

The OWL of Biomedical Investigations

Mélanie Courtot1, William Bug2, Frank Gibson3, Allyson L. Lister4, James

Malone5, Daniel Schober5, Ryan R. Brinkman1 and Alan Ruttenberg6

1Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada
2National Center for Microscopy Imaging Research, UCSD, CA, USA

3School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
4CISBAN and School of Computing Science, Newcastle University, Newcastle upon Tyne, UK

5The European Bioinformatics Institute, Cambridge, CB101SD, UK
6Science Commons, Cambridge, MA, USA

Correspondence: mcourtot@gmail.com, alanruttenberg@gmail.com

Abstract The Ontology for Biomedical Investigations (OBI), written in OWL

DL, is being developed by a large consortium seeking to provide a cross-

domain, shared framework for representing investigations in the biological and

biomedical sciences. In this paper we report our experiences and describe our

development process as it pertains to OWL, which includes a number of

elements that might inform tool developers as well as suggest

general development patterns. Finally, we review where improvements to OWL

and OWL related tools might be beneficial.

1 Introduction

The Ontology for Biomedical Investigations (OBI) Consortium1 is developing an

ontology for the description of biological and clinical investigations, written in OWL

DL. The OBI Consortium is a member of the OBO Foundry [1], a collaborative of

developers of science-based ontologies who are establishing a set of principles for

ontology development with the goal of creating a suite of interoperable reference

ontologies in the biomedical domain.

OBI uses the Basic Formal Ontology2 (BFO) as its upper-level ontology. Upper

ontologies such as BFO aid interoperability by providing a higher-level framework

that functions as a common structural and intellectual scaffold by way of which

ontologies can share a common understanding of those aspects of the world that are

independent of any particular application domain [2].

In order to enable development of OBI as a large collaborative project, a strategy

was required that would allow concurrent editing, distributed development, version

control, offline development, use of different tools and editors, and script-based

augmentation of the ontology content. A review of the existing collaborative ontology

development tools failed to identify a single application that met OBI’s requirements.

As a result we chose to rely on a small group of tools, augmented with a structured

1 http://purl.obofoundry.org/obo/obi
2 http://ifomis.org/bfo/

mechanism for development. For example, we chose Subversion1 to address the need

for version control, distributed and offline development, as well as logging history for

change management.

To enable OBI development to proceed efficiently, the ontology structure was

separated into 10 sections (biomaterial, data transformation, digital entity, function,

instrument, plan, protocol application, qualities, role and relations) called branches,

allowing concurrent development by different groups, with each group working more

or less independently. Each branch is maintained in a separate OWL file, and contains

closely related terms and definitions. For example, the instrument branch covers

relevant kinds of instrumentation and parts of devices.

Although this concurrent branch development strategy proved effective, it also

presented some challenges preparing OBI for distribution. Editing several OWL files

concurrently and in a distributed manner can lead to non-unique class identifier

assignment and conflicts within the ontology. Our set-up also required curators to be

reasonably familiar with an ontology editor in order to be able to view the required

multiple OWL files in harmony.

One of the fundamental principles of the OBO Foundry is to reuse, where sensible,

existing ontology resources. While OWL provides a mechanism to import ontologies

(owl:imports), this mechanism was not always suitable for OBI. Currently, editing

tools are not effective for working with very large ontologies such as the NCBI

Taxonomy [3] or the Foundational Model of Anatomy [4], making direct OWL

imports of such ontologies, as a whole, impractical for day-to-day development.

Furthermore, other ontologies used by OBI are under active development and may not

be aligned with OBI’s design (e.g., not yet using BFO as an upper ontology, or not yet

using OWL DL). Importing such ontologies as a whole could lead to inconsistencies

or unintended inferences. Our alternative to the OWL built-in import mechanism is

to copy only parts of the external ontology into obi.owl using a mechanism we call the

Minimal Information to Represent an External Ontology Term (MIREOT). MIREOT

provides guidelines on importing selected terms without the overhead of importing

the complete ontology from which the terms derive.

