
FCA Software Interoperability

Uta Priss

Napier University, School of Computing,
u.priss@napier.ac.uk
www.upriss.org.uk

Abstract. This paper discusses FCA software interoperability from a variety of
angles: because the central FCA structures, formal contexts and concept lattices,
can be represented in non-FCA software, interoperability with such software is of
relevance. The non-FCA software in question is spreadsheet, relational database,
graph and vector graphics software. The simplest approach to interoperability
consists of providing file format conversion tools, such as FcaStone, which is
therefore also discussed in this paper. Interoperability can be hindered by social
factors, i.e. if the FCA researchers do not want to use non-FCA software. This
issue is investigated with respect to software-derived graph layouts of lattice di-
agrams. An experiment that compares different software-derived lattice diagram
layouts is conducted and leads to a surprising result.

1 Introduction

There appears to be some controversy among Formal Concept Analysis (FCA) re-
searchers in how far FCA software should interoperate with other software. Some re-
searchers complain about the lack of interoperability among FCA tools and the lack
of connections between FCA and non-FCA applications. For example, formal contexts
might be presentable in spreadsheet and relational database software whereas lattice
diagrams might be edited in graph and vector graphics software. Other researchers ex-
press the view that the quality of FCA will be diminished if non-FCA approaches are
applied, for example, with respect to non-FCA graph layout algorithms. This paper dis-
cusses different aspects of FCA interoperability and in particular investigates the use
of non-FCA algorithms for graph layouts. A small experiment is conducted by deriving
layouts of five well-known examples of formal contexts using FCA and non-FCA graph
software. The experiment has a surprising result.

Section 2 of this paper provides a brief overview of the interoperability discussions
in the FCA community. Section 3 discusses the relationship between some FCA and
non-FCA tools. Section 4 describes the FCA file format conversion software FcaStone.
Section 5 compares graph layouts derived with different FCA tools.

2 The FCA interoperability discussion

This section provides a brief overview of the discussion of interoperability in the FCA
community and in the slightly broader conceptual structures (CS) community. In past

c© Radim Belohlavek, Sergei O. Kuznetsov (Eds.): CLA 2008, pp. 133–144,
ISBN 978–80–244–2111–7, Palacký University, Olomouc, 2008.



years, several ICCS authors expressed disappointment with the lack of progress in CS
research with respect to applications and software (Chein & Genest (2000) and Keeler
& Pfeiffer (2006)). Members of the ICCS community tend to agree that CS ideas are in
principle extremely relevant to modern information representation tasks and, for exam-
ple, the Semantic Web, but for some reason CS research has not been able to influence
mainstream research communities (Rudolph, Krötzsch & Hitzler, 2007). In particular
the software that is currently available for conceptual graphs (CG) and FCA does not
reach the full potential of CS research and is not yet of commercial quality. Several
suggestions have been made by the CS community to improve the situation. Keeler &
Pfeiffer (2006) suggest to employ a pragmatic methodology for tool development using
a “game” metaphor. Rudolph et al. (2007) suggest to establish connections with larger
existing related communities (for instance, the Semantic Web community). Others have
organised CS tool interoperability workshops1 and challenges2.

Dobrev (2006) presents an overview of interoperability issues of CG tools. He ar-
gues that although limited data exchange between CG tools is possible at the syntactic
level using the standard exchange format, exchange at a semantic level, which incor-
porates contextual and background knowledge is not yet possible. In contrast to the
CG community which has an ISO approved standard for Common Logic3, there is no
similar standard for FCA. The rest of this paper is only concerned with FCA software,
not with the broader field of CS software. Tilley (2004) provides an overview of FCA
software as described in FCA research papers. Interoperability between FCA software
is low. Each software has different storage formats and different input/output options,
which are not necessarily compatible with other software. Most of the FCA software
appears to be at a somewhat “prototypical” stage and not of the same quality as com-
mercial software. Although there is an overlap of features between different FCA soft-
ware tools, certain features are only available in certain software. Thus in order to use
all features that are currently implemented, a user would need to download and install
several different tools and then try to figure out how to export data from one tool so
that it can be incorporated into other tools, which is not always possible. In theory, it
should be easy to convert between the different XML formats, but in practice, all of
the current FCA XML formats have a completely different semantics. Because of the
lack of interoperability among the tools, new developments, such as newly discovered
faster algorithms, have to be implemented separately by the developers of each tool.
There is no plug-in architecture that would allow algorithms to be easily incorporated
into different tools.

