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Abstract. This paper presents a non-technical, user oriented introduc-
tion into P-SHIQ(D)— an expressive formalism that allows modelers
to incorporate probabilistic background knowledge in OWL ontologies.
Instead of providing formal description of the language, its syntax, se-
mantics, and reasoning procedures, we explain the basic principles, po-
tentially useful practices and pitfalls of probabilistic modeling. The goal
of the paper is to present P-SHIQ(D) and the reasoning tools, such as
Pronto, in an accessible form to encourage their usage in practical appli-
cations. We describe features and benefits of P-SHIQ(D) using examples
from the HealthCare and Life Sciences domain including the prototype
of a probabilistic ontology for breast cancer risk assessment.

1 Introduction

Extensions of Description Logics (DLs) aimed at handling imprecision in on-
tologies have received significant research attention over the last several years,
strongly driven by Bioinformatics and Semantic Web applications. There are
now a variety of formalisms based on different mathematical approaches. There
is a daunting number of technical papers containing complete discussions of the
syntax, semantics, and computational properties of those formalisms.

This paper presents one of the approaches to probabilistic description logic —
namely, P-SHIQ(D) [GL02][Luk08] — but from a slightly different perspective.
Instead of a presentation of the formal properties of P-SHIQ(D), we examine
it from a modeler’s perspective. We attempt to show that P-SHIQ(D) is a
rather natural extension to OWL that allows ontology designers to incorporate
statistical knowledge into OWL ontologies so that it can be used in applications.

P-SHIQ(D) suffers from the standard problem of novel formalisms: its mod-
eling principles are unclear, which makes people reluctant (or unable) to use it,
which, in turn, prevents the development of a significant number of real P-
SHIQ(D) ontologies which is essential for the emergence of design principles.
This paper tries to address this problem by providing the first realistic proto-
type of a P-SHIQ(D) ontology and discussing its design and use. The ontology
will represent statistical background knowledge about breast cancer and support
breast cancer risk assessment (BRCA) of individual women.



The paper consists of two parts. We first provide a brief and informal overview
of the representation and reasoning features that P-SHIQ(D) adds to OWL.
Then we proceed to the modeling issues illustrated through the process of con-
structing the BRCA ontology. We do so step by step highlighting principles that
seem to be useful for building P-SHIQ(D) ontologies.

The principles we have developed seem quite sensible and general, but the
strength of our conclusions is necessarily limited. The problem we tackled is
real with a real application, but we are not, ourself, domain experts. Thus, our
recommendations are meant more to help people bootstrap themselves into using
P-SHIQ(D) than to provide the last word in good modeling style.

2 Probabilistic Language

First of all, P-SHIQ(D) is a new ontological language built on top of OWL
in order to represent probabilistic statements. The syntax is a simple extension
of OWL: we add a new kind of axiom called conditional constraints which are
responsible for the representation of all types of uncertainty in P-SHIQ(D).

Conditional Constraints Conditional constraints are expressions of the form
(D|C)[l, u] where C, D are OWL class expressions1 called the evidence and the
conclusion respectively, and [l, u] ⊆ [0, 1] is a probability interval.

Informally, conditional constraints express probabilistic relationships in a do-
main. In spite of seeming similar to arcs in Bayesian, networks they can capture
relationships between first order class expressions rather than propositional ran-
dom variables. For example, we can represent that flying objects that have wings
are birds in at least 80% of the cases: (Bird|∃hasWing.>uFlyingObject)[0.8, 1]

There are two types of conditional constraints: generic constraints that rep-
resent relationships between concepts (OWL classes) and individual constraints
that represent relationships between an OWL class and an individual. Simi-
larly to classical DL we will call the first type probabilistic TBox (PTBox) con-
straints and the second — probabilistic ABox (PABox) constraints. A probabilis-
tic knowledge base (ontology) in P-SHIQ(D) consists of three parts: an normal
OWL ontology, a set of PTBox constraints, and a set of PABoxes with each one
representing information about a distinct (probabilistic) individual, e.g.,:

Example 1.

