
An Efficient Hybrid Algorithm for Mining
Frequent Closures and Generators

Laszlo Szathmary1, Petko Valtchev1, Amedeo Napoli2, and Robert Godin1

1 Dépt. d’Informatique UQAM, C.P. 8888,
Succ. Centre-Ville, Montréal H3C 3P8, Canada

Szathmary.L@gmail.com, valtchev.petko@uqam.ca, godin.robert@uqam.ca
2 LORIA UMR 7503, B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France

napoli@loria.fr

Abstract. The effective construction of many association rule bases re-
quires the computation of both frequent closed and frequent generator
itemsets (FCIs/FGs). However, these two tasks are rarely combined.
Most of the existing solutions apply levelwise breadth-first traversal,
though depth-first traversal, depending on data characteristics, is often
superior. Hence, we address here a hybrid algorithm that combines the
two different traversals. The proposed algorithm, Eclat-Z, extracts fre-
quent itemsets (FIs) in a depth-first way. Then, the algorithm filters FCIs
and FGs among FIs in a levelwise manner, and associates the generators
to their closures. In Eclat-Z we present a generic technique for extend-
ing an arbitrary FI-miner algorithm in order to support the generation
of minimal non-redundant association rules too. Experimental results
indicate that Eclat-Z outperforms pure levelwise methods in most cases.

1 Introduction

The discovery of meaningful associations is a key data mining task [1]. An as-
sociation miner typically proceeds in two steps: (i) extract all frequent patterns
X of a database, and (ii) break each pattern X into a premise Y , and a con-
clusion X \ Y parts to form a rule Y → X \ Y . Interestingness measures, such
as support and confidence, are applied to prune the set of extracted association
rules. However, the number of the remaining rules may still be way too high to
be practical. As a remedy, various concise representations of the family of valid
association rules have been proposed [2,3,4,5,6]. A good survey can be found
in [7].

Here we focus on the computation of frequent closed itemsets (FCIs) and
frequent generators (FGs), which underlie the minimal non-redundant associ-
ation rules (MNR) for instance. Following [2], these are rules with the form
P → Q \ P , where P ⊂ Q, P is a (minimal) generator (a.k.a. key-sets or free-
sets) and Q is a closed itemset. In other terms, in such rules the premise is min-
imal and the conclusion is maximal. As shown in [7],MNR is a lossless, sound,
and informative representation of all valid rules. Moreover, further restrictions

c© Radim Belohlavek, Sergei O. Kuznetsov (Eds.): CLA 2008, pp. 47–58,
ISBN 978–80–244–2111–7, Palacký University, Olomouc, 2008.

can be imposed on the rules inMNR, leading to more compact representations
such as the generic basis or the proper basis (see [7] for a complete list).

From a computational point of view, constructingMNR or its sub-structures
requires the family of frequent closed itemsets (FCIs) and their generators (FGs),
and possibly the precedence order between FCIs. A few methods for extracting
both FCIs and FGs have been published in the mining literature, e.g. A-Close [8]
or Titanic [9]. Generators have been targeted within the concept analysis field
as well [10], e.g. by Zart [11]. Well-known FCI/FG-miners exclusively apply
levelwise strategies, although the levelwise itemset miners are knowingly out-
performed by depth-first methods (e.g. Eclat [12], Charm [13], Closet [14]) on a
broad range of dataset profiles, especially on dense ones. Hence the idea of de-
signing a hybrid FCI/FG-miner. The algorithm that we propose called Eclat-Z
splits the FCI/FG-mining task into three steps. First, it applies the well-known
vertical algorithm Eclat for extracting the set of FIs. Second, it processes the FIs
in a levelwise manner to filter FCIs and FGs. This is why Eclat-Z is said to be a
hybrid algorithm. Finally, the algorithm associates FGs to their closures (FCIs)
to provide the necessary starting point for the production of MNR. Experi-
mental results show that Eclat-Z outperforms two other efficient competitors,
A-Close and Zart. During the design of Eclat-Z we had to face a challenge. The
Eclat algorithm, due to its depth-first nature, provides the FIs in a completely
unordered way. However, the levelwise post-processing steps require the FIs in
ascending order by length. We managed to solve this problem with a special file
indexing that proves to be efficient, generic, and gives no memory overhead at
all. As we will see, the idea of Eclat-Z can be generalized and used for arbitrary
FI-mining algorithm, either breadth-first or depth-first.