2 OBI development practices

2.1 Minimal Information to Reference External Ontology Terms (MIREOT)

In deciding upon a minimum unit of import, our first step was to consider the

practices of other ontologies. The practice of the Gene Ontology (GO) [5] is that the

intended meaning of classes remains stable. Even when the ontology is repaired or

reorganized, the effects of such changes do not change the intended meaning of terms.

Rather the changes are towards more carefully expressing the logical relations

between them. If the meaning really changes, terms are deprecated [6]. Since a term is

considered stable, whereas the formal logic statements about them tend to be in flux,

we consider terms (i.e. classes) a basic unit of import.

The minimal amount of information needed to reference an external class is the

source ontology URI and the term's URI. Generally, these items remain stable and can

1 http://subversion.tigris.org/

be used to unambiguously reference the external class from within OBI. The minimal

amount of information to integrate this class into OBI is its position in the OBI

hierarchy, i.e., what OBI class the imported class is a subclass of. This minimal

information set is stored in a separate file called external.owl. We also want to

provide extra information about our imported classes, such as their label and

definition, which we map into the corresponding OBI annotation properties. For

example, in the current OWL rendering of OBO files, definitions are individuals and

the rdfs:label of that individual records the text of the definition. That label becomes

the value of OBI’s definition property.

Such supplemental information is prone to change as the source ontologies

evolve, and to allow for easy updates we store it in a separate file, called

externalDerived.owl, created from external.owl and rebuilt via a script as needed. A

mechanism providing for automatic update of the external information is used

regularly, such as before OBI releases, in order to distribute up-to-date information.

When deciding to import an external term we review the textual definition and,

if needed, talk with its editor. As we are importing from OBO Foundry ontologies we

have a community process for monitoring change, a shared understanding of the

basics of our domain, and the intention to eventually share the same upper-level

ontology. Therefore, we expect that terms will be deprecated if there is a significant

change in meaning, and expect to adjust our import of terms as the other ontologies

start enhancing their logical definitions.

Figure 1 The to-be-imported cell term, as viewed in its original context in the Cell

Type ontology class tree. The cell by organism and cell by class are examples of those

we would prefer to not import into OBI.

As an example, we recently replaced the OBI class cell with that from the OBO

Foundry Cell Type (CL) ontology [7] (Figure 1). Following the MIREOT guidelines,

we identify the minimum information required in this case:
• the URI of the term cell: http://purl.org/obo/owl/CL#CL_0000000
• the ontology from which the term is imported: http://purl.org/obo/owl/CL
• the position of cell in the OBI hierarchy: as a subclass of Anatomical entity1

A set of templated SPARQL queries2, taken together with external.owl, specifies

which extra information about the class to gather, such as the definition and label, and

these are retrieved using queries against the Neurocommons3 SPARQL4 endpoint5,6. A

1 This term will itself likely be replaced by the corresponding CARO term.
2 http://purl.obofoundry.org/obo/obi/repository/trunk/src/tools/build/external-templates.txt
3 http://neurocommons.org/
4 http://www.w3.org/TR/rdf-sparql-query/
5 http://sparql.neurocommons.org/sparql
6 http://www.w3.org/TR/rdf-sparql-protocol/

script iterates through the minimal information stored in external.owl, substituting IDs

into the appropriate SPARQL construct queries and gathers the combined results to

create the supplementary information in externalDerived.owl file.

The second example presents a slightly more complicated challenge. OBI currently

uses the NCBI taxonomy for its species terms. When importing those we decided that

the information about the term itself was not sufficient on its own: for example if we

want to import the term Mus musculus, we also want to import its rank information –

genus, kingdom, phylum, etc. In this case the SPARQL query retrieves all direct

superclasses up to one of a set of top-level classes in the taxonomy.

We are aware of and accept that by copying only parts of an ontology there is the

risk that inferences drawn may be incomplete or incorrect.

Correct inference using the external classes is guaranteed if the full ontologies are

imported. We expect to provide an option in the OBI distribution that replaces import

of these individual classes with a set of import statements generated by extracting the

ontology URIs mentioned in external.owl. Other import options are possible, for

instance using software that extracts a module [8] of the external ontology. However,

for modular extraction to be effective for our uses the external ontology needs to be

structured in a way that is compatible with OBIs upper ontology, and that the logical

axioms are accurate. This isn’t always the case at the current stage of development of

some of the ontologies we use. For example, importing the root class of CARO1

within OBI was not desired, as its definition covers multiple classes in OBI that we

did not consider useful to unite. In addition, although software that extracts "modules"

are available, most are only in early stages of development2.