T = {Penguin v Bird}
P = {(FlyingObject|Bird)[0.8, 0.9], (FlyingObject|Penguin)[0, 0.1],
(∃livesIn.Antarctida|Bird)[0.1, 0.2],
(∃livesIn.Antarctida|Penguin)[0.7, 0.8],
Ptweety = {(Penguin|>)[0.9, 0.9]}

Next we explain the meaning of such statements in more detail.
1 No nominals can be used for the time being



Objective Probabilities PTBox axioms express generic uncertainty and can
be seen as probabilistic generalizations of normal subclass axioms in standard
DLs. Similarly to TBox axioms, generic constraints (or PTBox axioms) express
background knowledge, i.e. general relationships that are known for a particular
domain. The informal meaning of a constraint (D|C)[l, u] is [GL02][Luk08] Given
that a fresh, randomly chosen object is an instance of class C its probability of
being an instance of class D is within [l, u].

The words “randomly chosen” are the key here. They mean that the state-
ment does not directly apply any of the named individuals in the knowledge base.
Neither does it have to agree with the probabilistic knowledge about such indi-
viduals. For example, consider the constraint: (FlyingObjectuPenguin|>)[0, 0]
which states that the absolute probability that a randomly chosen object is
a flying penguin is zero. Somewhat surprisingly it does not contradict state-
ments about some specific flying penguins, for example, an ABox axiom (sam :
FlyingObject u Penguin) or individual conditional constraints (see the next
subsection) (FlyingObject u Penguin|>)[1, 1] for Sam. The key is that Sam is
not a random object. Even though one flying penguin is known, it can still be
the case that the probability of a fresh object to be a flying penguin is zero.

This issue is both, a tricky point and a powerful feature of P-SHIQ(D) that
allows for the treatment of exceptions (see Section 3.2). Knowledge expressed
by the PTBox constraints is default in the sense that it is expected to hold in
general, but at the same time might fail in specific cases, e.g., for Sam. Note,
however, that even though it is admissible to believe that Sam is an exception,
it would be logically inconsistent to believe that all or some fraction of objects
are exceptions, i.e., believe that there is a class of flying penguins.

Finally, note that PTBox constraints are aimed to represent objective prob-
abilities. Their values can come from all sorts of experiments, for example, clini-
cal trials that yield statistics about relationships in some medical domain. Such
probabilities may also be produced by various learning algorithms. Being objec-
tive they do not depend on one’s belief about individual objects but may (and
typically do) affect such beliefs.

Subjective Probabilities Continuing the analogy with classical DLs (and
OWL) we now proceed to PABox constraints which are probabilistic counter-
parts of ABox class assertions. PABox constraints are expressed in a special
form: a : (D|>)[l, u]. Each of them pertains to a single individual a (such indi-
vidual is called probabilistic). Their informal meaning is as follows: The degree
of belief that the individual a is an instance of the class D is within [l, u].

The key difference between PTBox and PABox constraints is the kind of
probabilities they express. PABox constraints represent degrees of belief rather
than statistics, i.e., the interpretation is subjective in this case. In particular,
experts such as physicians can create such statements basing on their certainty
about symptoms and diagnoses (see the next section for more details on how
PABox constraints are used to represent individual risk factors).



PABox constraints characterize only a single individual. They do not have
any influence on entailments of PTBox constraints. Also each PABox (a collec-
tion of individual constraints) is isolated from other PABoxes. In other words
probabilistic knowledge about specific individuals is always irrelevant to other
individuals. This may be seen as a shortcoming of the formalism because it
prohibits probabilistic property assertions between two probabilistic individu-
als.2 At the same time it simplifies the formalism and substantially improves
scalability with respect to the number of probabilistic individuals.

Another important difference is that PABox constraints are strict as opposed
to default. It means that there cannot be exceptions for PABox knowledge. Also
only PABox constraints can override default PTBox constraints but not vice
versa (see Section 3.2).