The main contribution of this work is a universal way of extending FI-miners
for computing minimal non-redundant association rules too. We present a novel
method for storing FIs in the file system if FIs are not provided in ascending
order by length. Thanks to our special file indexing technique, which requires
no additional memory, FIs can be sorted in a lengthwise manner. Once itemsets
are available in this order, we show an original technique for filtering generators,
closed itemsets, and associating generators to their closures.

The paper is organized as follows. Section 2 provides the basic concepts and
essential definitions. In Section 3, we give an overview of the Eclat algorithm.
This is followed in Section 4 with the detailed description of the Eclat-Z algo-
rithm, where we also give a running example. Next, we provide experimental
results in Section 5 for comparing the efficiency of Eclat-Z to A-Close and Zart.
Finally, conclusions and future work are discussed in Section 6.

2 Basic Concepts

Consider the following 5 × 5 sample dataset: D = {(1, ABDE), (2, AC),
(3, ABCE), (4, BCE), (5, ABCE)}. Throughout the paper, we will refer to
this example as “dataset D” .

48 Laszlo Szathmary, Petko Valtchev, Amedeo Napoli, Robert Godin

We consider a set of objects or transactions O = {o1, o2, . . . , om}, a set of at-
tributes or items A = {a1, a2, . . . , an}, and a relation R ⊆ O×A. A set of items
is called an itemset. Each transaction has a unique identifier (tid), and a set of
transactions is called a tidset.3 For an itemset X, we denote its corresponding
tidset, often called its image, as t(X). For instance, in dataset D, the image of
AB is 135, i.e. t(AB) = 135. Conversely, i(Y) is the itemset corresponding to
a tidset Y . The length of an itemset is its cardinality, whereas an itemset of
length k is called a k-itemset (or a k-long itemset). The support of an item-
set X, denoted by supp(X), is the size of its image, i.e. supp(X) = |t(X)|. An
itemset X is called frequent, if its support is not less than a given minimum
support (denoted by min_supp), i.e. supp(X) ≥ min_supp. The image function
induces an equivalence relation on ℘(A): X ∼= Z iff t(X) = t(Z) [15]. Moreover,
an equivalence class has a unique maximum w.r.t. set inclusion and possibly
several minima, respectively called closed itemset (a.k.a. concept intents in con-
cept analysis [16]) and generator itemsets (a.k.a. key-sets in database theory or
free-sets). The support-oriented definitions exploiting the monotony of support
upon ⊆ in ℘(A) are as follows:

Definition 1 (closed itemset; generator). An itemset X is closed (gener-
ator4) if it has no proper superset (subset) with the same support (respectively).

The closure of an itemset X (denoted by X ′′ following standard FCA notation)
is thus the largest itemset in the equivalence class of X. For instance, in dataset
D, the sets AB and AC are generators, and their closures are ABE and AC,
respectively (i.e. the equivalence class of AC is a singleton). In our approach, we
rely on the following two properties:

Property 1. A closed itemset cannot be the generator of a larger itemset.

Property 2. The closure of a frequent non-closed generator g is the smallest
proper superset of g in the set of frequent closed itemsets.

An association rule r: P1 → P2 involves two itemsets P1, P2 ⊆ A, s.t. P1∩P2 = ∅,
and P2 6= ∅. The support of a rule r is supp(r) = supp(P1∪P2) and its confidence
conf(r) = supp(P1 ∪ P2)/supp(P1). Frequent rules are defined in a way similar
to frequent itemsets, whereas confident rules play an equivalent role for the
confidence measure. A valid rule is both frequent and confident. Finding all
valid rules in a database is the target of a typical association rule mining task.

As their number may grow up to exponential, reduced sub-families of valid
rules are defined, which nevertheless convey the same information (lossless).
Associated expansion mechanisms allow for the entire family to be retrieved
from the reduced ones without any non-valid rules to be mixed in (soundness).
The minimal non-redundant association rule family (MNR) is made of rules
P → Q \ P , where P ⊂ Q, P is a (minimal) generator and Q is a closed

3 For convenience, we write an itemset {A, B, E} as ABE, and a tidset {1,3,5} as 135.
4 Generators are also called “keys” or “key itemsets”.

