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Abstract. We present the latest release of the Ontology Pre-Processor
Language, a language for querying and modifying Description Logic
knowledge bases expressed in OWL. We briefly describe its renewed syn-
tax and decidability. We compare the proposed language expressivity
with the state of the art.

1 Motivation

The version of the Ontology Pre-Processor Language (OPPL) described here
is the successor of the initial effort presented in [1]. The need for this kind
of language is particularly evident in bio-ontologies, where knowledge models
originally consist of initial skeletons that are open to enrichment in a semi-
automatic fashion [2]. To do this, ontology engineers need the means of expressing
declaratively the set of axioms to be added (edited) along with the circumstances
under which these additions (editing) should be performed. Although the initial
effort on OPPL proved to be a successful first step towards this objective, it was
deemed necessary to partially rework it aiming at:
– Reach full compatibility with the current OWL-DL specification,
– Push the initial OPPL expressivity from a single variable language to a

language with an arbitrary number of variables.
As we shall detail further at the end of this paper, to the best of our knowl-

edge, currently there is no single formalism, allowing for expressing both queries
and atomic operations on a knowledge base using the correct language abstrac-
tion (OWL-DL). There are indeed query languages for Description Logic (DL)
knowledge bases, as well as Application Programming Interfaces (APIs) for car-
rying out operations on such knowledge bases, and both the languages and the
APIs provide support for reasoning. The query languages do not, however, pro-
vide declarative support for specifying operations to be executed on query results
and all the APIs we surveyed need to individuate the subjects of their opera-
tions programmatically. Hence, our primary motivation has been to investigate
whether and how such synthesis was possible. In the following we briefly present
our results for such investigation, namely:



– A language that responds to our use case and its syntax;2
– Some consideration upon its decidability together with brief comparative

survey of the state of the art (Section 3);
– And, at the end, some conclusions and the future directions we intend to

pursue.

2 The augmented Ontology Pre-Processor Language

A generic OPPL statement in the new syntax will look as follows:

SELECT Axiom,....,Axiom
BEGIN
ADD | REMOVE Axiom
...
ADD | REMOVE Axiom
END

This will not only harmonize the SELECT clauses with the correct level of
abstraction offered by OWL-DL, but also achieve uniformity between the query
and the action section. The most important objective for this new release of
OPPL is the explicit introduction of variables. The first release of OPPL could
be regarded as a weakly1 typed single variable language. This limitation left out
of the language a range of required query types. For example, it was impossible
either to select all the classes that are subclasses of a class that, in its turn, is
disjoint with a given class; or selecting all the classes equivalent to an existential
restriction on a variable property with a given filler. Instead, we wanted to
provide the possibility of having an arbitrary number of variables spanning across
the query section as well as the action section. Therefore, one can now select a
set of axioms built upon some fixed and variable parts (query) and then add or
remove other axioms depending on a subset of the variables introduced in the
previous select section.

An OPPL statement is decomposable in the following sections:
1. Variable definition (before SELECT)
2. Selection (between SELECT and BEGIN)
3. Actions (between BEGIN and END)

The sections described above can be further broken down as in Figure 1
where we report the entire OPPL syntax grammar. As we already mentioned
above, OPPL syntax is built upon the Manchester OWL Syntax. To improve
readability for those already familiar with it, we did not expand the production
rules for the non terminal Axiom in Figure 1. Readers can find the details for such
production at http://www.cs.man.ac.uk/~iannonel/oppl/grammar.html.

We report an example of a statement in the new OPPL syntax in Figure 2.
In general, variables can have the following types:
1 Weak here means that the type of the sole variable is inferred from the whole OPPL

statement rather than declared as shown in the examples above.



1. CLASS;
2. OBJECTPROPERTY;
3. DATAPROPERTY;
4. INDIVIDUAL;
5. CONSTANT.

Each variable type covers a possible category of entities in the OWL specifi-
cation. An entity here, is a named object or a constant. Therefore, an anonymous
class description is not an acceptable substitution for any variable type, includ-
ing CLASS. This limitation has important bearings on the possibility of building
complete algorithms to execute an arbitrary query in OPPL.

OPPL Statement ::= ( VariableDeclaration )? ( Query )? ( Actions )? ";"

VariableDeclaration ::= VariableDefinition ( "," VariableDefinition )*

Actions ::= "BEGIN" Action ( "," Action )* "END;"

VariableDefinition ::= <IDENTIFIER> ":" variableType

Constraint ::= <IDENTIFIER> <NEQ> OWLExpression

variableType ::= "CLASS" | "OBJECTPROPERTY |

"DATAPROPERTY" | "INDIVIDUAL" | "CONSTANT"

Query ::= "SELECT" Axiom ( "," Axiom )*

( <WHERE> Constraint ( <COMMA> Constraint )* )?

