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Abstract. The paper presents a generalization of the main theorem
of fuzzy concept lattices. The theorem is investigated from the point
of view of fuzzy logic. There are various fuzzy order types which differ
by incorporated relation of antisymmetry. This paper focuses on fuzzy
order which uses fuzzy antisymmetry defined by means of multiplication
operation and fuzzy equality.
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1 Introduction

A notion of fuzzy order has been derived from the classical one by fuzzification
the three underlying relations. This led to various versions, at the beginning
versions utilizing the classical relation of equality (see e.g. [9]); later versions are
more general by introducing fuzzy similarity (or fuzzy equality) instead of the
classical equality (see e.g. [4]). Fuzzy similarity is based on idea that relationship
between objects A and B should be transformed to a similar relationship between
objects A′ and B′ whenever A′, B′ are similar to A, B, respectively.

In [3], one of the later definitions of fuzzy order was used to formulate and
prove a fuzzy logic extension of the main theorem of concept lattices. The aim
of this paper is to enlarge validity of the theorem to more general fuzzy order.

2 Preliminaries

First, we recall some basic notions. It is known that in fuzzy logic an important
structure of truth values is represented by a complete residuated lattice (see e.g.
[5], [6], [7]).

Definition 1. A residuated lattice is an algebra L = 〈L,∧,∨,⊗,→, 0, 1〉 such
that

– 〈L,∧,∨, 0, 1〉 is a lattice with the least element 0 and the greatest element 1,
– 〈L,⊗, 1〉 is a commutative monoid,
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– ⊗ and → form so-called adjoint pair, i.e. a ⊗ b ≤ c iff a ≤ b → c holds for
all a, b, c ∈ L.

Residuated lattice L is called complete if 〈L,∧,∨〉 is a complete lattice.

Throughout the paper, L will denote a complete residuated lattice. An L-
set (or fuzzy set) A in a universe set X is any mapping A : X → L, A(x)
being interpreted as the truth degree of the fact that “x belongs to A”. By LX

we denote the set of all L-sets in X. A binary L-relation is defined obviously.
Operations on L extend pointwise to LX , e.g. (A∨B)(x) = A(x)∨B(x) for any
A,B ∈ LX . As is usual, we write A ∪B instead of A ∨B, etc.

L-equality (or fuzzy equality) is a binary L-relation ≈ ∈ LX×X such that
(x ≈ x) = 1 (reflexivity), (x ≈ y) = (y ≈ x) (symmetry), (x ≈ y) ⊗ (y ≈ z) ≤
(x ≈ z) (transitivity), and (x ≈ y) = 1 implies x = y. We say that a binary
L-relation R ∈ LX×Y is compatible with respect to ≈X and ≈Y if R(x, y) ⊗
(x ≈X x′) ⊗ (y ≈Y y′) ≤ R(x′, y′) for any x, x′ ∈ X, y, y′ ∈ Y . Analogously
an L-set A ∈ LX is compatible with respect to ≈X if A(x)⊗(x ≈X x′) ≤ A(x′) for
any x, x′ ∈ X. Given A,B ∈ LX , in agreement with [5] we define the subsethood
degree S(A,B) of A in B by S(A,B) =

∧
x∈X A(x) → B(x). For A ∈ LX and

a ∈ L, the set aA = {x ∈ X; A(x) ≥ a} is called the a-cut of A. Analogously, for
R ∈ LX×Y and a ∈ L, we denote aR = {(x, y) ∈ X×Y ; R(x, y) ≥ a}. For x ∈ X
and a ∈ L, {a/x} is the L-set defined by {a/x} (x) = a and {a/x} (y) = 0 for
y 6= x.

Definition 2. An L-order on a set X with an L-equality ≈ is a binary
L-relation � which is compatible with respect to ≈ and satisfies the following
conditions for all x, y, z ∈ X:

(x � x) = 1 (reflexivity),

(x � y)⊗ (y � x) ≤ (x ≈ y) (antisymmetry),

(x � y)⊗ (y � z) ≤ (x � z) (transitivity).

(Cf. T-E-ordering from [4].) Since in residuated lattices x⊗ y ≤ x ∧ y for every
x, y ∈ X, our relation is more general than L-order of [3] or [2] where antisym-
metry is expressed by condition (x � y) ∧ (y � x) ≤ (x ≈ y).