An Efficient Hybrid Algorithm for Mining Frequent Closures and Generators 49

itemset. A more restricted family arises from the additional constraint of P and
Q belonging to the same equivalence class, i.e. P ′′ = Q. It is known as the generic
basis for exact (100% confidence) association rules [7]. Here the basis refers to
the non-redundancy of the family w.r.t. a specific criterion. Inexact rule bases
can also be defined by means of generators and closures, e.g. the informative
basis [7], which further involves the inclusion order between closures.

3 Vertical Frequent Itemset Mining

The frequent itemset mining methods from the literature can be roughly split
into breadth-first and depth-first miners. Apriori -like [1] levelwise breadth-first
algorithms exploit the anti-monotony of frequent itemsets in a straightforward
manner: they advance one level at a time, generating candidates for the next level
and then computing their support upon the database. Depth-first algorithms, in
contrast, organize the search space in a tree. Typically using a sorted representa-
tion of the itemsets, they factor out common prefixes and hence limit the comput-
ing effort. Typical depth-first FI-miners include Eclat [17] and FP-growth [18].

3.1 Common Characteristics

Eclat was the first FI-miner using a vertical encoding of the database combined
with a depth-first traversal of the search space (organized in a prefix-tree) [17].

Vertical miners rely on a specific layout of the database that presents it in an
item-based, instead of a transaction-based, fashion. Thus, an additional effort is
required to transpose the global data matrix in a pre-processing step. However,
this effort pays back since afterwards the secondary storage does not need to
be accessed anymore. Indeed, the support of an itemset can be computed by
explicitly constructing its tidset which in turn can be built on top of the tidsets
of the individual items. Moreover, in [12], it is shown that the support of any
k-itemset can be determined by intersecting the tid-lists of any two of its (k−1)-
long subsets.

The central data structure in a vertical FI-miner is the IT-tree that represents
both the search space and the final result. The IT-tree is an extended prefix-tree
whose nodes are X × t(X) pairs. With respect to a classical prefix-tree or trie,
in an IT-tree the itemset X provides the entire prefix from the root to the node
labeled by it (and not the difference with the parent node prefix).

Example. Figure 1 presents the IT-tree of our example. Observe that the node
ABC × 35 for instance can be computed by combining the nodes AB × 135
and AC × 235. To that end, tidsets are intersected and itemsets are joined. The
support of ABC is readily established to 2.

3.2 Eclat

Eclat is a plain FI-miner traversing the IT-tree in a depth-first manner in a
pre-order way, from left-to-right [17,12].

50 Laszlo Szathmary, Petko Valtchev, Amedeo Napoli, Robert Godin

Fig. 1. IT-tree: Itemset-Tidset search tree of dataset D

At the beginning, the IT-tree is reduced to its root (empty itemset). Eclat ex-
tends the root one level downwards by adding the nodes of all frequent 1-itemsets.
Then, each of the new nodes is extended similarly: first, candidate descendant
nodes are formed by adding to its itemset the itemset of each right sibling; sec-
ond, the tidsets are computed by intersection and the supports are established;
and third, the frequent itemsets are added as effective descendant nodes of the
current node.

Running example. Using Figure 1, we illustrate the execution of Eclat on dataset
D with min_supp = 1 (20%). Initially, the IT-tree comprises only the root node
whose support is 100%. Frequent items with their tidsets are then added under
the root. Each of the new nodes is recursively extended, following a left-to-
right order and processing the corresponding sub-trees in a pre-order fashion.
For instance, the subtree of A comprises all frequent itemsets starting with A.
Thus, at step two, all 2-long supersets of A are formed using the right siblings
of A (frequent 1-itemsets). As AB, AC, AD, and AE are all frequent, they
are added as descendant nodes under the node of A. The extend procedure is
then recursively called on AB and the computation goes one level deeper in the
IT-tree. When the algorithm stops, all frequent itemsets are discovered.

4 The Eclat-Z Algorithm

Eclat-Z is a hybrid algorithm that combines the vertical FI-miner Eclat with
an original levelwise extension. Eclat finds all FIs that we save in the file sys-
tem. Then, this file is processed in a levelwise manner, i.e. itemsets are read
in ascending order by length, generators and closed itemsets are filtered, and
finally generators are associated to their closures. In the following, we present
the algorithm in detail.