3 Interoperability with non-FCA software

This section argues that FCA software shares a number of features with non-FCA soft-
ware. More specifically, software for representing and operating on formal contexts
shares features with database and spreadsheet software. Software for displaying and

1 http://www.kde.cs.uni-kassel.de/ws/cs-tiw2008
2 https://skyhawk.cs.uah.edu/concept/index.php/ICCS_Challenge
3 http://cl.tamu.edu/

134 Uta Priss



editing concept lattices shares features with vector graphics and graph drawing soft-
ware. The difference between graph drawing and vector graphics software is that vector
graphics is more general. Graphs consist of nodes and edges. Graph editors normally
provide graph layout algorithms. The connection between a node and its edges is usually
fixed, so that clicking on a node and moving it around will move the connected edges
with that node. Vector graphics editors, on the other hand, can be used for any sort
of graphics (not just nodes and edges). Although vector graphics editors usually have
some grouping mechanism that allows to create complex objects which can be moved
around and edited as a whole, it is not always possible to connect edges to nodes in such
a manner. While vector graphics editors can represent graphs and provide many editing
features, they often do not provide the specific editing features that more specialised
graph editors have. Both graph and vector graphics software is of interest to FCA, but
because of the differences between them, not all FCA features can be represented with
such software.

It should be noted that the discussion in this section focuses on software, not math-
ematical modelling. Thus some of the mathematical aspects, such as the difference be-
tween abstract lattices, Hasse diagrams and general graphs are ignored if they are not
immediately relevant for what is implemented in software tools. Furthermore, the list
of FCA features that is discussed is not complete and depends on the current state of
the art of FCA research and software technology.

Fig. 1 lists FCA features which are currently provided by FCA software. The context-
related features are grouped into features that are shared with spreadsheet and database
software. Spreadsheet software allows to create cross tables in which data can be en-
tered, rows can be permuted and display parameters (font, colour, etc) can be changed.
Relational database software also allows to store and edit objects, attributes and their
relationships (crosses). But tables in relational databases need not be binary relations;
databases are more akin to power context families. Before lattices can be drawn, users
need to build binary contexts from the data in the database. FCA software should in-
teroperate with spreadsheet and database software. Of course, not all context features
are provided by spreadsheets and databases. Thus, although data can be imported from
spreadsheets and databases, such software is not suitable as a sole interface for formal
contexts.

With respect to displaying concept lattices, both vector graphics software and graph
editing software have many features that are commonly used to modify lattice diagrams.
Several FCA tools allow for lattice diagrams to be exported in SVG (scalable vector
graphics) format. If minor edits are required that are not supported by the FCA software,
it is possible to create a lattice using the FCA software and then to export the diagram
and use a vector graphics program for further editing. For example, the graph layout
algorithms, the manner in which the objects and attributes are displayed and so on
could be implemented as options that the user chooses when exporting a diagram. Graph
editing software has two important features that are not necessarily available in vector
graphics software: the availability of graph layout algorithms and the feature of clicking
on a node to move it in a manner that the attached edges stay attached. Modern vector
graphics editors, such as Inkscape4 and Dia support this to some degree. But because

4 The URLs for all tools mentioned in this paper can be found on the last page of this paper.

FCA Software Interoperability 135



there is no universally accepted graph representation format and Inkscape and Dia have
their own formats, it is difficult for FCA software to export the lattice diagrams in
formats that preserve sufficient information and can be read by graphics software. Older
vector graphics editors (such as xfig) tend not to have graph functionality and are thus
not as suitable for lattice editing.