A consideration using this approach is the status of OBI assertions made on

external terms. In adding axioms such as the subclass axiom when placing the

external term into OBI, the aim is to only assert true statements about the terms.

Given this, the use of modules in the future will only increase the breadth of reasoning

that can be done. We anticipate that some of these statements may migrate to the

source ontologies at some point in the future, a fruit of the collaborative nature of

OBO Foundry ontology development.

2.2 Releasing OBI

We required a mechanism that would allow the release of a public version of OBI3 on

a monthly basis. Such a process allows users to acquire a traceable version of the

ontology that can act as a stable reference point, and is analogous to a process

commonly used in software development.

We decided that constructing a single OWL file that contained the entire ontology

would best serve our users. This eliminates issues around needing them to modify

owl:imports statements or having them learn tool specific imports remapping when

using a local copy of the ontology.

1 http://bioontology.org/wiki/index.php/CARO:Main_Page
2 We tried [15], [16] and [17]. All module extractions discarded annotations. We also

experienced crashes on large ontologies. One tool had undocumented assumptions about the

form of URIs used as class names and therefore extracted empty modules. Our conclusion: -

the technology is in early stages of development and, though promising, cannot be used as is.
3 The latest version of OBI is available at http://purl.obofoundry.org/obo/obi.owl

The goal of producing a single file catalyzed development of our release and quality

control process. We found that having a dedicated release process encourages us to

more carefully control and modify the ontology before making it available. Our

release process includes checks for content quality (e.g., annotations compliant with

our policy), syntax (e.g., OWL species validation), and reporting candidate release

status to the ontology developers. To manage this, many of the tasks associated with

release are automated.

2.3 Quality checks and reports

Our branch development model was chosen in order to facilitate concurrent

development while allowing specific domain experts to focus on the section of the

ontology relevant to their competences or interests: for example, a statistician would

be more involved in data analysis and thus the Data Transformation branch. To ease

curators' work whilst ensuring the quality of the ontology, we decided to provide

reports to each branch that identified areas not compliant with our policies prior to

each release. We use a Jena-based [9] script to read in our branch files and identify

missing elements, duplicates, or misuse of any of our metadata properties1. The

reports are rated according to what action needs to be taken: simple warnings for

those errors that can be corrected automatically by script, or critical alerts for those

issues requiring manual intervention from one of our curators. Reports are simple

HTML pages displaying terms and associated issues. We explored different policies

regarding what to do in case of significant errors (e.g., block release), but instead

adopted a release early, release often approach in the hope that this would encourage

developers to correct mistakes in a timely fashion.

As an example of the sort of thing we need to correct, because of issues using the

Protégé editor [10], we would occasionally encounter a problem with one of our

annotation properties being saved in the wrong branch file: for example, when adding

a label to one of the instruments, this label could get serialized in the Biomaterial.owl

file instead of the InstrumentAndParts.owl file. This causes extra burden on the

editors, as Protégé restricts editing to a single file at a time: it is therefore desirable to

have a mechanism allowing relevant information to be written in the correct branch

file.

In order to mitigate this, we are considering using an extra annotation property to

indicate which branch classes belong in. By using this information we could

automatically clean up and reorganize branch files.

Additional scripts perform other quality control checks, including listing terms

missing a curation status instance, listing terms with extra curation instances (only

one is allowed per term), listing terms missing a label, and listing classes that are

asserted under a defined class.

2.4 Identifier maintenance policy

Having a stable and consistent ID policy is a fundamental OBO Foundry principle. In

OBI, identifiers are prefixed with “OBI_” and followed by seven digits. Forcing

developers to manage this was impractical, particularly given the distributed

1 http://purl.obofoundry.org/obo/obi/wiki/MinimalMetadata

development process. Instead, we have curators ignore the identifier format while

developing OBI. As an automated step prior to each release we run scripts that find

terms without standard IDs and rename them, as well as perform other checks such as

whether all IDs present in the previous release are still present, since terms are not

supposed to be deleted according to the GO policy OBI follows.