Note that

(x � y)⊗ (y � x) ≤ (x ≈ y) ≤ (x � y) ∧ (y � x). (1)

Indeed, the first inequality represents antisymmetry and the second one follows
from compatibility (see proof of Lemma 4 in [3]):
(x ≈ y) = (x � x) ⊗ (x ≈ x) ⊗ (x ≈ y) ≤ (x � y) and analogously, (x ≈ y) ≤
(y � x).

The inequalities (1) represent the fact that L-equality must satisfy the inter-
val confinement as follows:

(x ≈ y) ∈ [(x � y)⊗ (y � x), (x � y) ∧ (y � x)] .
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On the other hand, the definition of L-order by [3] (which must satisfy the
condition (x �[3] y) ∧ (y �[3] x) ≤ (x ≈ y)) leads to firm binding of L-equality
with the upper bound of previous interval (see Lemma 4 of [3]), i.e.

(x ≈ y) = (x �[3] y) ∧ (y �[3] x).

Now, we can interpret the relationship between L-order and L-equality defined
either in [3] and in this paper as follows. By the definition, L-order is dependent
on a given L-equality. However, if we change point of view and have a look to
the inverse “dependence”, we can see that

– by [3], an L-equality is binded with any corresponding L-order firmly,
– in our paper, an L-equality has certain freedom (with respect to a corre-

sponding L-order).

This will play an important role during generalizing results achieved in [3].

If � is an L-order on a set X with an L-equality ≈, we call the pair X =
〈〈X,≈〉,�〉 an L-ordered set. In agreement with [3], we say that L-ordered sets
〈〈X,≈X〉,�X〉 and 〈〈Y,≈Y 〉,�Y 〉 are isomorphic if there is a bijective mapping
h : X → Y such that (x ≈X x′) = (h(x) ≈Y h(x′)) and (x �X x′) =
(h(x) �Y h(x′)) hold for any x, x′ ∈ X.

Note that in case of firm binding of L-equality and L-order by [3] (see the note
above), preservation of the L-order by the bijection h implies also preservation
of the L-equality. Clearly this is not true for L-order defined in this paper.

3 Some properties of fuzzy ordered sets

In this section, we describe some notions and properties related to fuzzy ordered
sets which represent appropriate generalizations of notions and facts known from
classical (partial) ordered sets. These generalizations were introduced mainly
in [2] and [3] (the fact that originally they used less general definition of L-order
is unimportant).

Definition 3. For an L-ordered set 〈〈X,≈〉,�〉 and A ∈ LX we define the
L-sets L(A) and U(A) in X by

L(A)(x) =
∧

x′∈X

(A(x′) → (x � x′)) for all x ∈ X,

U(A)(x) =
∧

x′′∈X

(A(x′′) → (x′′ � x)) for all x ∈ X.

L(A) and U(A) are called the lower cone and upper cone of A, respectively.

These L-sets can be described as the L-sets of elements which are smaller
(greater) than all elements of A. We will abbreviate U(L(A)) by UL(A), L(U(A))
by LU(A) etc.
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Definition 4. For an L-ordered set 〈〈X,≈〉,�〉 and A ∈ LX we define the
L-sets inf(A) and sup(A) in X by

(inf(A))(x) = (L(A))(x) ∧ (UL(A))(x) for all x ∈ X,

(sup(A))(x) = (U(A))(x) ∧ (LU(A))(x) for all x ∈ X.

inf(A) and sup(A) are called the infimum and supremum of A, respectively.

Lemma 1. Let 〈〈X,≈〉,�〉 be an L-ordered set, A ∈ LX . If (inf(A))(x) = 1 and
(inf(A))(y) = 1 then x = y (and similarly for sup(A)).

Proof. The proof is almost verbatim repetition of the proof of Lemma 9 in [3].�

Lemma 2. For an L-ordered set 〈〈X,≈〉,�〉 and A ∈ LX , the L-sets inf(A)
and sup(A) are compatible with respect to ≈.

Proof. The proof can be found in [2], namely in more general proof of Lemma 5.39
with regard to Remark 5.40. �

Definition 5. For a set X with an L-equality ≈, an L-set A ∈ LX is called
an S-singleton if it is compatible with respect to ≈ and there is some x0 ∈ X
such that A(x0) = 1 and A(x) < 1 for x 6= x0.