reduce

other FCA features:
attribute exploration
calculate implication basis
association rules

spreadsheet:
add/delete object/attribute
add/delete cross
permute rows
change fonts, colours, etc
many−valued attributes

Context related:

move node
vector graphics:

Lattice related:

move label
edit label
change fonts, colours, etc
zoom
align to grid (?)

graph drawing software:
move node with edges attached
choose graph layout algorithm

FCA features (could be part of export):
choose node size calculation
transpose (dual lattice)
change labeling (count, list, percentage, etc)
clarify
reduce

FCA only, interactive features:
add/delete object/attribute
choose node movement algorithm
nested line diagram exploration

relational database:
add/delete object/attribute/cross
create contexts, subcontexts
power context families

show arrow relations
transpose (dual context)

FCA only features:

permute columns
clarify

Fig. 1. Tasks for FCA software

Although vector graphics and graph editors provide means for adding and deleting,
such features may not be consistent with the FCA features for adding or deleting ob-
jects, attributes and concepts. It can be a danger that inexperienced users might modify
a diagram using the editor’s add/delete features in such a manner that the diagram is no
longer a lattice. Experienced FCA users might miss the ability to choose “node move-
ment algorithms”, i.e. the ability to move a whole filter or ideal in a lattice by dragging
a node. It seems unlikely that current vector graphics and graph editors have such func-
tionality. But this would be an opportunity for FCA developers to communicate with
graphics editor developers. Maybe it would be possible to add such functionality to
the editors. The Dia software, for example, supports different application modes (e.g.
ER diagrams, flow charts). Maybe it would be possible to add an FCA mode to that
program. Maybe the developers in the vector graphics communities would also be in-
terested in layout algorithms that have been developed by FCA researchers. This might
be a good opportunity for collaboration.

Complex FCA features, such as the exploration of nested line diagrams will maybe
never be supported by traditional vector graphics editors. But Priss (2008a) discusses

136 Uta Priss



nested line diagrams as a means of “faceting”, as used in library and information sci-
ence. Several software tools for manipulating facets exists. Thus there could be some
overlap in technology between software for faceted classification and FCA software.
Other FCA features, such as association rules and implications are shared with data
mining approaches. There could be opportunities for interoperability for FCA software
in that area as well.

The simplest means of interoperability for FCA software with non-FCA software is
to allow the import and export in compatible formats. With respect to spreadsheets and
databases, FCA software should support comma-separated value files and with respect
to vector graphics, the SVG format should be supported as an export option. It would
be convenient to also allow input from graphics formats, but that is a difficult challenge
because a lattice graph can be encoded in many different ways.

The question of whether non-FCA graph layout algorithms are useful for FCA soft-
ware will be discussed in more detail further below. One obvious advantage for using
external graph layout algorithms is that it eases the burden on the FCA programmers.
The first popular non-FCA graph layout program that was used by FCA software was
probably Graphplace (Eijndhoven, 1994), which converts a binary relation into a coor-
dinate representation in a postscript format. A more modern program which implements
many different graph layout algorithms and all kinds of features is Graphviz. The “di-
rected graph” option in Graphviz provides layouts for lattices in a top-down manner.
Graphviz also converts into many other graph, raster and vector graphics formats. Thus
if FCA software exports lattices in a Graphviz format, then all these other formats are
automatically accessible as well. The FCA tools Colibri and FcaStone make use of
Graphviz.

