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Abstract. There are two types of classification methods using a Galois lattice:
as most of them rely on selection, recent research work focus on navigation-
based approaches. In navigation-oriented methods, classification is performed by
navigating through the complete lattice, similar to the decision tree. When de-
fined from binary attributes obtained after a discretization pre-processing step,
and more generally when a non-empty set of complementarity attributes can be
associated to each binary attribute, lattices are denoted as ”dichotomic lattices”.
The Navigala approach is a navigation-based classification method that relies on
the use of a dichotomic lattice. It was initially proposed for symbol recognition
in the field of technical document image analysis. In this paper, we define the
structural links between decision trees and dichotomic lattices defined from the
same table of data described by binary attributes. Under this condition, we prove
both that every decision tree is included in the dichotomic lattice and that the
dichotomic lattice is the merger of all the decision trees that can be constructed
from the same binary data table.
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1 Introduction

Galois lattice (or concept lattice) has first been introduced in a formal way in graph
and ordered structures theory [1,2,3]. Afterwards it has been developed in the field
of Formal Concept Analysis (FCA) [4] for data analysis and classification. The concept
lattice structure, based on the notion of concept, enables to describe data and to preserve
their diversity and complexity. A study realized by Mephu Nguifo and Njiwoua [5]
confirms the effectiveness of concept lattices for classification and describes selection-
oriented methods. Even though these structures are associated to a high time and space
complexity (exponential in the worst case), the technological improvements that have
been performed during the last decades enable their use.

Galois lattice gives a representation of all the possible correspondences (denoted as
concepts) between a set of objects (or examples) O and a set of attributes (or features)
I . Whereas in decision trees the path from the root to a given leaf is unique, in Galois
lattices there are multiple paths from the maximal concept to a given terminal concept.
Since a lattice is defined from binary attributes, the continuous-valued primitives have
to be discretized (after being normalized) in a pre-processing step.
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There are two types of classification methods using a Galois lattice: as most of
them rely on selection, recent research work focus on navigation-based approaches. The
selection-oriented methods come from the field of data mining and rely on a selection
step where the Galois lattice is used to choose concepts which encode relevant informa-
tion from the huge amount of available data. The classification step is then performed
by some usual classifier (k-nearest neighbours, Bayesian classifier. . . ).

On the contrary, in the navigation-oriented methods there is no selection step and
classification is performed by navigating through the complete lattice. Similar to the
classification tree, we navigate from a node to its successors until a labeled (terminal)
concept is reached. Indeed, Galois lattice is a graph whose structure is similar to that
of a decision tree. Whereas in decision trees the path from the root to a given leaf
is unique, in Galois lattices there are multiple paths from the maximal boundary to a
given terminal concept.

This similarity between lattices used by navigation-oriented methods and decision
trees has been mentionned and stated in some works [6,7,8]. Similar to the classification
tree, we navigate from a node to its successors until a labeled (terminal) concept is
reached. It is mentionned in particular for the Navigala method we have developped,
dedicated to symbols classification [9,10] for an objective of noisy symbols recognition.
In order to reduce the size of the lattice, which is generally more important than the size
of the tree, the Navigala method proposes a lattice generation performed on-demand
during the classification step.

As a first consequence of the similarity between lattice and decision tree, the navig-
ation-oriented methods shares the advantages of the decision tree in terms of readability
and ability to automatically select discriminatory variables among a large number of
variables. And, contrary to decision trees where there is a unique navigation path to a
given node, lattices propose several paths. This property provides to lattices enhanced
robustness towards noise.

In this paper, we precise and extend the links between these two structures of lattice
and decision tree in the particular case of dichtomic lattices, i.e lattices defined from
binary features where a non-empty set of complementarity attributes can be associated
to each feature:

– Every decision tree is included in the dichotomic lattice, when both structures are
built from the same binary attributes.

– Every dichotomic lattice is the merger of all the decision trees when these structures
are built from the same binary attributes.