Remark 1. There are various definitions of fuzzy singletons (see e.g. [8] or [2]).
Our definition represents the simplest one, that is why we call it S-singleton.
Demanding more conditions than stated would lead to serious troubles in proof
of Theorem 2. Note that in case of L equal to the Boolean algebra 2 of classical
logic with the support {0, 1}, S-singletons represent classical one-element sets.

Lemma 3. For an L-ordered set 〈〈X,≈〉,�〉 and A ∈ LX , if (inf(A))(x0) = 1
for some x0 ∈ X then inf(A) is an S-singleton. The same is true for suprema.

Proof. The assertion immediately follows from Lemmata 1 and 2. �

Definition 6. An L-ordered set 〈〈X,≈〉,�〉 is said to be completely lattice
L-ordered if for any A ∈ LX both inf(A) and sup(A) are S-singletons.

Theorem 1. For an L-ordered set X = 〈〈X,≈〉,�〉, the relation 1� is an order
on X. Moreover, if X is completely lattice L-ordered then 1� is a lattice order
on X.

Proof. The proof is analogous to the proof of Theorem 13 in [3]. �
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4 Fuzzy concept lattices

We remind some basic facts about concept lattices in fuzzy setting. A formal
L-context is a tripple 〈X, Y, I〉 where I is an L-relation between the sets X and Y
(with elements called objects and attributes, respectively). For any L-context we
can generalize notions introduced in Definition 3 as follows. Let X, Y be sets with
L-equalities ≈X ,≈Y , respectively; I ∈ LX×Y be an L-relation compatible with
respect to ≈X and ≈Y . For any A ∈ LX , B ∈ LY , we define A↑ ∈ LY , B↓ ∈ LX

(see e.g. [1]) by

A↑(y) =
∧

x∈X

(A(x) → I(x, y)) for all y ∈ Y,

B↓(x) =
∧

y∈Y

(B(y) → I(x, y)) for all x ∈ X.

Clearly, A↑(y) describes the truth degree, to which “for each x from A, x and y
are in I”, and similarly B↓(x). We will abbreviate (A↑)↓ by A↑↓, (B↓)↑ by B↓↑

etc. The equation A↑ = A↑↓↑ holds true for all A ∈ LX (see e.g. [1]). Note that
if X = Y and I = � is an L-order on X, then A↑ coincides with U(A) and
B↓ coincides with L(B). An L-concept in a given L-context 〈X, Y, I〉 is any pair
〈A,B〉 of A ∈ LX and B ∈ LY such that A↑ = B and B↓ = A (see [2]).

We denote by B(X, Y, I) the set of all L-concepts given by an L-context
〈X, Y, I〉, i.e.

B(X, Y, I) = {〈A,B〉 ∈ LX × LY ; A↑ = B, B↓ = A}.

For any B(X, Y, I), we put (see [3])

(〈A1, B1〉 �S 〈A2, B2〉) = S(A1, A2) for all 〈A1, B1〉, 〈A2, B2〉 ∈ B(X, Y, I).

The L-relation �S obviously satisfies the conditions of reflexivity and transitiv-
ity. As to the antisymmetry, we need an L-equality. Therefore, consider an arbi-
trary L-equality ≈ on the set B(X, Y, I) such that �S is compatible with respect
to ≈ and the inequality

(〈A1, B1〉 �S 〈A2, B2〉)⊗ (〈A2, B2〉 �S 〈A1, B1〉) ≤ (〈A1, B1〉 ≈ 〈A2, B2〉)

holds true for every 〈Ai, Bi〉 ∈ B(X, Y, I), i ∈ {1, 2}. (Existence of such an L-
equality is demonstrated e.g. by (〈A1, B1〉 ≈ 〈A2, B2〉) = S(A1, A2)∧S(A2, A1) in
[3].) Consequently, �S is an L-order on 〈B(X, Y, I),≈〉 and we get an L-ordered
set 〈〈B(X, Y, I),≈〉,�S〉 which will act in further two theorems. Note that the
L-ordered set is more general than L-concept lattice 〈〈B(X, Y, I),≈〉,�S〉 of [3]
because of more general L-equality.

The next theorem characterizing L-concept lattices needs further denotation.
As usual, for an L-set A in U and a ∈ L, we denote by a⊗A the L-set such that
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(a ⊗ A)(u) = a ⊗ A(u) for all u ∈ U . If M is an L-set in Y and each y ∈ Y is
an L-set in X, we define the L-set

⋃
M in X (see [3]) by

(
⋃
M)(x) =

∨
A∈Y

M(A)⊗A(x) for all x ∈ X.

