
Annotated Literals for Standard Units of Measurement

Ryan Blace, Andrew Perez-Lopez

1 BBN Technologies, 1300 N. 17th Street, Suite 400, Arlington, VA 22209

{rblace, aperezlo}@bbn.com

Abstract. In our experiences building systems that use Semantic Web
technologies, we have often identified a requirement for a consistent way to
associate data values with standard units. We have tried a number of solutions
to this issue, each of which has its own benefits and drawbacks in terms of
complexity, expressivity, and clarity. In this paper, we present a discussion of
the issue and a proposal for a simple extension to OWL/RDF to support the
annotation of literal values with standard SI units that meets our needs without
introducing many of the drawbacks of alternate approaches.

Keywords: OWL, RDF, International Standard Units, Annotation

1 Introduction

At BBN Technologies, we use Semantic Web technologies in both prototype and
operational systems that help our customers address their information integration and
data management challenges. Most of our projects use OWL to represent various
domain knowledge models and to map between the concepts within each. We define
classes and properties, arrange them taxonomically, and use restrictions to specify
structure expectations and to perform input validation.

Our knowledge models vary from network-based models which are composed of
entities and relationships to measurement-based models that contain entities with
many data values. For almost any measurement data, proper interpretation depends on
an awareness of the units of the measurement. This is particularly true when
integrating measurement data from various sources or knowledge models.

We've experimented with, and observed in relevant literature, many solutions to
expressing units of measurement in OWL. The most common approach involves the
inclusion in the knowledge model of unit-specific properties or data types. Other
approaches include statement reification or the use of value containers that associate
values with units and other relevant information. While any of these approaches is
sufficient for capturing units, none has proved satisfactory for our purposes.

In this paper, we present a brief discussion of units in information management
along with a number of approaches to solving it. Each approach is assessed critically
and the benefits and drawbacks to each are identified. Next, we present a proposal for
a solution for representing units for standard measurements that addresses our
requirements, and discuss its strengths and weaknesses.

2 Units in Information Management

One of the insights of OWL/RDF is that data is only useful when combined with a
relevant context, or collection of metadata. A model that is expressive enough to
represent both TBox information such as classes, properties, and the relationships
among them, and ABox information about instances is one of the major successes of
this area of research. However, while OWL and RDF allow for a great deal of
metadata about instances, they do not similarly allow a rich description of literal
values. Just as knowing the type of an instance allows machines to interpret RDF
information more usefully, so too would metadata about literal values.

Maintaining information about the units associated with literal values is critically
important in many real-world systems. Proper comparisons, model consistency
checks, and a better user experience with input validation and more customization are
some of the system requirements that demand unit specification.

There are a few approaches from the literature that we have attempted to apply, but
none is satisfactory. In the following section, we describe each approach we are
considering.

2.1 Unit-specific Properties and Datatypes

One of the most common ways to express measurement unit information is to define
unit-specific properties in an ontology. For example, an ontology about people may
define multiple properties representing height, including heightMeters, heightFeet,
heightInches, heightCentimeters, etc. The property itself designates the unit
information about the value to which it refers. Consider the example statement: Steve
hasHeightInches 72. This clearly states that Steve has a height of 72 inches.

Unit-specific datatypes are a similar approach that uses typed literals to specify
units. Consider the statement Steve hasHeight 72^^int-inches.

2.2 Statement Reification and Value Containers

Statement reification involves annotating reification resources with unit information
that describes the value of the statement. An example is to say that the statement Steve
hasHeight 77 has units inches.

A final approach to this problem is the use of value containers [1]. This involves
replacing literal values with resources that in turn refer to the associated literal value
and appropriate unit. Consider the following example: Steve hasHeight _height,
_height hasValue 72, _height hasUnits inches.

2.3 Benefits and Drawbacks to Each Approach

Each approach we have discussed has its own benefits and drawbacks. In general,
each approach suffers from at least one of the following issues: complexity,
expressivity, or clarity.