Reasoning Services P-SHIQ(D) offers the following reasoning services: con-
sistency checking and both PTBox and PABox entailment checking. The entail-
ment services are directly exposed to users whereas consistency is an internal
procedure carried out by a reasoner to determine whether the ontology can be
reasoned with.

The formal description of P-SHIQ(D) entailment relation including its se-
mantic properties is beyond the scope of this paper. This relation specifies how
both generic and individual constrains can be inferred from an ontology. The
services are query oriented, i.e., reasoners accept queries of the form: (D|C)[?, ?]
[GL02] [KP08] and compute the tightest (i.e. the most informative) probability
interval. PABox entailments are done by combining PTBox and PABox con-
straints whereas PTBox constraints are entailed from the PTBox only.

In the next section we will show how the reasoning in P-SHIQ(D) can be
used for the probabilistic assessment of breast cancer risk.

3 Probabilistic Modeling and the BRCA Ontology

When any new knowledge representation formalism is introduced it is critically
important to develop the first realistic model because it greatly helps to reveal
modeling principles, discover both good and bad practices and understand the
complexity of modeling. We have chosen the domain of breast cancer and the
corresponding problem of risk assessment as a target for such prototype.

3.1 The BRCA Problem

The problem can be informally stated as follows:

Given the statistical knowledge about breast cancer, e.g., causes, as-
sociations, etc., and facts about a specific woman, e.g., her age, medical

2 Probabilistic relationships between probabilistic and classical individuals are allowed
but require support of nominals [GL02]



history, etc., approximately estimate the chances that she will develop
breast cancer within some future period of time [Kom07].

We chose this problem for several reasons: First, the domain is uncertain
because not all the risk factors are known and some relationships between them
are still to be investigated. Second, the medical domain has a long and successful
history of using ontologies, in particular, OWL, so the ability to augment them
with uncertain background knowledge is interesting. Third, the problem has
been well studied, and there are clear statistical relationships to be formalized
(see [Kom07]) as well as developed probabilistic models, e.g., the Gail model
[GBB+89]. Finally, there are known entailments of interest to applications (e.g.,
individual patient risk calculation). All of this makes it an appropriate ground
for introducing and evaluating P-SHIQ(D).

Current approaches to the BRCA problem are mostly based on statistical
models. They use statistics about risk factors to assess the risk of specific women
developing breast cancer. There are some online tools built on top of the Gail
model that are available for personal use3. The scenario is simple: a woman
supplies her relevant risk factors and gets back her approximate risk.

This approach has strong advantages but is not ideal. The underlying statis-
tical models are not transparent or easy to extend. They support only a limited
number of risk factors and have been criticized for underestimating risk for cer-
tain groups of women, e.g., African Americans. The reasoning results are not
machine explainable. Many of such issues are addressable through the use of
ontologies and formal reasoning.

3.2 P-SHIQ(D) Formalization of the BRCA Problem

The purpose of building a P-SHIQ(D) ontology to serve as probabilistic model
of the BRCA problem is to represent the assessment of risk as a reasoning
problem in P-SHIQ(D). The model needs to contain knowledge of few kinds:
knowledge about important concepts such as risk factors, womens, types of risk;
knowledge about statistical relationships between risk factors including their
combination; and finally, knowledge about individual women, e.g, their age or
ethnicity. Clearly there is a correspondence between such needs and the structure
of P-SHIQ(D) knowledge bases: the classical part of the ontology models con-
ceptual knowledge, the PTBox models our knowledge of statistical relationships,
and PABoxes model our beliefs about particular women.

It may not be immediately obvious how to start creating a P-SHIQ(D)
ontology. For example, it is unclear what OWL vocabulary is needed to support
the probabilistic part and how the classes should be organized in a taxonomy.
Thus we will begin with the representation of the facts about particular women
and the judgment of their risks, and add the remaining knowledge along the way.