2.5 Managing disjoints

During the initial stages of our development process, we manually added disjoints to

classes as we were building the ontology. However, we ran into consistency issues as

we edited OBI, as a stated disjoint in one place of the OBI tree would not hold true

when a term was moved to a different location in the class hierarchy. Therefore, a

script is used as part of our release process to automatically compute disjoint class

statements, assuming that our asserted class hierarchy is not rearranged during

reasoning. The sets of disjoints are computed traversing the asserted class tree,

ignoring placeholder classes and defined classes, making OBI classes at each level

mutually disjoint, and OBI classes disjoint to non-OBI classes at the same level.

2.6 Distributing OBI with inferred superclasses

We are using defined classes, and want to provide an easy-to-use file that does not

require the use of a reasoner on the end-user side. Therefore we assert, via script, the

inferred superclasses to our OWL file.

This allows end users to view a fully-inferred class hierarchy without using a

reasoner, while keeping the original ontology "clean" according to Rector's [11]

normalization recommendations by using defined classes and avoiding asserting

multiple superclasses.

2.7 Assuming that all classes have instances

In Figure 2, we define a manufacturer class, an object property is manufactured by

with range manufacturer role, and add that a specific microarray type is manufactured

by an organization Affymetrix. We were expecting the reasoner to classify Affymetrix

as manufacturer. However this is not the case unless we explicitly add a microarray

individual to the ontology.

 This behavior arises because OWL reasoners do not assume simultaneous

existence of instances of all classes when doing subsumption checks.

Rather, satisfiability checks are done by asserting that at least one instance exists,

serially, for each class. In the framework of BFO, universals exist when and then they

are instantiated – a universal can exist only if it has instances. While it is possible that

a universal only had instances in the past, this situation does not occur in OBI. Given

the choice, we would indicate our assumption that all classes have at least one

individual to a reasoner and have it compute subsumptions and other inferences on

that basis. However the reasoners we use, Pellet [12] and Fact++ [13], do not offer

this choice. Therefore we decided to script the addition of anonymous individuals of

each type named in the ontology as part of our release process. We do this for each

leaf class, and before computing the inferred superclasses.

Namespace(e = <http://example.com/>)
Ontology(<http://example.com/>
 Class(e:manuf_role partial e:role)
 Class(e:role partial)
 Class(e:organization partial)
 Individual(e:Affymetrix type(e:organization))
 ObjectProperty(e:has_role)
 ObjectProperty(e:is_manufactured_by
 range(restriction (e:has_role someValuesFrom(e:manuf_role)))
 Class(e:hg133 partial e:microarray)
 Class(e:hg133 partial
 restriction (e:is_manufactured_by value(e:Affymetrix)))
 Class(e:manufacturer complete
 restriction(e:has_role someValuesFrom(e:manuf_role))))

Figure 2 Abstract syntax for an ontology for which the desired inference is not made.

Asserting a distinct anonymous individual as member of each leaf class means that

the superclasses will also have one member and ensures that the type of entailment

described above, that we depend on, will reliably be computed and that ontologies

that are not jointly satisfiable will be detected. We plan to suggest that a similar

mechanism is adopted by the OWL versions of all OBO ontologies. We note that this

choice is not without problems. OBI, augmented with these assumed individuals,

becomes more difficult to reason with reliably - we have had problems with both

Pellet and Fact++ and are at the moment communicating with the developers of those

reasoners to determine the source of the problem. Therefore, we currently use the

assumed individuals to compute the inferred class hierarchy, but do not include them

in the released version of OBI.

2.8 Increasing the readability of the RDF/XML version of OBI

We chose to use numerical identifiers for all our entities. Numeric identifiers ensure

that a human-readable label can be changed without needing to change the URI, and

establishes an unbiased basis for internationalization. However, we sometimes need to

edit the OWL RDF/XML directly, which is cumbersome because IDs are not easily

remembered. To increase human readability we post-process the RDF/XML and

generate XML comments for the released version of the file, see Figure 3. We

recommend that tool developers offer an option to use some annotation property as an

XML comment when serializing OWL.

