Annotated Literalsfor Standard Units of M easur ement

Ryan Blace, Andrew Perez-Lopez

1 BBN Technologies, 1300 N. 17th Street, Suite 400ngton, VA 22209
{rblace, aperezlo}@bbn.com

Abstract. In our experiences building systems that use Sgmaiweb
technologies, we have often identified a requirenfen a consistent way to
associate data values with standard units. We traacea number of solutions
to this issue, each of which has its own benefitd drawbacks in terms of
complexity, expressivity, and clarity. In this papae present a discussion of
the issue and a proposal for a simple extensio®@WL/RDF to support the
annotation of literal values with standard Sl utfitat meets our needs without
introducing many of the drawbacks of alternate apphes.

Keywords: OWL, RDF, International Standard Units, Annotation

1 Introduction

At BBN Technologies, we use Semantic Web techne®dgn both prototype and
operational systems that help our customers adtlessinformation integration and
data management challenges. Most of our projectsQM/L to represent various
domain knowledge models and to map between theeptsiavithin each. We define
classes and properties, arrange them taxonomicatlgl, use restrictions to specify
structure expectations and to perform input vaidhat

Our knowledge models vary from network-based moddikh are composed of
entities and relationships to measurement-basedelndtiat contain entities with
many data values. For almost any measurementmlaiaer interpretation depends on
an awareness of the units of the measurement. iBhigarticularly true when
integrating measurement data from various sourc&amvledge models.

We've experimented with, and observed in relevaetature, many solutions to
expressing units of measurement in OWL. The mostnaon approach involves the
inclusion in the knowledge model of unit-specificoperties or data types. Other
approaches include statement reification or theafis@lue containers that associate
values with units and other relevant informationhil any of these approaches is
sufficient for capturing units, none has proveds$attory for our purposes.

In this paper, we present a brief discussion ofsuim information management
along with a number of approaches to solving ithEapproach is assessed critically
and the benefits and drawbacks to each are idshtiflext, we present a proposal for
a solution for representing units for standard messents that addresses our
requirements, and discuss its strengths and wesésies

2 Unitsin Information M anagement

One of the insights of OWL/RDF is that data is ongeful when combined with a
relevant context, or collection of metadata. A moatat is expressive enough to
represent both TBox information such as classespeties, and the relationships
among them, and ABox information about instancemis of the major successes of
this area of research. However, while OWL and RDBwafor a great deal of
metadata about instances, they do not similarlgwalh rich description of literal
values. Just as knowing the type of an instanaawallmachines to interpret RDF
information more usefully, so too would metadatatdbiteral values.

Maintaining information about the units associatéth literal values is critically
important in many real-world systems. Proper conspas, model consistency
checks, and a better user experience with inpidatidn and more customization are
some of the system requirements that demand uedifggation.

There are a few approaches from the literaturewdhave attempted to apply, but
none is satisfactory. In the following section, wescribe each approach we are
considering.

2.1 Unit-specific Properties and Datatypes

One of the most common ways to express measuramérinformation is to define
unit-specific properties in an ontology. For exaepmn ontology about people may
define multiple properties representing height,ludng heightMeters, heightFeet,
heightinches, heightCentimeters, etc. The propetself designates the unit
information about the value to which it refers. Sioler the example statemeSteve
hasHeightinches 72. This clearly states that Steve has a height afgl2es.

Unit-specific datatypes are a similar approach theds typed literals to specify
units. Consider the statemesiéve hasHeight 72*int-inches.

2.2 Statement Reification and Value Containers

Statement reification involves annotating reifioatiresources with unit information
that describes the value of the statement. An elaigo say that the statemeve
hasHeight 77 has units inches.

A final approach to this problem is the use of wabontainers [1]. This involves
replacing literal values with resources that imttefer to the associated literal value
and appropriate unit. Consider the following exasngteve hasHeight _height,
_height hasValue 72, _height hasUnitsinches.

2.3 Benefitsand Drawbacksto Each Approach
Each approach we have discussed has its own kem@eiit drawbacks. In general,

each approach suffers from at least one of theoddtlg issues: complexity,
expressivity, or clarity.