Clearly,
⋃
M represents a generalization of a union of a system of sets. For an

L-set M in B(X, Y, I), we put
⋃

X M =
⋃

prX(M),
⋃

Y M =
⋃

prY (M) where
prX(M) is an L-set in the set {A ∈ LX ; A = A↑↓} of all extents of B(X, Y, I)
defined by (prXM)(A) = M(A,A↑) and, similarly, prY (M) is an L-set in the
set {B ∈ LY ; B = B↓↑} of all intents of B(X, Y, I) defined by (prYM)(B) =
M(B↓, B). Hence,

⋃
X M is the “union of all extents from M” and

⋃
Y M is

the “union of all intents from M” (see [3]).

Theorem 2. Let 〈X, Y, I〉 be an L-context. An L-ordered set
〈〈B(X, Y, I),≈〉,�S〉 is completely lattice L-ordered set in which infima and
suprema can be described as follows: for an L-set M in B(X, Y, I) we have

1inf(M) =

{〈
(
⋃
Y

M)↓, (
⋃
Y

M)↓↑
〉}

(2)

1sup(M) =

{〈
(
⋃
X

M)↑↓, (
⋃
X

M)↑
〉}

(3)

Proof. The proof of (2) and (3) is analogous to the proof of part (i) of Theorem 14
in [3] where differently defined antisymmetry is not used anywhere. Further-
more by Lemma 3, each L-ordered set 〈〈B(X, Y, I),≈〉,�S〉 is completely lattice
L-ordered. �

For any completely lattice L-ordered set X = 〈〈X,≈〉,�〉, a subset K ⊆ X
is called {0, 1}-infimally dense ({0, 1}-supremally dense) in X (cf. [3]) if for each
x ∈ X there is some K ′ ⊆ K such that x =

∧
K ′ (x =

∨
K ′). Here

∧
(
∨

) means
infimum (supremum) with respect to the 1-cut of �.

Theorem 3. Let 〈X, Y, I〉 be an L-context. A completely lattice L-ordered set
V = 〈〈V,≈V 〉,�〉 is isomorphic to an L-ordered set 〈〈B(X, Y, I),≈〉,�S〉 iff there
are mappings γ : X × L → V, µ : Y × L → V , such that

(i) γ(X × L) is {0, 1}-supremally dense in V,
(ii) µ(Y × L) is {0, 1}-infimally dense in V,
(iii) ((a⊗ b) → I(x, y)) = (γ(x, a) � µ(y, b)) for all x ∈ X, y ∈ Y, a, b ∈ L.

(iv) (〈A1, B1〉 ≈ 〈A2, B2〉) =
( ∨

x∈X

γ(x,A1(x)) ≈V

∨
x∈X

γ(x,A2(x))
)

for all 〈A1, B1〉, 〈A2, B2〉 ∈ B(X, Y, I).
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Proof. Let γ and µ with the above properties exist. If we define the mapping
ϕ : B(X, Y, I) → V by ϕ(A,B) =

∨
x∈X

γ(x,A(x)) for all 〈A,B〉 ∈ B(X, Y, I),

then by the proof of Part (ii) of Theorem 14 in [3] (where differently defined
antisymmetry is not used anywhere) the mapping ϕ is bijective and preserves
fuzzy order. Thus, we have to prove that it preserves also fuzzy equality. However
this is immediate:
(ϕ(A1, B1) ≈V ϕ(A2, B2)) = (

∨
x∈X

γ(x,A1(x)) ≈V

∨
x∈X

γ(x,A2(x))) =

= (〈A1, B1〉 ≈ 〈A2, B2〉).

Conversely, let V and 〈〈B(X, Y, I),≈〉,�S〉 be isomorphic. Similarly to [3],
it suffices to prove existence of mappings γ, µ with desired properties for V =
〈〈B(X, Y, I),≈〉,�S〉 and for identity on 〈〈B(X, Y, I),≈〉,�S〉 which is obviously
an isomorphism. The reason for this simplification lies in the fact that for the
general case V ∼= 〈〈B(X, Y, I),≈〉,�S〉 one can take γ ◦ ϕ : X × L → V, µ ◦ ϕ :
Y × L → V , where ϕ is the isomorphism of 〈〈B(X, Y, I),≈〉,�S〉 onto V. If we
define γ : X × L → B(X, Y, I), µ : Y × L → B(X, Y, I) by