4 FCAStone: FCA file format conversion software

A simple approach for allowing FCA software to interoperate with non-FCA software
is by providing means for converting between the file formats of the different tools.
FcaStone (named in analogy to “Rosetta Stone”) is a command-line utility that converts
between the file formats of commonly-used FCA tools (such as ToscanaJ, ConExp,
Galicia, Colibri5) and between FCA formats and other graph and vector graphics for-
mats. The main purpose of FcaStone is to improve the interoperability between FCA,
graph editing and vector graphics software. Because it is a command-line tool, FcaStone
can easily be incorporated into server-side web applications, which generate concept
lattices on demand. FcaStone is open-source software and available for download from
Sourceforge. FcaStone is written in an interpreted language (Perl) and thus platform-
independent. FcaStone does not intend to compete with or replace the Java-based tools
(ToscanaJ, ConExp, Galicia, etc) but instead to provide a different type of functionality,
which is aimed more at server-side applications and conversion. FcaStone does not have
a graphical user interface (GUI).

The emphasis of FcaStone is on converting file formats, but FcaStone can also con-
vert formal contexts into lattices. It uses the Graphviz software to calculate the graph

5 The URLs for all tools mentioned in this paper are listed at the end of the paper.

FCA Software Interoperability 137



layouts. Graphviz is open-source graph visualisation software, which contains several
graph layout algorithms. In this respect, FcaStone is similar to the Colibri software,
which also relies on Graphviz for lattice layouts. Because Graphviz provides a large
number of file conversion options, FcaStone only needs to produce a single format
(called “dot format”) which can then be further converted by Graphviz into a large
number of other formats.

It is somewhat difficult to produce concept lattice diagrams in a graph format, be-
cause the dual labelling of nodes with objects and attributes is not easily supported in
non-FCA graph formats. Priss (2008b) discusses how lattices can be represented us-
ing Graphviz’s format. Another problem is that Graphviz’s layout of lattices produces
curved lines, which is not usually accepted in the FCA community. Thus, some FCA
researchers may not approve of using FcaStone and Graphviz to produce lattice dia-
grams. We argue that FcaStone’s diagrams are produced without manual editing. There
are applications where manual editing of lattices is not feasible, for example, if the
lattice diagrams are produced on-line as a response to user queries. An advantage of
Graphviz’s layouts is that they can be generated in an overlapping-free manner. Out of
the three open-source FCA tools, ToscanaJ, ConExp, and Galicia, only Galicia produces
lattices which are overlapping-free (see the next section). If it was possible to export the
lattice layouts from Galicia, FcaStone could use such layouts instead of Graphviz lay-
outs. But as far as we know the graph coordinates cannot be exported in Galicia. More
details about FcaStone and the formats it supports can be found in Priss (2008b).

5 Graph layout for lattices

The previous sections have highlighted different aspects of FCA interoperability with
non-FCA software. This section concentrates on comparing graph layouts produced by
different tools. Five of Rudolf Wille’s (the founder of FCA) well known examples of
formal contexts have been selected. The five examples are fairly randomly chosen from
an overview lecture given by Wille at the 2007 KPP conference6. The first example,
“digits” was originally published in Stahl & Wille (1986). The “bodies of water” and
the “live in water” examples were published in Wille (1984) and the “tea ladies” and
the “lattice properties” examples were published in Wille (1992). The background of
these lattices shall not be discussed in this paper because we are only interested in the
representation of the line diagrams of these lattices. All five examples have reasonably
complex line diagrams.

It is not the aim of the experiment conducted here to rank FCA software with respect
to the “quality” of their diagrams. All FCA tools that were used here have different
purposes. For example, the diagrams produced by Siena (part of the ToscanaJ suite) are
intended for manual editing. Siena’s initial layout contains many overlapping nodes.
But because the initial layout contains many parallel edges, it only requires a few nodes
to be moved manually in order to obtain a diagram that preserves the parallel edges.
In general, there is some disagreement among researchers as to what diagrams should
look like, whether they should have parallel edges, symmetries or whether the nodes

6 http://www.fbi.h-da.de/kpp2007.html

138 Uta Priss



should be arranged on levels. This paper does not intend to provide any judgement on
these issues.