3 http://http://www.cancer.gov/bcrisktool/



Representing Individuals The BRCA ontology requires some representation
of the “input”, i.e., a way to describe women and their relevant risk factors. For
example, we might say: “Ann is a woman of 57 years old, who is post menopausal
and regularly taking hormones including estrogen”. Such knowledge can be put
into a P-SHIQ(D) ontology by using PABox constraints for Ann. The con-
straints will look like: ann : (WomenWithRiskFactorX|>)[l, u]; they mean that
Ann belongs to a certain category of objects denoted as WomenWithRiskFactorX,
in particular, women that have risk factor X. Such classes are the first ones to
be provided by the OWL part of any P-SHIQ(D) ontology. In our case the
following will be used: WomenBetween50And60, PostmenopausalWomen,
WomenWithHighLevelOfEstrogen.

We will call such classes primary evidence classes. They are used to capture
the evidence, i.e., what is known about a woman. Note that some discretiza-
tion might be necessary in the case risk factors represented by continuously
distributed numerical attributes like age. So the OWL part will supply classes
like WomenUnder20, WomenBetween30And40, ..., WomenOver70 to repre-
sent such risk factors.

Also observe that P-SHIQ(D) allows for the representation of uncertain
evidence. For example, it could be hard to state with 100% confidence that
Ann’s level of estrogen is high enough to be a risk factor. Even if she is not taking
estrogen pills it can be contained in low quantities in her typical food or drinks,
e.g., soya, beer, etc. In that case it might be a better option to specify a degree
of belief that she belongs to the class WomenWithHighLevelOfEstrogen.

All the primary evidence classes of the BRCA ontology form an OWL taxon-
omy with the root class WomenWithRiskFactors. The taxonomy can be easily
extended as soon as the statistics about some new risk factors becomes available.

Representing Results The next step will be to define the representation of
results produced by the model. It is necessary to ensure that the entailed con-
ditional constraints corresponds to risk assessment statements. Such statements
can be of the following kinds [Kom07]:

– Absolute risk assessments, i.e., estimations made without reference to other
categories of women. For example, “an average woman has up to 12.3%
chance of developing breast cancer in her lifetime” [Kom07].

– Relative risk assessments, i.e., estimations describing the increase in risk
relatively to the women who do not have some particular risk factors. State-
ments like “having BRCA1 gene mutation increases the risk of developing
breast cancer by a factor of four” is an example of relative risk [Kom07].

PABox constraints entailed from the ontology should capture the meaning
of one of the above kinds of statements. For example, given some individual,
say Ann, we want to be able to imply that “Ann’s chance of developing breast
cancer within some future time is between l and u” (note, that this is exactly
the kind of output produced by the NCI risk calculator). Recall that PABox
constraints represent the probability of membership. So if we define OWL classes



to represent all women that will have developed BRC within some future period
then PABox constraints having such classes as conclusions will represent the
desired probabilities. We distinguish between long-term (lifetime) and short-term
(10 years) risk, thus provide two classes: WomenUnderLifetimeBRCRisk and
WomenShorttermBRCRisk.

The situation with relative risk is less obvious. We need to define categories
of women that will be under the risk increased by a certain factor. Factors
continuously range from 1 (normal risk) to over 10 (very strong increase in
risk, e.g., in the case of BRCA1(2) gene mutations). We handle it similarly to
continuously distributed values of risk factors, such as age, i.e., by splitting the
full spectrum of values on a finite set of categories (OWL classes). Table 1 lists
the OWL classes used to represent categories of women at a certain relative risk:

Table 1. Conclusion classes that represent categories of women with respect to their relative risk
of developing breast cancer. Each class is associated with an interval which represents the factor of
increase in risk.

Conclusion class Factor of risk increase
WomanUnderWeaklyIncreasedBRCRisk [1.2− 1.5]
WomanUnderModeratelyIncreasedBRCRisk [1.5− 3.0]
WomanUnderStronglyIncreasedBRCRisk [3.0−+∞)

The categories are made disjoint in the BRCA ontology. This enables po-
tentially useful inferences, for example, if a woman has 90% chance of being
in the top risk category then it will be inferred that her chances of being un-
der moderately increased risk are up to 10%. Another option might be to or-
ganize the categories in a hierarchy. In that case the semantics of, for example,
WomanUnderModeratelyIncreasedBRCRisk would change to: class of women
whose risk of breast cancer is at least moderately increased.