4.1 Processing Itemsets in Ascending Order by Length

Sorting itemsets in ascending order by length is required for such algorithms that
produce FIs in an unordered way. Eclat, the algorithm used as itemset mining
“engine” here, is a good example of such an algorithm. Levelwise algorithms, like

An Efficient Hybrid Algorithm for Mining Frequent Closures and Generators 51

Table 1. Order of frequent itemsets produced by Eclat

order itemset support
1) ABCE 2
2) ABC 2
3) ABE 3
4) AB 3
5) ACE 2
6) AC 3
7) AE 3
8) A 4

order itemset support
9) BCE 3
10) BC 3
11) BE 4
12) B 4
13) CE 3
14) C 4
15) E 4

Apriori, represent an easier case because they produce FIs in ascending order
by length. If someone wants to use such an algorithm, he can continue with the
second part in Section 4.2. Here, in the first part, we present an efficient, file-
system based approach to process FIs in ascending order by their length. For
our example, we use dataset D with min_supp = 2 (40%). Eclat produces FIs
in an unordered way, as shown in Table 1.

As in practice it is impossible to keep all FIs in the main memory, we write FIs
in a binary file. In main memory we have an index, called PosIndex, for storing
file positions (Figure 2). PosIndex is a simple array of integers. At position k
it indicates where the last k-long itemset is written in the binary file. PosIndex
must always be kept up-to-date. On the left part of Figure 2, it is indicated how
PosIndex changes in time between t0 and t15. The right side of the same figure
shows the final state of PosIndex. Figure 3 shows the contents of the file. For
conciseness, support values are omitted. The file structure is explained through
the following examples.

Running example for storing itemsets. In our implementation of Eclat an IT-
node is processed when we return in recursion. Thus, the first FI found by Eclat
is ABCE (see Table 1). It is a 4-itemset. The size of the PosIndex array is
dynamically increased to size 4 + 1 (+1, because position 0 is not used). The
array is initialized: at each of its position we store −1 (time t0). As the length
of the found itemset is 4, we read the value of PosIndex at position 4. This
value (−1), together with the itemset is written to the binary file (see Figure 3).
The value that we read from PosIndex is a backward pointer that shows the file
position of the previous itemset with the same length. As the value is −1 here, it
simply means that this is the first itemset of this length. After writing ABCE
to the file, the 4th position of PosIndex is updated to 0 (t1), because the last
4-long itemset together with its backward pointer was written to position 0 in
the file. ABC is written similarly, and PosIndex is updated (t2). When ABE
is written to the file, its backward pointer is set to 5. This value is read from
PosIndex at position 3, since ABE is a 3-itemset. The process continues until
all FIs are found. The final state of PosIndex is indicated on the right side of
Figure 2.

52 Laszlo Szathmary, Petko Valtchev, Amedeo Napoli, Robert Godin

Fig. 2. The PosIndex structure. Timeline (left) and final state (right)

Fig. 3. Contents of the file with the FIs. File positions are also indicated

Running example for reading itemsets. Figure 3 illustrates how to read k-itemsets
from the file (here k = 1, shown in dark grey). First, we look for the last
1-itemset, which is registered in PosIndex (Figure 2) at position 1. The value
points at position 45 in the file. Itemset E is read, and we seek to the previous
1-itemset at position 43. C is read, seek to position 38. B is read, seek to position
26. A is read, and −1 indicates that there are no more 1-itemsets. This way FIs
can be processed in ascending order by length.

4.2 Finding Generators, Closures, and Associating Them

In the previous subsection, we presented the first part of the algorithm, i.e. how
to get frequent itemsets in ascending order by their length, even if they are
produced in an unordered way. In this subsection we continue with the second
part namely how to associate generators to their closures, once FIs are available
in a good order. The main block is shown in Algorithm 1. Two kinds of tables are
used, namely Fi for i-long frequent, and Zi for i-long frequent closed itemsets.

The readTable function is in charge of reading frequent itemsets of a given
length. If such an algorithm is used that produces FIs in an unordered way, like
Eclat, then readTable reads FIs from the binary file, as explained previously.
The function returns FIs in an Fi table. Fields of the table are initialized: item-
sets are marked as “keys” and “closed”. Of course, during the post-processing
step these values may change. Frequent attributes (frequent 1-itemsets) repre-
sent a special case. If they are present in each object of the dataset, then they
are not generators, because they have a smaller subset with the same support,

An Efficient Hybrid Algorithm for Mining Frequent Closures and Generators 53

Algorithm 1 (Eclat-Z):

1) maxItemsetLength← (size of the largest FI found by the FI-miner);
2) FG ← {}; // global list of frequent generators
3) F1 ← readTable(1); // get frequent 1-itemsets
4) for (i← 1; i < maxItemsetLength; i← i + 1) {
5) Fi+1 ← readTable(i + 1); // get frequent (i + 1)-itemsets
6) findKeysAndClosedItemsets(Fi+1, Fi); // filtering
7) Zi ← {l ∈ Fi | l.closed = true};
8) Find-Generators(Zi);
9) }
10) Zi ← {l ∈ Fi | l.closed = true};
11) Find-Generators(Zi);
12)
13) return

⋃
i Zi;

namely the empty set. In this case the empty set is a useful generator (w.r.t.
rule generation).