Galois lattice and the navigation-oriented method Navigala are described in Sec-
tion 2. Section 3 provides a proper definition for dichotomic lattices and the two main
results of this paper concerning structural links between dichotomic lattice and decision
tree.

2 Navigala: recognition of symbols by navigation in a Galois lattice

2.1 Galois lattice definition

The concept lattice is built from a relation R between objects O and attributes I . This
graph is composed of a set of concepts ordered by inclusion. It verifies the properties
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of a lattice: the relation between concepts is an order relation (transitive, reflexive and
antisymmetric), and there are a lower bound and an upper bound for each pair of con-
cepts in the graph. We associate to a set of objects A ⊆ O the set f(A) of attributes in
relation R with the objects of A:

f(A) = {x ∈ I | pRx ∀ p ∈ A}

Dually, for every set of attributes B ⊆ I , we define the set g(B) of objects in relation
with the attributes of B:

g(B) = {p ∈ O | pRx ∀ x ∈ B}

The relations between the set of objects and the set of attributes are described by a
formal context. A formal context C is a triplet C = (O, I,R) represented by a table
(see for instance Table 1).

Table 1. Example of formal context

Class Id Sunniness Humidity Wind
Sun Cloudy Rain < 77.5 >= 77.5 Yes No

Y 1 X X X
N 2 X X X
N 3 X X X
N 4 X X X
Y 5 X X X
Y 6 X X X
Y 7 X X X
Y 8 X X X
Y 9 X X X
N 10 X X X
N 11 X X X
Y 12 X X X
Y 13 X X X
Y 14 X X X

The two functions f and g defined between objects and attributes form a Galois con-
nection. The composition ϕ = f ◦ g defined on the attributes set enables to associate to
each subset of attributes X ⊆ I the smallest concept containing X: (g(ϕ(X)), ϕ(X)).
This composition ϕ verifies the properties of a closure operator: ϕ is idempotent (i.e.
∀X ⊆ S, ϕ2(X) = ϕ(X)), extensive (i.e. ∀X ⊆ S, X ⊆ ϕ(X)) and isotone (i.e.
∀X, X ′ ⊆ S, X ⊆ X ′ ⇒ ϕ(X) ⊆ ϕ(X ′)).

The Galois lattice associated to a formal context C is a graph composed of a set
of formal concepts equipped with a particular binary relation. Intuitively this graph
is a representation of all the possible maximal correspondences between a subset of
objects (or instances, examples) O and a subset of attributes (or primitives, features) I .
A formal concept is a maximal objects-attributes subset where objects and attributes are
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in relation. More formally, it is a pair (A,B) with A ⊆ O and B ⊆ I , which verifies
f(A) = B and g(B) = A. Let us introduce the binary relation ≤ defined on the set of
all the concepts by, for two formal concepts (A1, B1) and (A2, B2):

(A1, B1) ≤ (A2, B2) ⇔
∥∥∥∥A2 ⊆ A1

(equivalent to B1 ⊆ B2)

All the set of formal concepts equipped with the order relation ≤ forms a lat-
tice called a concept lattice or Galois lattice. Thus, for each concepts (A1, B1) and
(A2, B2), it exists a greatest lower bound (resp. a least upper bound) called meet (resp.
join) denoted as (A1, B1) ∧ (A2, B2) (resp. (A1, B1) ∨ (A2, B2)) defined by:

(A1, B1) ∧ (A2, B2) = (g(B1 ∩B2), (B1 ∩B2)) (1)

(A1, B1) ∨ (A2, B2) = ((A1 ∩A2), f(A1 ∩A2)) (2)

Therefore, a lattice contains a minimum (resp. maximum) element according to the
relation ≤ called the bottom (resp. top) of the lattice, and denoted as ⊥ = (O, f(O))
(resp. > = (g(I), I)). For more information on Galois lattice and closure systems, the
reader can refer to [1,4].

Figure 1 shows an example of concept lattice built from the formal context in Table
1. This formal context is composed of a set of 14 objects described by 7 attributes (sun,
cloudy, rain, hum < 77.5, hum ≥ 77.5, windY and windN ).