We will call classes used to represent categories of women with respect to risk
ultimate conclusions. Similarly to the evidence classes they form a taxonomy in
the OWL part of the ontology. The root class is WomenUnderRisk which is a
parent of classes WomenUnderAbsoluteRisk and WomenUnderRelativeRisk.

It is important to notice that such separation on the evidence and conclusion
classes is not a domain-specific thing. It seems to be a rather generic principle
of P-SHIQ(D) modeling. It can be applied to a range of problems that can be
reduced to an uncertain classification of objects (e.g., women in the BRCA case).
Then evidence classes can be used to represent known facts about the objects
and conclusions — the classification categories. Thus it may be useful to start
model design by figuring out possible evidence and conclusion classes similarly
to how it is done for the BRCA ontology.

Representing BRCA Statistics So far we have described the representation
of the input and the output. The missing part is the probabilistic model itself,
i.e., the statistical knowledge about the relationships between risk factors or their



combinations and absolute or relative risk of breast cancer. Such relationships
are usually inferred by means of experiments such as clinical trials, learning or
mining medical data.

At the moment there are dozens of such relationships known. The simplest
of them specify how a single risk factor affects the overall risk. Such associa-
tions can be straightforwardly represented by PTBox constraints of the form:
(WomenUnderRiskY |WomenWithRiskX)[l, u] which can be interpreted as:
“the probability that a woman having risk factor X is under risk category Y
is between [l, u]”. Here X can be one of the primary evidence classes and Y one
of the ultimate conclusion classes. For example [Kom07]:

(WomanUnderLifetimeBRCRisk|WomanWithBRCA1Mutation)[0.6, 0.8]
The BRCA ontology currently contains PTBox statements covering over 20

different risk factors.4 However such collection of constraints is not yet a model
because all the factors are treated separately. Two important things are missing:
co-occurrence of risk factors and their combined influence on the risk.

Representing co-occurrence is important for dealing with risk factors which a
woman may not be aware of. For example, a woman cannot always be expected to
know such her factors as bone density, level of estrogen in blood, etc. However, by
capturing statistics about co-occurrence of factors it might be possible to guess
on the presence of some factors given probabilistic facts about others. One such
example is the statistics that Ashkenazi Jews are more likely to develop BRC1(2)
gene mutations which is a critically important factor [Kom07]. To represent such
associations we add PTBox constrains that link different evidence classes, e.g.:
(WomenWithBRCAMutation|AshkenaziJewishWoman)[0.025, 0.025].

Even more importantly, numerous experiments have revealed that a combina-
tion of certain risk factors can be a stronger risk factor than each factor by itself.
In other words, risk factors may strengthen or weaken each other’s influence on
the overall risk. For example, it is known that the harmful effect of estrogen
can be substantially worsened by another hormone — progestin [Kom07]. To
capture this we need to treat women that have both kinds of evidence (estrogen
and progestin) differently from those who only have one.

A straightforward way to capture this would be to add another evidence class
to the OWL part which will represent the women that are in both categories —
those who have high level of estrogen in blood and those who have high level
of progestin: PWEP ≡ PWE u PWP 5 (where classes PWE, PWP,PWEP
respectively define post menopausal women who are exposed to high levels of
estrogen, progestin or both). Then it can be used in the constraint that represents
the boosted risk:

(WomenUnderModeratelyIncreasedBRCRisk|PWEP )[0.35, 0.35].
However it would be problematic for a monotonic formalism because the

constraint above contradicts the statistics about estrogen alone:

4 Data taken from the BRC risk factors summary table at:
http://cms.komen.org/komen/AboutBreastCancer/RiskFactorsPrevention

5 P-SHIQ(D) allows usage of arbitrary class expressions in constraints but for the
moment we need to define class names because of implementation limitations.