γ(x, a) =
〈
{a/x}

↑↓
, {a/x}

↑
〉

,

µ(y, b) =
〈{

b/y
}↓

,
{
b/y

}↓↑〉
for all x ∈ X, y ∈ Y, a, b ∈ L, then by the proof of Part (ii) of Theorem 14
in [3] (where differently defined antisymmetry is not used anywhere) these map-
pings γ, µ satisfy conditions (i–iii) of our theorem. So, it remains to prove con-
dition (iv), i.e. the equality

(〈A1, B1〉 ≈ 〈A2, B2〉) =
( ∨

x∈X

γ(x, A1(x)) ≈V

∨
x∈X

γ(x,A2(x))
)

.

Since we consider identity on 〈〈B(X, Y, I),≈〉,�S〉, we have ≈=≈V and it suf-
fices to prove that

∨
x∈X

γ(x,A(x)) = 〈A,B〉 for all 〈A,B〉 ∈ B(X, Y, I).

We start with proof of the equation A =
⋃

x∈X

{
A(x)/x

}↑↓
for any A = A↑↓.

On the one hand we get for each x′ ∈ X:( ⋃
x∈X

{
A(x)/x

}↑↓
)

(x′) =
∨

x∈X

{
A(x)/x

}↑↓
(x′) =

=
∨

x∈X

[ ∧
y∈Y

{
A(x)/x

}↑
(y) → I(x′, y)

]
=

=
∨

x∈X

[ ∧
y∈Y

( ∧
x̃∈X

{
A(x)/x

}
(x̃)→I(x̃, y)

)
→ I(x′, y)

]
=
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=
∨

x∈X

[ ∧
y∈Y

(A(x) → I(x, y)) → I(x′, y)

]
≥

≥
∧

y∈Y

[(A(x′) → I(x′, y)) → I(x′, y)] ≥

≥
∧

y∈Y

A(x′) = A(x′).

On the other hand we have:( ⋃
x∈X

{
A(x)/x

}↑↓
)

(x′) =
∨

x∈X

[ ∧
y∈Y

(A(x) → I(x, y)) → I(x′, y)

]
≤

≤
∨

x∈X

[ ∧
y∈Y

( ∧
x̃∈X

A(x̃) → I(x̃, y)
)
→ I(x′, y)

]
=

=
∨

x∈X

[ ∧
y∈Y

A↑(y) → I(x′, y)

]
=

=
∨

x∈X

A↑↓(x′) = A↑↓(x′) = A(x′).

Using also the definition of γ and Theorem 2, we obtain∨
x∈X

γ(x, A(x)) =
∨

x∈X

〈{
A(x)/x

}↑↓
,
{

A(x)/x

}↑
〉

=

=

〈( ⋃
x∈X

{
A(x)/x

}↑↓
)↑↓

,

( ⋃
x∈X

{
A(x)/x

}↑↓
)↑

〉
=

= 〈A↑↓, A↑〉 = 〈A,B〉. �

Remark 2. Note that the essential difference between Theorem 3 in this paper
and Theorem 14, part (ii) in [3] lies in differently defined L-ordered sets (see
the notes at the end of Section 2). Therefore in comparison to Theorem 14
of [3], Theorem 3 must contain “additional” condition (iv) which is necessary
for isomorphism between (more general) V and 〈〈B(X, Y, I),≈〉,�S〉.

5 Work in progress

There is an interesting proposition which deals with a completely lattice
L-ordered set 〈〈B(V, V,�),≈S〉,�S〉 such that

• � is an L-order on V ,
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• ≈S denotes an L-equality defined by (〈A1, B1〉 ≈S 〈A2, B2〉) = (v1 ≈ v2)
where vi (i ∈ {1, 2}) is the (unique) element of V such that (sup(Ai))(vi) = 1.
(Thus fuzzy equality between L-concepts 〈A1, B1〉, 〈A2, B2〉 ∈ B(V, V,�) is
expressed by fuzzy equality between suprema of their extents.)

Proposition 1. A completely lattice L-ordered set V = 〈〈V,≈V 〉,�〉 is isomor-
phic to 〈〈B(V, V,�),≈S〉,�S〉.

The proposition represents a corollary of Theorem 3, but an elegant proof of
this fact is a matter of further investigations.
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