The unit-specific property approach is simple atehrc Its drawbacks are in
expressivity. It mixes the concept of height wittieature of the data value (meters,
feet, inches, etc.) to which it refers. The conagipheight does not depend on the
units in which the value is expressed. The inappatg conflation of the semantics
and the representation produces a plethora of nediqates representing every
permutation of property and unit. Using a supeipprty relationship to establish the
semantic similarity between height and all of itgitispecific versions is of
guestionable utility because the unit informatienlost when the super-property
statements are entailed, rendering the entailéensents unit-less.

The unit-specific datatype approach is also simghe clear, and it correctly
associates unit information with values rather thm@operties so that units are
correctly transferred with entailed statement&lithinates the necessity of an unruly
number of predicates, but trades it for the onlghdly less egregious problem of
type/unit combinations. With unit-specific datatgpsystem builders must cope with
int-meters and float-meters, and int-liters anaffliters, etc. This also introduces the
problem of comparisons - according to standard Rifal equality, a height of
“1.8"float-meters is not the same as “1.8""daspheters. Additionally, types
cannot easily be combined, as is often requiredday-world systems. Additional,
custom, unit-specific types are required to supdortexample, kilometers per liter,
or per hour, or per year.

The statement reification approach suffers fromualmer of problems. First, it
once again associates unit information with statémeather than with the objects of
statements, so entailments lose the unit informati®econd, it's a complex and
potentially expensive method for modeling this mfation because it includes
additional structure that must be maintained aretigd in the model.

The value container approach is probably the mesthie, explicit, and correct
approach we have observed. It allows you to astoailnost anything with a data
value, entailments correctly carry unit informatiith them, and it supports any sort
of unit specification method you may desire. Howevkere are drawbacks to this
approach as well. It trades expressiveness for ity and interoperability, and it
deemphasizes the role of datatype properties. @idedastructure for specifying data
values requires more statements to model, and ocmmplex queries. Interoperability
suffers because this method requires a non-standettiod for specifying data
values. Finally, this method virtually eliminatdsetuse of datatype properties for
describing resources other than the value contiherthe most extreme case, where
all data values require units, every data valuestnine encapsulated within these
value containers and referred to using object ptagse

5 Our Requirementsand a Proposal

Most of the approaches we have discussed eitheciass unit information with the

wrong concept (the predicate or the statementy, toaflate two dimensions of data
values, or they are overly complicated and nonestecth We don't need excessive
expressivity and we don’'t want additional structaesumptions that will exacerbate
interoperability challenges. We need a solutiort tt@rectly associates units with

data values and is correctly carried with entaiatements. We prefer a simple
solution that provides the means to correctly cgnuait information when it is
interfaced with humans or external applications.

We propose extending the language tag to provig@at for the annotation of
non-string datatypes with semantics-free, compesahit strings. The following
table represents a few examples of literals with atrings maintained in the language
tag:

Tablel. Literals using the proposed language tag reptasen for units

Literal Interpretation

“57"@km 57 kilometers
“57000"@m 57000 meters

“78"@kg 78 kilograms
“122"@km.kg-1 57 kilometers / kilogram
“100"@km.h-1 100 kilometers / hour

Representing units of measurement like languages $everal desirable
characteristics. Language tags specify how humadsagplications should interpret
string datatype literals. This is very similar toralesire for specifying units. Using
language tags as an annotation for units avoidsgaegt increase in the number of
required predicates or datatypes, because litesdhtypes are already treated
separately from the language tag. Additionally,sérg parsers would only require
slight changes, if any, to support the expandedofiske language tag, so it could be
implemented quickly.

The use of language tag annotation would be seosafiée, so no additional
complexity would be introduced into class definitsoor descriptions. Just as the
meaning of typed literals depends on informatiotsiole RDF, so too would the
semantics of units. Reasoners could optionally stpmutomatic conversions
between units, or consistency checking if desitmat, those details need not be
defined by relevant OWL or RDF specifications. Aduhally, units are specified
directly on literals and will be propagated throwggttailment. The obvious drawback
to this approach is that it is semantics-free aasl limited utility in the knowledge
model itself; however, in our experience that dragkbhas limited impact.

References

1. Chaudhri, V.K., Jarrold, B., Pacheco, J.. Expgrtimowledge Bases into OWL. OWLED
Long Papers (2006)