(WomenUnderModeratelyIncreasedBRCRisk|PWE)[0.25, 0.25].
Women having high levels estrogen and progestin are a subclass of those

exposed to estrogen only, thus one may expect that any property that holds
about the superclass should also hold for the subclass. Here it is not the case.
The probability intervals for the two constraints are incompatible, i.e., do not
intersect.

One of the most attractive features of P-SHIQ(D) is that this situation does
not lead to inconsistency. The entailment relation in P-SHIQ(D) is defined
to meaningfully resolve such conflicts in an expected way, i.e., by overriding
more generic knowledge by more specific one. This is similar to object-oriented
programming or reference class reasoning [Luk02]. So if we add the constraint
about both hormones then any woman that has both pieces of evidence will be
correctly characterized by a higher risk.

Such overriding can, and should, be heavily used in P-SHIQ(D) models.
It gives model designers a lot more freedom in representing knowledge without
being too much concerned about conflicts that can be brought about by excep-
tional subclasses. This is not possible in monotonic reasoning systems (recall the
famous “birds and penguins” example). By using overriding one can add to the
evidence taxonomy as many classes representing different combinations of risk
factors as needed.

Finally, overriding also works for individuals, not only for subclasses. PABox
constraints about individuals will always override conflicting PTBox constraints
(in other words, knowledge about a concrete objects is always more specific than
knowledge about any class of objects). For example, in the BRCA ontology one
can assert that some woman has low estrogen level even if this contradicts the
statistics about her class (e.g., she is taking post menopausal hormones).

Summing up, the BRCA ontology consists of the following major parts:

– A normal OWL ontology that is made up of two main sub-taxonomies — ev-
idence classes (children of WomenWithRiskFactors) and conclusion classes
(children of WomenUnderRisk).

– A set of PTBox constraints that encode several kinds of relationships: as-
sociations between single risk factors and the risk, between combinations of
risk factors and the risk, and associations between different risk factors.

– A set of individuals (women); each contains a number of PABox constraints.

4 Summary and Conclusions

The BRCA ontology is interesting from several points of view. First it offers an
alternate view on probabilistic models for risk assessment. But, perhaps even
more importantly, it illustrates some principles of probabilistic ontological mod-
eling. We expect the following principles to be generalizable to other use cases:

– Using probabilistic entailment as the main tool of computation. A
lot of computational problems can be formulated in terms of probabilistic
queries, e.g. risk assessment, diagnosing under uncertainty, decision making,



etc. They are all interpretable as special cases of classification under uncer-
tainty which would be similar to classifying women with respect to relative
risk categories.

– Separation between evidence and conclusion class hierarchies. It is
useful to clearly define classes that will serve for representing facts about indi-
viduals (evidence classes) and those that will be used in probabilistic queries
(conclusion classes). Such organization helps to reduce the original problem
to probabilistic entailment. Once this is done conditional constraints can be
naturally used to connect classes from the two hierarchies by representing
statistical domain knowledge.

– Extensive use of overriding. Exceptional subclasses and individuals exist
in any large domain due to incompleteness of knowledge. It is important
that they do not prevent modelers from capturing typical relationships in
the domain which would lead to missing important entailments.

Without making too general claims we anticipate that at least other problems
related to risk assessment can be effectively approached using P-SHIQ(D) and
Pronto. They include risks of developing other diseases, risks of privacy breaches,
investment risks, etc. All such problems have similar pre-conditions that make
probabilistic ontologies an attractive option for modeling.

It is certainly not expected that P-SHIQ(D) will quickly become a standard
for modeling under uncertainty similar to OWL for classical modeling. The goal
was rather to attract interest from people who are concerned about dealing
with uncertain knowledge. The message addressed to such people was that P-
SHIQ(D) might help to retain all the benefits of ontological modeling but extend
it to cover uncertain domains.
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