Action ::= "ADD" | "REMOVE" Axiom

Axiom ::= An axiom in Manchester OWL Syntax

(possibly containing variables)

IDENTIFIER::= "?"<LETTER> (<LETTER>|<DIGIT>)*

LETTER ::= ["_","a"-"z","A"-"Z"]

DIGIT ::= ["0"-"9"]

OWLExpression ::= An OWL entity in Manchester OWL Syntax

(possibly containing variables)

Fig. 1. OPPL EBNF Grammar Specification

?x:CLASS SELECT ?x equivalentTo participates_in

only (intellectual_dinner and party)

BEGIN

REMOVE ?x subClassOf lives_on only (not campus);

END;

Fig. 2. Selects all the classes equivalent to the all value restriction participates in
only(intellectual dinner and party) and removes the axiom, subClassOf lives on only
(not campus) when asserted on the matching ones



3 Discussion

OPPL can work both in asserted-only or in inferred mode. This means that
queries can be executed respectively on the asserted model only or considering
also the inferred axioms. In the former case no interaction with the reasoner is re-
quired and query-matching is at worst linear in the number of axioms contained
in the ontology. The latter case is computationally more complex. The limitation
for CLASS ensures the query language decidability. We can imagine a very sim-
ple, brute-force. algorithm that replaces every variable with every entity in the
ontology and, then, asks the reasoner if the resulting instantiated axiom holds
in the model. Such algorithm terminates in finite time as the number of vari-
ables and entities are both finite, and returns the correct results for the queries.
Nevertheless, such simplistic approach is not scalable and real implementations
need optimisations that are currently being explored and evaluated.

OPPL is non-monotonic on account of REMOVE actions, therefore the execu-
tion order of OPPL statement matters as they are not commutative. Moreover,
in the case inference is on, REMOVE actions will affect only asserted axioms.

To the best of our knowledge, OPPL is unique in combining the possibility
of querying and performing actions on the matched entities. The only language
with comparable functionalities is SPARQL2. It crucially differs, however, from
OPPL on its level of abstraction (RDF triples versus OPPL’s OWL axioms). Its
non- monotonic REMOVE feature makes it significantly different from the Semantic
Web Rule Language and its DL-safe fragment [3]. If, however, we restrict to single
functionalities there is some related work which is worth mentioning briefly.

For queries, SPARQL-DL [4] is the language whose expressivity is the clos-
est to OPPL. The main difference between SPARQL-DL and OPPL is that
SPARQL-DL queries select n-uples of variables. OPPL, on the contrary, focusses
on axioms. Moreover, at least with respect to the abstract syntax mentioned in
[4], OPPL offers a greater expressivity, e.g.: nesting variables into complex class
descriptions which seems not to be possible using SPARQL-DL.

For actions, there are several different APIs for dealing with OWL (see [5]
and [6] for the two most comprehensive frameworks) that provide developers
with similar or more ample set of possible operations than OPPL. Such APIs,
however, present procedural details to which their users must pay attention, in
order to accomplish the equivalent simple OPPL action. For example, adding
the following subclass axiom:

A subClassOf C and B

Corresponds, using the Manchester OWL API, to executing the following set
of instructions:

OWLClass a = dataFactory.getOWLClass("A");
OWLClass b = dataFactory.getOWLClass("B");
OWLClass c = dataFactory.getOWLClass("C");

2 SPARQL Update: http://jena.hpl.hp.com/~afs/SPARQL-Update.html



Set<OWLClass> set = new HashSet<OWLClass>(2);
set.add(b);
set.add(c);
OWLDescription intersection =
dataFactory.createOWLObjectIntersection(set);
OWLAxiom axiom = dataFactory.getOWLSubClassAxiom(a,intersection);
ontologyManager.applyChange(new AddAxiom(ontology,axiom));

which, apart from its length, requires that an ontology engineer knows the de-
tails of the API infrastructure (data factories, difference between OWLDescription
and OWLClass, etc.).

The following issues need to be tackled in the future:
1. Complete the transition from the old syntax to the new one, providing sup-

port for querying non logical axioms (i.e: annotations).
2. Empirically evaluate the optimisations for the querying algorithm in presence

of inference.
Furthermore, it is equally interesting the potential integration of OPPL with the
Lint framework developed at Manchester University3. The notion of Lint comes
from programming, where it represents generic bad practices in code writing that
could potentially lead to defects in the software (e.g: declare variables and not use
them). We ported this notion into OWL ontology engineering and implemented
a detection engine framework into which users could plug-in their own Lint
checks4. At the moment, user-defined Lints must be developed in Java using the
OWL API mentioned above, but, after the integration with OPPL, users will be
able to specify declaratively (by means of a query) the potential lint as well as
the actions to undertake to fix the problem.
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