<owl:Class rdf:about="&obo;OBI_0000265"> <!-- report table -->
 <!-- definition editor -->
 <OBI_0000274 xml:lang="en">person:Allyson Lister</OBI_0000274>
 <rdfs:label xml:lang="en">report table</rdfs:label>
 <!-- definition -->
 <OBI_0000291 xml:lang="en">A report table is a report display
element consisting of a matrix of cells laid out in a grid, some set of which are
filled with some information content</OBI_0000291>
 <rdfs:subClassOf>
 <owl:Class rdf:about="&obo;OBI_0000001"/> <!-- report display element -->
 </rdfs:subClassOf>
</owl:Class>

Figure 3 Example of XML comments used to note what ids correspond to in

RDF/XML serialization

2.9 OBI terms on the Web

In addition to supplying the OBI ontology as a single file, we are in the stage of

prototyping responding with a bounded amount of useful information for each URI

naming a term in OBI. In doing so we follow httpRange-141 and use a HTTP response

code of 303 with a redirect to RDF/XML describing the term. We use the Persistent

Uniform Resource Locator (PURL) [14] system for all identifiers to ensure that

changes in hosting do not force changes to our URIs. We do no content negotiation to

emphasize that the URI names a single thing. In order to present readable information

in web browsers, we use an XSL stylesheet, which is executed by the browser to

generate HTML (Figure 4). We chose to make each bundle of RDF delivered at this

URL a valid OWL DL ontology by importing the full OBI ontology. A certain

amount of relevant information is included for web clients that do not follow that

import statement: for a class, the axioms defining it, inferred superclasses, properties

that it is in the domain of or range of, and labels for any referenced terms are added.

We also include project information using the DOAP schema2 including pointers to

our repository, tracker, mailing list, and release information.

Figure 4 Screenshots of the prototype HTML page for an OBI term and its

associated metadata (left), and the corresponding RDF content (right) from

http://purl.obofoundry.org/obo/OBI_0000225.

1 http://www.w3.org/2001/tag/issues#httpRange-14
2 http://trac.usefulinc.com/doap

View source

3 Discussion

3.1 Deprecation

As OBI evolves we find that sometimes terms have errors and need to be

deprecated/obsolesced1 while their identifiers must be maintained, as users, datasets

and analysis pipelines may be dependent on their existence. We chose to follow the

Gene Ontology deprecation policy by moving our obsolete terms under the

ObsoleteClass hierarchy and store them in a separate file to make it easier to excise

them from some versions of OBI. As Protégé allows for editing of only one ontology

file at a time (the active ontology), we constantly run into issues surrounding term

movement among ontology files, making editing difficult and error prone. In addition,

our deprecation policy stipulates, among other things, that axioms involving

deprecated terms should be removed. In order to support this practice and the

relocation of the classes to the Obsolete.owl file, we wish to see either better tool or

OWL language support that would cause axioms involving deprecated terms to be

considered annotations. While we are also considering extending our deprecation

policy by applying the existing OWL mechanism (owl:DeprecatedClass,

owl:DeprecatedProperty) to our terms, we did not find tools that take advantage of

this designation to offer useful services yet.

3.2 Annotations on annotations

As OBI is used in a variety of fields we need to address the fact that one term can

mean different things in different communities. For example, the term probe is a

synonym for the term reporter in some microarray experimentalist communities,

whereas it is a synonym for the term detector in another. While this is clumsy in

OWL 1, OWL 2’s proposed annotations on annotations is adequate for specifying

these community-specific labels, as it would allow us to “tag” any of our synonyms

with extra information noting pertinence to a specific community.