This paper is only interested in what we call “graphical similarity” of line diagrams.
First, we define the “position” of a node in a line diagram as follows: if the nodes are
arranged in levels starting from the top, then the position of a node refers to the level
it is on and the distance it has from the side. Position “0,0” is the top node. Position
“1,0” refers to the nodes that are the furthest to the left and right among all neighbours
of the top node, and so on. This could either be one node, if the top has only one lower
neighbour, or two nodes. Two line diagrams A and B are called “graphically similar”
if a) they contain the same number of edge crossings and b) a node that is in the same
“position” in A and B has the same number of upper and lower neighbours in A as in
B.

Wille uses a particular method for drawing line diagrams, called the “geometric
method” (Ganter & Wille, 1999). This paper intends to test whether any of the default
lattices produced by commonly used FCA tools produce lattices that are similar to the
lattice layouts that Wille derived with his geometric method. Again, it should be stressed
that this is not intended as a value judgement with respect to the quality of these dia-
grams. But since some users may want to produce layouts that are similar to Wille’s it
would be useful if software existed that produced such layouts on demand.

We conducted the following experiment. We derived the default layouts of the five
formal contexts in ConExp, Galicia, Siena (part of ToscanaJ) and using the Graphviz
layout of FcaStone. The three FCA tools were chosen because they are open-source
and freely available. Furthermore, we manually reproduced Wille’s layouts. For the
automatically derived layouts, we allowed ourselves only to change font sizes and node
sizes. None of the nodes were moved. The production of the pictures was helped by the
FcaStone software because with this software it took only seconds to convert the formal
contexts into formats that can be read by the different tools. We apologise that the fonts
in the pictures are too small to read. Only the layouts matter for this paper. We have
provided a website7 where researchers can find larger scale pictures and the contexts in
“cxt” format so that this experiment can be reproduced and be extended to other FCA
tools.

Fig. 2. The “digits” example: ConExp, Galicia, Siena

7 http://www.upriss.org.uk/fca/examples.html

FCA Software Interoperability 139



Fig. 3. The “digits” example: Wille’s layout, Graphviz

In our opinion, the result is surprising. The layouts that are produced by Graphviz
are from an FCA view very unconventional because the edges are not parallel and in
many cases even curved. Nevertheless, across all five examples, using our definition of
“graphical similarity”, the lattices produced by Graphviz are similar to Wille’s layouts.
It seems to us that if an algorithm was found that started with the Graphviz layouts
and then straightened the edges and looked for parallel edges, it might be possible
to automatically produce Wille-style layouts. In our opinion, this little experiment is
an argument for increased interoperability between FCA and non-FCA tools. Even if
non-FCA tools produce something that initially does not look appropriate (such as the
curved edges in the Graphviz diagrams), it may ultimately have a functionality that
is useful for FCA purposes. Only if FCA tools interoperate with non-FCA tools, it is
possible to explore such features.

In the “digits” example, Graphviz’s and Wille’s layout are graphically similar be-
cause they are almost mirror images of each other. In ConExp and Galicia, the nodes
are more permuted and not in the same positions. In all examples, Siena is difficult to
see because of the strong degree in overlap. In the “bodies of water” example, Con-
Exp’s, Wille’s and Graphviz’s layouts are similar and are different from Galicia and
Siena. In the “lattice properties” example, both Wille’s and Graphviz’s layout have 7
edge crossings, ConExp has 6, Galicia has more. In the “live in water” example, Wille’s,
Graphviz’s and ConExp’s layouts differ by a few switched nodes and by one edge cross-
ing. Galicia is very different and has more edge crossings. In the “tea ladies” example,
the nodes neighbouring the top node are roughly (but not exactly) in the same positions
in Graphviz’s and Wille’s layouts, but not in ConExp and Galicia.