The findKeysAndClosedItemsets procedure is in charge of filtering FCIs
and FGs among FIs. The filtering procedure is based on Def. 1.

The Find-Generators procedure takes as input a Zi table. The method is
the following. For each frequent closed itemset z in Zi, it finds its proper subsets
in the global list FG, registers them as generators of z, deletes them from FG,
and adds non-closed generators from Fi to FG. Properties 1 and 2 guarantee that
whenever the subsets of an FCI are looked up in the list FG, only its generators
are returned.

Running example. The execution of Eclat-Z on dataset D with min_supp = 2
is illustrated in Table 2. Frequent 1-itemsets are read and stored in F1. Since
their support values are less than the total number of objects in the dataset, all
of them are keys (generators). They are also marked as “closed”. Then, frequent
2-itemsets are read too and stored in F2. The algorithm compares F2 to F1 in
order to filter non-closed and non-generator elements. The itemset BE has two
subsets in F1 with the same support, which means that BE is not a generator,
and B and E are not closed (by Def. 1). The remaining closed itemsets A and C
are copied from F1 to Z1, and their generators are determined. In the global list
of frequent generators (FG), which is still empty, they have no subsets, which
means that both A and C are generators themselves. Non-closed generators of
F1 (B and E) are added to the FG list. Comparing F3 to F2, it turns out that
ABE and BCE are not generators, while AB, AE, BC, and CE are not closed.
The remaining closed itemsets AC and BE are copied to Z2. The generator of
AC is itself, and the generators of BE are B and E. These two generators are
removed from FG and AB, AE, BC, and CE are added to FG. The 4-itemset
ABCE is the longest FI in the example. Its generators are read from FG. When
the algorithm stops, all FCIs with their generators are determined (see the union

54 Laszlo Szathmary, Petko Valtchev, Amedeo Napoli, Robert Godin

Table 2. Execution of Eclat-Z on dataset D with min_supp = 2 (40%)

F1 key? supp closed?
{A} yes 4 yes
{B} yes 4 yes
{C} yes 4 yes
{E} yes 4 yes

Z1 supp generators
{A} 4
{C} 4
FGbefore = {}
FGafter = {B, E}

F2 key? supp closed?
{AB} yes 3 yes
{AC} yes 3 yes
{AE} yes 3 yes
{BC} yes 3 yes
{BE} yes 4 yes
{CE} yes 3 yes

Z2 supp generators
{AC} 3
{BE} 4 {B, E}
FGbefore = {B, E}
FGafter = {AB, AE, BC, CE}

F3 key? supp closed?
{ABC} yes 2 yes
{ABE} yes 3 yes
{ACE} yes 2 yes
{BCE} yes 3 yes

Z3 supp generators
{ABE} 3 {AB, AE}
{BCE} 3 {BC, CE}
FGbefore = {AB, AE, BC, CE}
FGafter = {ABC, ACE}

F4 key? supp closed?
{ABCE} yes 2 yes

Z4 supp generators
{ABCE} 2 {ABC, ACE}
FGbefore = {ABC, ACE}
FGafter = {}

of the Zi tables in Table 2). If Eclat-Z leaves the generators of a closed itemset
empty, it simply means that the generator is identical to the closed itemset (this
is the case for A, C, and AC in the example). Recall that the support of a
generator is equivalent to the support of its closure.

5 Experimental Results

We evaluated Eclat-Z against Zart [11] and A-Close [8]. The algorithms were
implemented in Java under the Coron data mining platform [19].5 The experi-
ments were carried out on a bi-processor Intel Quad Core Xeon 2.33 GHz machine
running under Ubuntu GNU/Linux with 4 GB RAM. For the experiments we
have used the following datasets: T20I6D100K, C20D10K, and Mushrooms.
The T20I6D100K6 is a sparse dataset, constructed according to the properties
of market basket data that are typical weakly correlated data. The C20D10K is
a census dataset from the PUMS sample file, while the Mushrooms7 describes
mushrooms characteristics. The last two are highly correlated datasets.