3.3 Versioning

OBI's policy is to release frequent updates and to maintain access to all versions. We

create dated versions of each release to provide access to successive revisions as well

as a permanent unversioned link to the most recent release. This leaves to the end-user

the choice between preferring stability or being up to date with the latest

developments. While developing OBI we prefer stability (i.e., not being surprised by

unplanned-for changes), and to work around the lack of published ontology versions

we have to rely on local copies of imported ontologies. OWL 2's version URIs2 will

enable publishers to make available several versions of the ontology, and users to

easily choose and unambiguously reference which one to use. We believe this is an

efficient mechanism for coping with ontology versioning both for OBI and the wider

ontology community in general.

1 We consider these processes to be equivalent.
2 http://www.w3.org/2007/OWL/wiki/Syntax#Ontology_URI_and_Version_URI

3.4 Support for Rector-normalization style editing

The dominant paradigm for editing ontologies is that of a single rooted hierarchy.

However the style proposed by Rector and advocated by the OBO Foundry is to

develop a series of single inheritance ontologies and a separate set of classes defined

in terms of elements of the single inheritance trees. An ontology interface that

supports fluidly moving between the component trees, the defined classes, and the

inferred composite view, as well as providing easy access to common patterns for the

composite definitions would significantly benefit ours and other’s efforts.

3.5 Disjoints

Our solution for disjoints is not entirely satisfactory. Declaring a disjoint policy for

whole trees where the siblings are all mutually disjoint is appealing, but there are

exceptions. Consider the classes kit and instrument which are subclasses of device.

Device’s subclasses remain disjoint if we decide to modify the hierarchy by moving

kit to be subclass of instrument. However, if kit and instrument were each declared

disjoint with each other we would arrive at an inconsistency. Upon closer examination

we found other potential exceptions - cases where, the siblings were not always

disjoint. One example is the Role hierarchy, and within that biological specimen role

and assay input role. We are currently debating whether these two roles overlap with

each other - certainly the processes in which they are realized do. In OBI, an assay

always is defined as having some material as input, and a biological specimen role is

the role borne by a material prior to a study. We might wish to note this pair as an

exception - that they are not disjoint.

There are additional complications involving the choice of whether disjoints should

be added relative to the asserted or inferred class hierarchy. If the former and the

author misses an inference that results in a rearrangement of the class hierarchy, we

might get an inconsistency. If disjoints are added after reasoning then we need to not

add disjoints for completely defined classes.

4 Conclusion

OBI is an ambitious project, uniting a large number of collaborators from different

biological and biomedical sciences (more than 45 experts representing 18

communities1), many of who plan to use OBI in their own projects. Due to the number

and distributed location of developers and domain experts, OBI’s needs for

collaborative ontology development bring new and currently unaddressed

requirements at both the organizational and technical levels.

1 http://obi-ontology.org/page/Consortium

Already, projects such as Array Express1 and ModECODE2 are starting to use OBI

terms., and a variety of other projects are planning to in the near future, for example

the Vaccine Ontology3, the Immune Epitope Database4, and K-Ef-Ed5

The collective use of OBI by these and other communities will enhance the

dissemination of, elucidation of, and reasoning with knowledge about investigations,

and therefore help advance our understanding of biological systems.

5 Acknowledgements

In memory of our friend and colleague William Bug, Ontological Engineer.

The OBI consortium is (in alphabetical order): Ryan Brinkman, Bill Bug, Helen

Causton, Kevin Clancy, Christian Cocos, Mélanie Courtot, Eric Deutsch, Liju Fan,

Dawn Field, Jennifer Fostel, Gilberto Fragoso, Frank Gibson, Tanya Gray, Jason

Greenbaum, Pierre Grenon, Jeff Grethe, Mervi Heiskanen, Tina Hernandez-Boussard,

Allyson Lister, James Malone, Elisabetta Manduchi, Luisa Montecchi, Norman

Morrison, Chris Mungall, Helen Parkinson, Bjoern Peters, Matthew Pocock, Philippe

Rocca-Serra, Daniel Rubin, Alan Ruttenberg, Susanna-Assunta Sansone, Richard

Scheuermann, Daniel Schober, Barry Smith, Holger Stenzhorn, Chris Stoeckert, Chris

Taylor, John Westbrook, Joe White, Trish Whetzel, Stefan Wiemann. The author’s

work is partially supported by funding from the NIH (R01EB005034), the EC

EMERALD project (LSHG-CT-2006-037686), the BBSRC (BB/C008200/1,

BB/D524283/1, BB/E025080/1), the EU NoE NuGO(NoE 503630), the EU

Carcigenomics (PL037712), the CARMEN project EPSRC(EP/E002331/1), and the

Michael Smith Foundation for Health Research.