2.2 Navigala method description

The navigation-base recognition method named Navigala (NAVIgation into GAlois
LAttice) has been introduced in [11]. This method is fitted for recognizing noisy graphic
objects and especially symbol images. Such symbols appear in technical documents
such as architectural plans or electrical schemes. Graphic objects may be described
by statistical or structural primitives. As statistical features describe the spatial distri-
butions of the pixel values of the symbol, structural primitives describe the spatial or
topological relations between some sub-patterns extracted from the symbol images. In
the following, the primitives vector of each symbol is called the signature of this sym-
bol.

Navigala is a supervised classification approach, no matter if the discretization pre-
processing relies on a supervised or unsupervised criterion. This method relies on the
classical steps of recognition: data preparation that mainly consists in discretizing con-
tinuous data, learning where the Galois lattice is built, and classification where the
samples to recognize are labeled after navigating through the graph until they reach a
labeled concept.

Data preparation Firstly, several signatures are extracted from the symbol images: sta-
tistical signatures (Fourier-Mellin invariants [12], Radon transform-based Radon tran-
sform [13], Zernike moments [14]), and a structural signature named flexible structural
signature [15]. Data preparation then consists in normalizing the various features. The
continuous valued primitives must then be discretized. At each step of discretization, a
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Fig. 1. Example of Galois lattice
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criterion selects both the primitive to divide and the optimal cutting point. Let x ∈ I
be a primitive interval composed of values Vx = (v1 . . . vn) sorted by ascending order.
The interval will be cut between the values vj and vj+1, where v maximizes a given
”cutting” criterion of the primitive values objects. We can define a lot of cutting crite-
ria, supervised or not. Among these criteria, let us mention maximal distance, entropy
and Hotelling’s coefficient. Discretization is processed until a given stopping criterion
is met. The stopping criterion used for Navigala is based on class separation, i.e. this
criterion is met when each class of objects can be represented by its own set of in-
tervals. More precisely, one class can be separated from the others when the objects
characterizing this class share at least one interval which enables to distinguish them
from the objects of the other classes. At the end of the process, the continuous-valued
primitives are converted into intervals of values, called discretized data. Once intervals
are computed, they are extended to a fuzzy number.

Learning The discretized data obtained from the data preparation will then be used as
a training set, in order to compute the Galois lattice. The generation algorithm [11] is
an extension of the Bordat’s algorithm [16] since navigation uses the Hasse diagram
of the lattice (an example of Hasse diagram of a Galois lattice is shown on Figure 1).
Once the Hasse diagram is computed, as each concept contains a set of objects, it is
possible to label them depending on these objects. Indeed, when all the objects in a
given concept correspond to the same class, this concept is named final concept and can
be labeled. Intuitively, these final concepts correspond to the classes to reach when the
Galois lattice is explored for the classification of a new object.

Classification Using the Hasse diagram of the Galois lattice, we can process recog-
nition of the new symbols belonging to the test set. Classification of a new symbol is
then processed by navigating through the graph, from the minimal concept (the top >)
to a final concept which has been previously labeled by a class. Intuitively, during this
progression, we observe a specification of the objects set and a generalization of the
attributes set, that is to say that the number of objects is reduced while the number of
attributes is increased. Thus, we refine the description of the object to recognize, un-
til it corresponds to the description of one of the learning objects whose class will be
assigned to the object to recognize. The progression in the graph from a concept to its
successor is done according to a fuzzy distance measure and a choice criterion (for more
details please refer to [11]).We estimate the distance between the signature values of the
object to recognize and the signatures values of the learning objects, and we choose the
successor concept in the Galois lattice whose description best corresponds to the object.