5 http://coron.loria.fr
6 http://www.almaden.ibm.com/software/quest/Resources/
7 http://kdd.ics.uci.edu/

An Efficient Hybrid Algorithm for Mining Frequent Closures and Generators 55

Table 3. Response times of Eclat-Z and other statistics (response times of Zart
and A-Close, number of FIs, number of FCIs, number of FGs, and the proportion
of the number of FGs to the number of FIs)

min_supp execution time (sec.) # FIs # FCIs # FGs #FGs
#FIs

Eclat-Z Zart A-Close
T20I6D100K

1% 4.11 6.58 24.06 1,534 1,534 1,534 100.00%
0.75% 3.31 12.39 29.44 4,710 4,710 4,710 100.00%
0.5% 5.82 34.61 72.88 26,836 26,208 26,305 98.02%
0.25% 24.55 121.03 204.69 155,163 149,217 149,447 96.32%

C20D10K
30% 1.07 6.27 11.27 5,319 951 967 18.18%
20% 1.71 11.32 20.77 20,239 2,519 2,671 13.20%
10% 5.17 23.99 40.70 89,883 8,777 9,331 10.38%
5% 20.24 49.29 62.64 352,611 21,213 23,051 6.54%

Mushrooms
30% 0.82 2.87 5.86 2,587 425 544 21.03%
20% 3.36 7.72 11.68 53,337 1,169 1,704 3.19%
10% 37.46 46.37 29.43 600,817 4,850 7,585 1.26%
5% 368.03 391.97 50.20 4,137,547 12,789 21,391 0.52%

Table 3 contains the experimental evaluation of Eclat-Z against Zart and
A-Close. All times reported are real, wall clock times as obtained from the Unix
time command between input and output. We have chosen Zart and A-Close
because they represent two efficient algorithms that produce exactly the same
output as Eclat-Z. Zart and A-Close are both levelwise algorithms. Zart is an
extension of Pascal [15], i.e. first it finds all FIs using pattern-counting inference,
then it filters FCIs, and finally the algorithm associates FGs to their closures.
A-Close reduces the search space to FGs only, then it calculates the closure for
each generator. The way A-Close computes the closures of generators is quite
expensive because of the huge number of intersection operations.

In the sparse dataset T20I6D100K, almost all frequent itemsets are closed
and generators at the same time. It means that most equivalence classes are
singletons, thus A-Close cannot reduce the search space significantly. Since the
closure computation of A-Close is quite expensive, Eclat-Z performs much bet-
ter. Zart and Eclat-Z are similar in the sense that first both algorithms extract
FIs. While Zart is based on Pascal, Eclat-Z is based upon Eclat. The better per-
formance of Eclat-Z is due to the better performance of its FI-miner “engine”.

In datasets C20D10K and Mushrooms, the number of FGs is considerably
less than the total number of FIs. In this case, Zart can take advantage of its
pattern counting inference technique, and A-Close can benefit from its search
space reduction. Despite these optimizations, Eclat-Z still outperforms the two
algorithms in most cases. However, if the number of FGs is much less than the
number of FIs (for instance in Mushrooms by min_supp = 5%), A-Close gives
better response times.

56 Laszlo Szathmary, Petko Valtchev, Amedeo Napoli, Robert Godin

As a conclusion we can say that Eclat-Z clearly outperforms its levelwise
competitors on sparse datasets, and it also performs very well on dense, highly
correlated datasets if the minimum support threshold is not set too low.

6 Conclusion

In this paper we presented a generic algorithm called Eclat-Z that identifies FCIs
and their associated generators. From this output numerous concise representa-
tions of valid association rules can be readily derived.

Eclat-Z splits the FCI/FG-mining problem into three tasks: (1) FI-mining,
(2) filtering FCIs and FGs, and (3) associating FGs to their closures (FCIs). The
FI-mining part is solved by a well-known depth-first algorithm, Eclat. However,
with Eclat we had to face a challenge: it produces itemsets in an unordered way.
Thanks to a special file indexing technique, we managed to solve this issue in an
efficient way, thus steps (2) and (3) can post-process FIs in a levelwise manner.
As seen, the idea of the hybrid algorithm Eclat-Z can be generalized and used for
any FI-mining algorithm, be it breadth-first or depth-first. Experimental results
prove that Eclat-Z is highly efficient and outperforms its levelwise competitors
in most cases.

