
implicitly represent similarity relationships, the ontology mapping task strongly relies on 
identifying semantic similarities. However, while concept representations across distinct 
ontologies hardly equal another, manually or even semi-automatically identifying similarity 
relationships is costly. Conceptual Spaces (CS) enable the representation of concepts as vector 
spaces which implicitly carry similarity information. But CS provide neither an implicit 
representational mechanism nor a means to represent arbitrary relations between concepts or 
instances. In order to overcome these issues, we propose a hybrid knowledge representation 
approach which extends first-order logic ontologies with a conceptual grounding through a set 
of CS-based representations. Consequently, semantic similarity between instances – 
represented as members in CS – is indicated by means of distance metrics. Hence, automatic 
similarity-detection between instances across distinct ontologies is supported in order to 
facilitate ontology mapping.  
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1 Introduction 
The widespread use of ontologies - formal specifications of shared conceptualisations 
 [10] - together with the increasing availability of representations of overlapping 
domains of interest, raises the need to resolve heterogeneities  [12] [14] by completely 
or partially mapping between different ontologies. With respect to  [2] [17], we define 
ontology mapping as the process of defining formal relations between knowledge 
entities which represent the same or a similar semantic meaning in distinct ontologies 
 [6] [19]. In that, ontology mapping strongly relies on identifying similarities  [1] 
between entities across different ontologies. However, with respect to this goal, 
several issues have to be taken into account. The symbolic approach - i.e. describing 
symbols by using other symbols, without a grounding in the real world - of 
established representation standards such as OWL1 or RDF-S2 which are based on 
first-order logic (FOL) and syllogistic reasoning  [8] leads to ambiguity issues and 
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does not entail meaningfulness, since meaning requires both the definition of a 
terminology in terms of a logical structure (using symbols) and grounding of symbols 
to a conceptual level  [3] [16]. Therefore, concept representations across distinct 
ontologies – even those representing the same real-world entities - hardly equal 
another, since similarity is not an implicit notion carried within ontological 
representations. But manual or semi-automatic identification of similarity 
relationships – based on linguistic or structural similarities across ontologies 
 [13] [7] [9] – is costly. Consequently, representational facilities, enabling to implicitly 
describe similarities across ontologies are required in order to support ontology 
interoperability. 

Conceptual Spaces (CS)  [8] follow a theory of describing entities at the conceptual 
level in terms of their natural characteristics similar to natural human cognition in 
order to avoid the symbol grounding issue  [3] [16]. In that, CS consider the 
representation of concepts as vector spaces which are defined through a set of quality 
dimensions. Describing instances as vectors enables the automatic calculation of their 
semantic similarity by means of spatial distance metrics, in contrast to the costly 
representation of similarities through symbolic representations. However, several 
issues still have to be considered when applying CS. For instance, CS do not 
explicitly prescribe any applicable representation method. Moreover, CS provide no 
means to represent arbitrary relations between concepts or instances, such as part-of 
relations. In order to overcome the issues introduced above, we propose a two-fold 
knowledge representation approach which extends FOL ontologies with a conceptual 
grounding by refining individual symbolic concept representations as particular CS. 
Consequently, similarity becomes an implicit notion of the representation itself, 
instead of relying on manual or semi-automatic similarity detection approaches.  

2 Conceptual Groundings for Ontological Concepts 
With respect to the aforementioned issues, we argue that basing knowledge models on 
just one theory alone might not be sufficient. Therefore, we propose a two-fold 
representational approach – combining FOL ontologies with corresponding 
representations based on CS – to enable similarity-based reasoning across ontologies. 
In that, we consider the representation of a set of n concepts C of an ontology O 
through a set of n Conceptual Spaces CS. Hence, instances of concepts are 
represented as members in the respective CS. While still benefiting from implicit 
similarity information within a CS, our hybrid approach allows overcoming CS-
related issues by maintaining the advantages of FOL-based knowledge 
representations. In order to be able to represent ontological concepts within CS, we 
formalised the CS model into an ontology, represented through OCML  [15]. Hence, a 
CS can simply be instantiated in order to represent a particular concept.   

Referring to  [8] [18], we formalise a CS as a vector space defined through quality 
dimensions di of CS. Each dimension is associated with a certain metric scale, e.g. 
ratio, interval or ordinal scale. To reflect the impact of a specific quality dimension on 
the entire CS, we consider a prominence value p for each dimension  [8]. Therefore, a 
CS is defined by ( ){ }PpCSddpdpdpCS iinn

n ∈∈= ,,...,, 2211
, where P is the set of real 

numbers. However, the usage context, purpose and domain of a particular CS strongly 
influence the ranking of its quality dimensions what supports our position of 



describing distinct CS explicitly for individual concepts. Please note that we do not 
distinguish between dimensions and domains  [8] but enable dimensions to be detailed 
further in terms of subspaces. Hence, a dimension within one space may be defined 
through another CS by using further dimensions  [18]. In this way, a CS may be 
composed of several subspaces, and consequently, the description granularity can be 
refined gradually. Dimensions may be correlated. Information about correlation is 
expressed through axioms related to a specific quality dimension instance. 