The Galois lattice construction algorithm we use holds several advantages: it is quite
easy to implement, and it enables an on-demand concepts generation of the Galois lat-
tice. In other words, it enables to generate from a given concept every successor concept
in the lattice. This is interesting because it avoids the construction of the whole graph,
which can be of exponential complexity in the worst case. Indeed, recognition is per-
formed by exploring only a small region of the lattice. On-demand concepts generation
therefore considerably reduces the complexity of the structure generation.
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3 Lattice and decision tree

In Navigala, the classification based on a navigation into the graph is quite similar to the
one proposed with a decision tree. In this section, we describe both of these structures,
and the handled data.

3.1 Decision tree definition

Since years 1960-1970, the decision tree built from a data set has been used in several
research works [17,18]. Among the most widely used decision tree generation methods,
we can cite CART [19], C4.5 [20] and ID3 [21]. As with a Galois lattice, the data are
represented by a table containing a set of objects, set described by a set of attributes.
This table can contain discrete, ordinal or continuous data. Decision tree nodes are built
from its top, called the root, to its basis where the terminal nodes are called leaves.
The construction of a decision tree requires three criteria: a selection criterion, which
enables, at each division step, to select one/several feature(s) in the table, a second
criterion to discretize the continuous data, and a last criterion to stop the divisions in
the tree, which is generally based on a purity measure of the leaves. The root regards
all the set of objects in the table; a feature of the table is then selected to separate the
objects into two distinct subsets corresponding to two children nodes. This process is
likewise iterated on each subset until the stopping criterion is satisfied (see for instance
Figure 2).

Fig. 2. Example of decision tree

When the features are continuous-valued, as it is the case with the signatures we
consider, they need a discretization step which can be processed:

– during the tree construction. Only the selected features will then be discretized.
– before the tree construction, in a pre-processing stage. The data will then be dis-

cretized until the classes are separated.
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Several heuristics can be used for decision tree construction. For example, a pruning
stage can be performed on the decision tree to avoid over-partitioning the data. The
pruning principle is to raise into the tree from the leaves by changing nodes in leaves
depending on a purity criterion of the nodes. In the structural comparison we describe
in the following, the considered decision trees are not pruned.

3.2 Dichotomic lattice

As the decision tree construction infers a discretization of the data, it is possible to
consider the binary data table issued from this discretization, and consequently the re-
sulting Galois lattice. We thus find in this binary table (see Table 1), and in the Galois
lattice (see Figure 1), the same binary attributes as those proposed by the decision tree
(see Figure 2). Thus, when a feature V is proposed, with two children, one for yes, and
the other for no, we had to consider the two binary attributes V = yes and V = no. In
a more general way, the binary attributes issued from the children of a node are present
into the table and separate the set of objects.

In Navigala method, features are continuous data which are discretized in a pre-
processing stage in order to obtain classes’ separation. The binary attributes in the table
are intervals issued from this discretization. A symbol is described by a fixed-size sig-
nature before the discretization, and then by a set of binary intervals with the same
cardinality after discretization. A symbol is associated to only one interval among the
set of intervals issued from a same feature.

Notice that the obtained binary attributes infer an automatic selection of the dis-
criminant features. Indeed, an attribute belonging to all the set of objects will not been
proposed in the decision tree, and consequently will not been taken into account in the
table. It is the same in Navigala method where a non discretized continuous feature will
not appear in the table.

When all objects in a binary table are associated to a same number of binary at-
tributes, the final concepts (i.e. the concepts corresponding to a unique class) contain
the same number of attributes. The final concepts of a lattice cannot be related the ones
to the others (because two concepts in relation≤ can not be composed of a same number
of attributes). The final concepts thus have as a unique direct successor the concept >.
This property can be found in lattice theory with the notion of co-atomisticity. It is the
case in our approach Navigala. When discretization is performed (during decision tree
construction), the table depends on the proposed attributes in the tree, and two different
trees could infer two different binary attributes sets. These two attributes sets can then
infer two different lattices. The discretization can also be performed in pre-processing,
as in the method Navigala. From this table, several decision trees can be generated but
a unique lattice will be associated.