6 References

1. B. Smith and M. Ashburner and C. Rosse and J. Bard and W. Bug and W. Ceusters and L. J.

Goldberg and K. Eilbeck and A. Ireland and C. J. Mungall and N. Leontis and P. Rocca-

Serra and A. Ruttenberg and S. Sansone and R. H. Scheuermann and N. Shah and P. L.

Whetzel and S. Lewis (2007) The OBO Foundry: coordinated evolution of ontologies to

support biomedical data integration . Nat Biotech, 1251-1255.

2. Pierre Grenon, Barry Smith and Louis Goldberg: "Biodynamic Ontology: Applying BFO in

the Biomedical Domain". From D. M. Pisanelli (ed.), Ontologies in Medicine, Amsterdam:

IOS Press, 2004, 20–38

3. Wheeler DL, Chappey C, Lash AE, Leipe DD, Madden TL, Schuler GD, Tatusova TA,

1 http://www.ebi.ac.uk/microarray-as/ae/
2 http://www.modencode.org/
3 http://www.violinet.org/vaccineontology/
4 http://www.immuneepitope.org/
5 http://troll.isi.edu/twiki/bin/view/KEfED/WebHome

Rapp BA (2000). Database resources of the National Center for Biotechnology Information.

Nucleic Acids Res 2000 Jan 1;28(1):10-

4. Golbreich C, Zhang S and Bodenreider O. (2006) The foundational model of anatomy in

OWL: Experience and perspectives. Web Semantics: Science, Services and Agents on the

World Wide Web, 4 (3). 181-1

5. The Gene Ontology Consortium. Gene Ontology: tool for the unification of biology. Nature

Genet. (2000) 25: 25-29

6. The Gene Ontology Consortium. The Gene Ontology editorial guide.

http://www.geneontology.org/GO.usage.shtml

7. Jonathan Bard, Seung Y Rhee, and Michael Ashburner An ontology for cell types. Genome

Biol. 2005; 6(2): R21.

8. Grau BC, Horrocks I, Kazakov Y, and Sattler U. (2007) Extracting Modules from

Ontologies: A Logic-based Approach. Proc. of the Third OWL Experiences and Directions

Workshop, number 258 in CEUR

9. Carroll, J. J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., and Wilkinson, K. 2004.

Jena: implementing the semantic web recommendations. In Proceedings of the 13th

International World Wide Web Conference, Alternate Track Papers & Posters (New York,

NY, USA, May 19 - 21, 2004). WWW Alt. '04. ACM, New York, NY, 74-83.

10. Protégé. http://protégé.stanford.edu

11. Alan L. Rector (2003). Modularisation of Domain Ontologies Implemented in Description

Logics and related formalisms including OWL. Proc K-CAP: 2003 (ed J Genari)

12. Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and Katz, Y. 2007. Pellet: A practical

OWL-DL reasoner. Web Semant. 5, 2 (Jun. 2007), 51-53.

13. Dmitry Tsarkov, Ian Horrocks (2006) FaCT++ description logic reasoner: System

description. In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006)

14. KE Shafer, SL Weibel, E Jul (2001) The PURL Project. Journal of Library Administration,

2001

15. B. Cuenca Grau, I. Horrocks, Y. Kazakov and U. Sattler (2007) Just the right amount:

Extracting modules from ontologies. In proc. of the 16th International World Wide Web

Conference (WWW 2007)

16. E. Jimenez-Ruiz, B.Cuenca-Grau, U. Sattler, T. Schneider and R. Berlanga (2008) Safe and

Economic Re-Use of Ontologies: A Logic-Based Methodology and Tool Support. 5th

European Semantic Web Conference (ESWC 2008)

17. J. Seidenberg, A. Rector (2006) Web ontology segmentation: analysis, classification and

use. In proc. of the 15th International World Wide Web Conference (WWW 2006)