The study led to a range of exciting questions that are currently investigated.
Eclat-Z is highly efficient, but first it traverses the whole set of FIs. While in
sparse datasets it causes no problem, it can be a drawback in dense datasets
with very low minimum support. It would be interesting to combine the search
space reduction of A-Close with the efficiency of Eclat-Z. A further challenge
lies in the computation of the FCI precedence order that underlies some of the
association rule bases from the literature.

References

1. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large
Databases. In: Proc. of the 20th Intl. Conf. on Very Large Data Bases (VLDB
’94), San Francisco, CA, USA, Morgan Kaufmann Publishers Inc. (1994) 487–499

2. Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining Minimal
Non-Redundant Association Rules Using Frequent Closed Itemsets. In: Proc. of the
Computational Logic (CL ’00). Volume 1861 of LNAI., Springer (2000) 972–986

3. Kryszkiewicz, M.: Representative Association Rules. In: Proc. of the 2nd Pacific-
Asia Conf. on Research and Development in Knowledge Discovery and Data Mining
(PAKDD ’98), Melbourne, Australia, Springer-Verlag (1998) 198–209

4. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Closed set based discovery of
small covers for association rules. In: Proc. 15emes Journees Bases de Donnees
Avancees (BDA). (1999) 361–381

5. Duquenne, V.: Contextual implications between attributes and some representa-
tional properties for finite lattices. In: Beitraege zur Begriffsanalyse, B.I. Wis-
senschaftsverlag, Mannheim (1987) 213–239

6. Luxenburger, M.: Implications partielles dans un contexte. Mathématiques, Infor-
matique et Sciences Humaines 113 (1991) 35–55

An Efficient Hybrid Algorithm for Mining Frequent Closures and Generators 57

7. Kryszkiewicz, M.: Concise Representations of Association Rules. In: Proc. of the
ESF Exploratory Workshop on Pattern Detection and Discovery. (2002) 92–109

8. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering Frequent Closed
Itemsets for Association Rules. In: Proc. of the 7th Intl. Conf. on Database Theory
(ICDT ’99), Jerusalem, Israel (1999) 398–416

9. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing Iceberg
Concept Lattices with TITANIC. Data and Knowledge Engineering 42(2) (2002)
189–222

10. Valtchev, P., Missaoui, R., Godin, R.: Formal Concept Analysis for Knowledge
Discovery and Data Mining: The New Challenges. In: Proc. of the 2nd Intl. Conf.
on Formal Concept Analysis, Springer Verlag (Feb 2004) 352–371

11. Szathmary, L., Napoli, A., Kuznetsov, S.O.: ZART: A Multifunctional Itemset
Mining Algorithm. In: Proc. of the 5th Intl. Conf. on Concept Lattices and Their
Applications (CLA ’07), Montpellier, France (Oct 2007) 26–37

12. Zaki, M.J.: Scalable Algorithms for Association Mining. IEEE Transactions on
Knowledge and Data Engineering 12(3) (2000) 372–390

13. Zaki, M.J., Hsiao, C.J.: CHARM: An Efficient Algorithm for Closed Itemset Min-
ing. In: SIAM Intl. Conf. on Data Mining (SDM’ 02). (Apr 2002) 33–43

14. Pei, J., Han, J., Mao, R.: CLOSET: An Efficient Algorithm for Mining Frequent
Closed Itemsets. In: ACM SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery. (2000) 21–30

15. Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining frequent
patterns with counting inference. SIGKDD Explor. Newsl. 2(2) (2000) 66–75

16. Ganter, B., Wille, R.: Formal concept analysis: mathematical foundations.
Springer, Berlin/Heidelberg (1999)

17. Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New Algorithms for Fast
Discovery of Association Rules. In: Proc. of the 3rd Intl. Conf. on Knowledge
Discovery in Databases. (August 1997) 283–286

18. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In: Proc. of the 2000 ACM SIGMOD Intl. Conf. on Management of Data (SIGMOD
’00), ACM Press (2000) 1–12

19. Szathmary, L.: Symbolic Data Mining Methods with the Coron Platform. PhD
Thesis in Computer Science, Univ. Henri Poincaré – Nancy 1, France (Nov 2006)

58 Laszlo Szathmary, Petko Valtchev, Amedeo Napoli, Robert Godin