A particular member M – representing a particular instance – in the CS is described 
through valued dimension vectors vi like ( ){ }MvvvvM in

n ∈= ,...,, 21
. With respect to 

 [18], we define the semantic similarity between two members of a space as a function 
of the Euclidean distance between the points representing each of the members. 
However, we would like to point out that different distance metrics, such as the 
Taxicab or Manhattan distance  [11], could be considered, dependent on the nature and 
purpose of the CS. Given a CS definition CS and two members V and U, defined by 
vectors v0, v1, …,vn and u1, u2,…,un within CS, the distance between V and U can be 
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U and us is the standard deviation from U. The formula above already considers the 
so-called Z-transformation or standardization  [4] which facilitates the standardization 
of distinct measurement scales in order to enable the calculation of distances in a 
multi-dimensional and multi-metric space.  
Representing Ontological Concepts through Conceptual Spaces  
The derivation of an appropriate space CSi to represent a particular concept Ci of a 
given ontology O is understood a non-trivial task which primarily implies the creation 
of a CS instance which most appropriately represents the real-world entity represented 
by the symbolic concept representation. We foresee a transformation procedure 
consisting of the following steps: 

S1. Representing concept properties pcij of Ci as dimensions dij of CSi. 
S2. Assignment of metrics to each quality dimension dij. 
S3. Assignment of prominence values pij to each quality dimension dij. 
S4. Representing instances Iik of Ci as members in CSi. 

A specific CS is instantiated by applying a transformation function which is aimed at 
instantiating all elements of a CS (S1 – S3). S1 aims at representing each concept 
property pcij of Ci as a particular dimension instance dij together with a corresponding 
prominence pij of a resulting space CSi:  

( ){ } ( ){ }PpCSddpdpdpPCpcpcpcpctrans ijiijininiiiiijinii ∈∈⇒∈ ,,...,,,...,,: 221121
 

Please note that we particularly distinguish between data type properties and relations. 
While the latter represent relations between concepts, these are not represented as 
dimensions since such dimensions would refer to a range of concepts (instances) 
instead of quantified metrics, as required by S2. In the case of relations, we propose to 
maintain the relationships represented within the original ontology O without 
representing these within the resulting CSi. In that, the complexity of CSi is reduced to 



enable the maintainability of the spatial distance as appropriate similarity measure.  
S2 aims at the assignment of metric scales (interval scale, ratio scale, nominal scale), 
while S3 is aimed at assigning a prominence value pij to each dimension dij. 
Prominence values should be chosen from a predefined value range, such as 0...1. 
With respect to S4, one has to represent all instances Iki of a concept Ci as member 
instances in the created space CSi. This is achieved by transforming all instantiated 
properties piikl of Iik as valued vectors in CSi. 

( ){ } ( ){ }
ikikliknikiklikliknikik MvvvvPIpipipipitrans ∈⇒∈ ,...,,,...,,: 2121

 
Hence, given a particular CS, representing instances as members becomes just a 
matter of assigning specific measurements to the dimensions of the CS. In order to 
represent all concepts Ci of a given ontology O, the transformation function consisting 
of the steps S1-S4 has to be repeated iteratively for all Ci which are element of O. The 
accomplishment of the proposed procedure results in a set of CS instances which each 
refine a particular concept together with a set of member instances which each refine 
a particular instance.  

3 Conclusion 
In order to facilitate ontology mapping, we proposed a hybrid representation approach 
based on a combination of FOL ontologies and multiple concept representations in 
individual CS. Representing concepts following the CS theory enables representation 
of instances as vectors in a respective CS and consequently, the automatic 
computation of similarities by means of spatial distances. A CS-based representation 
is supported through a dedicated CS formalisation, i.e. a CS ontology, and a formal 
method on how to derive CS representations for individual concepts. Within proof-of-
concept prototype applications, e.g.  [5], an OCML  [15] representation of the proposed 
hybrid representational model was utilized to validate the applicability of the 
approach. Following our two-fold representational approach supports implicit 
representation of similarities across heterogeneous ontologies, and consequently, 
provides a means to facilitate ontology mapping. Moreover, our approach overcomes 
certain individual issues posed by each of the two approaches. Whereas traditional 
ontology mapping methodologies rely on mechanisms to semi-automatically detect 
similarities at the concept and the instance level, our approach just requires a common 
agreement at the concept level since similarity information at the instance level is 
implicitly defined.  

However, the authors are aware that our approach requires a considerable amount 
of additional effort to establish CS-based representations. Future work has to 
investigate this effort in order to further evaluate the potential contribution of the 
approach proposed here. Moreover, further issues related to CS-based knowledge 
representations still remain. For instance, whereas defining instances, i.e. vectors, 
within a given CS appears to be a straightforward process, the definition of the CS 
itself is not trivial at all and dependent on subjective perspectives. With regard to this, 
CS do not fully solve the symbol grounding issue but to shift it from the process of 
describing instances to the definition of a CS. Nevertheless, distance calculation relies 
on the fact that resources are described in equivalent (or mapped) geometrical spaces. 
However, we would like to point out that the increasing usage of upper level 
ontologies and the progressive reuse of ontologies, particularly in loosely coupled 



organisational environments, leads to an increased sharing of ontologies at the 
concept level. As a result, our proposed hybrid representational model becomes 
increasingly applicable by further enabling similarity-computation at the instance-
level towards the vision of interoperable ontologies. 
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