6 Conclusion

This paper analyses FCA software interoperability from a variety of angles. It is argued
that interoperability with non-FCA software can be challenging because non-FCA ap-
plications have entirely different aims and purposes. But there can be benefits. For ex-
ample, it appears that the graph layouts provided by a non-FCA tool are in some sense

140 Uta Priss



Fig. 4. The “bodies of water” example: ConExp, Galicia, Siena

Fig. 5. The “bodies of water” example: Wille’s layout, Graphviz

Fig. 6. The “lattice properties” example: ConExp, Galicia, Siena

FCA Software Interoperability 141



Fig. 7. The “lattice properties” example: Wille’s layout, Graphviz

Fig. 8. The “live in water” example: ConExp, Galicia, Siena

142 Uta Priss



Fig. 9. The “live in water” example: Wille’s layout, Graphviz

Fig. 10. The “tea ladies” example: ConExp, Galicia, Siena

Fig. 11. The “tea ladies” example: Wille’s layout, Graphviz

FCA Software Interoperability 143



similar to manually derived layouts from researchers in the FCA community. Thus com-
bining FCA software with non-FCA software can provide new insights and inspirations.

URLs for the Tools mentioned in this paper

1. Colibri: http://www.st.cs.uni-sb.de/˜lindig/#colibri
2. ConExp: http://sourceforge.net/projects/conexp
3. Dia: http://live.gnome.org/Dia
4. FcaStone: http://fcastone.sourceforge.net
5. fca.sty: http://www.math.tu-dresden.de/ganter/fca
6. Galicia: http://www.iro.umontreal.ca/˜galicia
7. Graphviz: http://www.graphviz.org
8. Inkscape: http://www.inkscape.org
9. ToscanaJ: http://toscanaj.sourceforge.net

10. Tockit (related to ToscanaJ): http://tockit.sourceforge.net
11. Xfig: http://www.xfig.org

References
1. Chein, M.; Genest, D. (2000). CGs Applications: Where Are We 7 Years After the First ICCS?

In: Ganter; Mineau (eds.): Lecture Notes in Artificial Intelligence 1876, Springer, p. 127-139.
2. Dobrev, P. (2006). CG Tools Interoperability and the Semantic Web Challenges. Contributions

to ICCS 2006, 14th International Conference on Conceptual Structures, Aalborg University
Press.

3. Eijndhoven, Jos van (1994). Graphplace - a graph layouter. Software, Eindhoven University
of Technology, The Netherlands. Available via anonymous ftp from several sites.

4. Ganter, Bernhard; Wille, Rudolf (1999). Formal Concept Analysis. Mathematical Founda-
tions. Springer Verlag.

5. Keeler, M.; Pfeiffer, H. (2006). Building a Pragmatic Methodology for KR Tool Research
and Development. In: Schaerfe, Hitzler, Ohrstrom (eds.), Conceptual Structures: Inspiration
and Application, Proceedings of the 14th International Conference on Conceptual Structures,
ICCS’06, Springer Verlag, LNAI 4068, p. 314-330.

6. Priss, Uta (2008a). Facet-like Structures in Computer Science. Axiomathes, Vol 14, Springer-
Verlag.

7. Priss, Uta (2008b). FcaStone - FCA file format conversion and interoperability software. Con-
ceptual Structures Tool Interoperability Workshop (CS-TIW).

8. Rudolph, S.; Krötzsch, M.; Hitzler, P. (2007) Quo Vadis, CS? On the (non)-impact of Concep-
tual Structures on the Semantic Web. In: Priss, Polovina, Hill (eds.), Proceedings of the 15th
International Conference on Conceptual Structures, ICCS’07, Springer Verlag, LNAI 4604, p.
464-467.

9. Stahl, J.; Wille, R. (1986). Preconcepts and set representation of contexts. In: Gaul & Schader
(eds): Classification as a tool of research.

10. Tilley, Thomas (2004). Tool Support for FCA. In: Eklund (ed.), Concept Lattices: Second
International Conference on Formal Concept Analysis, Springer Verlag, LNCS 2961, p. 104-
111.

11. Wille, Rudolf (1984). Liniendiagramme hierarchischer Begriffssysteme. Studien zur Klassi-
fikation. Indeks Verlag.

12. Wille, Rudolf (1992). Concept Lattices and Conceptual Knowledge Systems. Computers
Math. Applic., 23, 6-9, p 493-515.

144 Uta Priss