Whatever the case, to each binary attribute x we can associate a non empty set X
of binary attributes such as the objects having the attribute x, and those having the
attributes in X are all distinct. The binary attributes are deduced from the decision tree:
when x is a feature proposed by a node of the tree, then X is a set of all the other
features proposed by this same node. Using continuous features discretized in a pre-
processing stage, x corresponds to an interval, and X contains all remaining intervals
corresponding to this same feature. From this property, lattices issued from a tree belong
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to particular lattices called dichotomic lattices. More formally, dichotomic lattices are
characterized by the fact to be ∨-complementary, that is to say that for each concept
(A,B), a complementary concept (A′, B′) always exists such as

(A,B) ∨ (A′, B′) = > = (∅, I) (3)

Proposition 1 Each dichotomic lattice (i.e. lattice issued from a tree) is ∨-complemen-
tary.

Proof. Let (A,B) be any concept of a dichotomic lattice. It consists in showing the ex-
istence of a complementary concept to (A,B). We consider x any binary attribute of B,
and x a complementary attribute of x belonging to the set X . Thus, the objects having
x, and those having x are distinct. This is formalized by g({x}) ∩ g({x}) = ∅. Then
we consider the smallest concept containing x which, by definition, will be the concept
(g(ϕ({x})), ϕ({x})) where the set of attributes is ϕ({x}). From the definition of func-
tions f and g, we deduce that g(ϕ({x})) = g({x}), and that A ⊆ g({x}). Assuming
that g({x})∩ g({x}) = ∅, we can then deduce that A∩ g(ϕ({x})) = ∅. Consequently,
(A,B) ∨ (g(ϕ({x})), ϕ({x})) = (∅, I), and the concept (g(ϕ({x})), ϕ({x})) is the
complementary concept of (A,B). It proves the ∨-complementarity of the lattice.

3.3 Structural links between dichotomic lattice and decision tree

A first structural link between decision tree and dichotomic lattice consists in the fact
that both structures can be used in classification, and can be defined from a table of
binary attributes.

We can notice that the use of navigation-based lattices for classification is similar
to the one of decision trees. This similarity is formalized by a structural link between
nodes and concepts: indeed, every node in the decision tree may be associated to a
unique concept in the lattice. We consider a node n in the tree, and the set of binary
attributes Xn proposed from the root to this node. Assuming that these binary attributes
belong to the table corresponding to the lattice construction, we then associate to the
node n the smallest concept containing the features of Xn:

(g(ϕ(Xn)), ϕ(Xn)) (4)

Figure 2 presents the decision tree associated to the data of the example. Notice that
all the nodes of the decision tree are present into the lattice whatever the construction
criterion of the decision tree. Moreover, the structure of the decision tree is also pre-
served in the lattice as shown in figure 3, where the tree (in bold) is included in the
lattice. This property is verified in the general case. Thus, we show that each decision
tree is included in the Galois lattice. We also prove that the lattice is the merger of all
the decision trees.

Proposition 2 Each decision tree is included in the dichotomic lattice, when both struc-
tures are built from the same binary attributes.
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Fig. 3. Inclusion of the decision tree (in bold) in the Galois lattice
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Proof. Let us consider a decision tree and a dichotomic lattice issued from the same
binary attributes. As mentioned before, these two structures handle the same binary
attributes. Moreover, to a node n of the decision tree accessible by validation of the
set of attributes Xn we associate the concept (g(ϕ(Xn)), ϕ(Xn)). To prove that the
decision tree is included into the lattice, it is necessary to prove the three following
points:

1. Two different nodes of a decision tree are associated to different concepts:
By contradiction, when two nodes n1 and n2 are associated to a same concept, then
ϕ(Xn1) = ϕ(Xn2). It means that the same objects share the attributes of Xn1 and
Xn2 , that is in contradiction with the fact that two nodes n1 and n2 are two different
nodes of the decision tree.