The unit-specific property approach is simple and clear. Its drawbacks are in
expressivity. It mixes the concept of height with a feature of the data value (meters,
feet, inches, etc.) to which it refers. The concept of height does not depend on the
units in which the value is expressed. The inappropriate conflation of the semantics
and the representation produces a plethora of new predicates representing every
permutation of property and unit. Using a super-property relationship to establish the
semantic similarity between height and all of its unit-specific versions is of
questionable utility because the unit information is lost when the super-property
statements are entailed, rendering the entailed statements unit-less.

The unit-specific datatype approach is also simple and clear, and it correctly
associates unit information with values rather than properties so that units are
correctly transferred with entailed statements. It eliminates the necessity of an unruly
number of predicates, but trades it for the only slightly less egregious problem of
type/unit combinations. With unit-specific datatypes, system builders must cope with
int-meters and float-meters, and int-liters and float-liters, etc. This also introduces the
problem of comparisons - according to standard RDF literal equality, a height of
“1.8”^^float-meters is not the same as “1.8”^^double-meters. Additionally, types
cannot easily be combined, as is often required by real-world systems. Additional,
custom, unit-specific types are required to support, for example, kilometers per liter,
or per hour, or per year.

The statement reification approach suffers from a number of problems. First, it
once again associates unit information with statements, rather than with the objects of
statements, so entailments lose the unit information. Second, it’s a complex and
potentially expensive method for modeling this information because it includes
additional structure that must be maintained and queried in the model.

The value container approach is probably the most flexible, explicit, and correct
approach we have observed. It allows you to associate almost anything with a data
value, entailments correctly carry unit information with them, and it supports any sort
of unit specification method you may desire. However, there are drawbacks to this
approach as well. It trades expressiveness for complexity and interoperability, and it
deemphasizes the role of datatype properties. The added structure for specifying data
values requires more statements to model, and more complex queries. Interoperability
suffers because this method requires a non-standard method for specifying data
values. Finally, this method virtually eliminates the use of datatype properties for
describing resources other than the value containers. In the most extreme case, where
all data values require units, every data value must be encapsulated within these
value containers and referred to using object properties.

5 Our Requirements and a Proposal

Most of the approaches we have discussed either associate unit information with the
wrong concept (the predicate or the statement), they conflate two dimensions of data
values, or they are overly complicated and non-standard. We don’t need excessive
expressivity and we don’t want additional structure assumptions that will exacerbate
interoperability challenges. We need a solution that correctly associates units with

data values and is correctly carried with entailed statements. We prefer a simple
solution that provides the means to correctly convey unit information when it is
interfaced with humans or external applications.

We propose extending the language tag to provide support for the annotation of
non-string datatypes with semantics-free, composable unit strings. The following
table represents a few examples of literals with unit strings maintained in the language
tag:

Table 1. Literals using the proposed language tag representation for units

Literal Interpretation
“57”@km 57 kilometers
“57000”@m 57000 meters
“78”@kg 78 kilograms
“122”@km.kg-1 57 kilometers / kilogram
“100”@km.h-1 100 kilometers / hour

Representing units of measurement like languages has several desirable

characteristics. Language tags specify how humans and applications should interpret
string datatype literals. This is very similar to our desire for specifying units. Using
language tags as an annotation for units avoids any great increase in the number of
required predicates or datatypes, because literal datatypes are already treated
separately from the language tag. Additionally, existing parsers would only require
slight changes, if any, to support the expanded use of the language tag, so it could be
implemented quickly.

The use of language tag annotation would be semantics-free, so no additional
complexity would be introduced into class definitions or descriptions. Just as the
meaning of typed literals depends on information outside RDF, so too would the
semantics of units. Reasoners could optionally support automatic conversions
between units, or consistency checking if desired, but those details need not be
defined by relevant OWL or RDF specifications. Additionally, units are specified
directly on literals and will be propagated through entailment. The obvious drawback
to this approach is that it is semantics-free and has limited utility in the knowledge
model itself; however, in our experience that drawback has limited impact.

References

1. Chaudhri, V.K., Jarrold, B., Pacheco, J.. Exporting Knowledge Bases into OWL. OWLED
Long Papers (2006)