2. When two nodes are ancestors in the decision tree, then their associated concepts
are related in the lattice:
Clearly when a node n1 is ancestor of a node n2 in a decision tree, then Xn1 ⊆ Xn2 .
The operator ϕ being isotone, we deduce that ϕ(Xn1) ⊆ ϕ(Xn2), and consequently
that these two concepts (g(ϕ(Xn1)), ϕ(Xn1)), (g(ϕ(Xn2)), ϕ(Xn2)) are related
depending on the relation ≤.

3. Conversely, when two nodes are not ancestor in the decision tree, then their associ-
ated concepts are not related in the lattice:
When a node n1 is not ancestor of a node n2, then we need to consider all the chil-
dren of the smallest common ancestor to n1 and n2, and particularly the child n′

1

ancestor of n1 and the child n′
2 ancestor of n2. These two nodes n′

1 and n′
2 exist

by construction of the table. Clearly, as n′
1 and n′

2 are brothers, their attributes in
the associated concepts, being ϕ(Xn′

1
) and ϕ(Xn′

1
), are not shared by any object.

That is formalized by g(ϕ(Xn′
1
)) ∩ g(ϕ(Xn′

2
)) = ∅. Then, n′

1 being ancestor of
n1, we can deduce that Xn′

1
⊆ Xn1 , where ϕ(Xn′

1
) ⊆ ϕ(Xn1) by isotony of the

operator ϕ, and reversely g(ϕ(Xn′
1
)) ⊇ g(ϕ(Xn1)) by definition of g. We also

have g(ϕ(Xn′
2
)) ⊇ g(ϕ(Xn2)) because n′

2 is ancestor of n2. Thus we deduce that
g(ϕ(Xn2)) ∩ g(ϕ(Xn1)) = ∅, and that proves that the concepts associated to the
nodes n1 and n2 are not in relation by ≤.

Proposition 3 A dichotomic lattice is the merger of all the decision trees when these
structures are built from the same binary attributes.

Proof. We previously proved that each decision tree is included into the dichotomic
lattice built from the same binary attributes. To prove that the dichotomic lattice is the
merger of all the decision trees, we must prove that each concept potentially belong to
a decision tree. This proof is given by construction.

We consider an any concept (A,B). Then we build the subset of concepts C of the
lattice containing: the concept (A,B), a complementary concept (A′, B′) to (A,B), the
minimal concept ⊥, and all the final successors concepts of (A,B) and (A′, B′). The
existence of the complementary concept (A′, B′) is deduced from the∨-complementari-
ty property of the dichotomic lattice. Moreover, it infers that this subset C in addition to
the relation ≤ forms a tree. Then we add in the set C a maximal number of concepts of
the dichotomic lattice such as (C,≤) preserves the property to be a tree. Thus, by con-
struction, we obtain a sub-tree included into the dichotomic lattice, containing (A,B).
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In this sub-tree, the leaves are final concepts and correspond to subsets of objects which
can not be separated by any binary attribute, i.e. the classes when the data have been
discretized until the classes are separated. This tree can thus be considered as a decision
tree, what finishes this proof.

4 Conclusion

This paper is about Galois lattice which is used as a classifier in the Navigala approach
and, more generally, about dichotomic lattices defined from a structural way: to every
binary feature, a non-empty set of complementarity features can be associated.

There is some published work about using Galois lattices as a classifier: as most
of the proposed approaches consider the lattice as a concept selection tool, Navigala
performs classification by navigating through the lattice from one node to its successors,
similar to a classification tree.

As a first consequence, the Navigala approach shares the advantages of the decision
tree in terms of readability and ability to automatically select discriminatory variables
among a large number of variables. As another consequence, contrary to decision trees
where there is a unique navigation path to a given node, lattices propose several paths.
This property provides to lattices enhanced robustness towards noise.

The inclusion result (Proposition 2) of this paper implies that navigation paths pro-
posed by decision tree are included in the dichotomic lattice issued from the same binary
features. Moreover, Proposition 3 states that the every dichotomic lattice is equal to the
merge of navigation paths of all the decision trees.

This work opens the way for the definition of a new method that would combine the
advantages of both trees and lattices.
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