
CLA 2008
Proceedings of the Sixth International Conference on
Concept Lattices and Their Applications

Palacký University, Olomouc, Czech Republic

ISBN 978–80–244–2111–7

Palacký University, Olomouc, Czech Republic

The Sixth International Conference on
Concept Lattices and Their Applications

CLA 2008

Olomouc, Czech Republic
October 21–23, 2008

Edited by

Radim Belohlavek
Sergei O. Kuznetsov

CLA 2008
c© Radim Belohlavek, Sergei O. Kuznetsov, Editors

This work is subject to copyright. All rights reserved. Reproduction or publica-
tion of this material, even partial, is allowed only with the editors’ permission.

Technical Editor:
Jan Outrata, jan.outrata@upol.cz

Page count: xii+243
Impression: 70
Edition: 1st

First published: 2008

Published and printed by:
Palacký University, Olomouc, Czech Republic

jan.outrata@upol.cz

Organization

CLA 2008 was organized by the Palacký University, Olomouc, and the State
University of New York at Binghamton.

Steering Committee

Radim Belohlavek State University of New York at Binghamton, USA
Sadok Ben Yahia Faculté des Sciences de Tunis, Tunisia
Jean Diatta Universit de la Réunion, France
Peter Eklund University of Wollongong, Australia
Michel Liquiere LIRMM, Montpellier, France
Engelbert Mephu Nguifo CRIL CNRS FRE 2499 - IUT de Lens, France
Václav Snášel VŠB-TU Ostrava, Czech Republic

Program Chairs

Radim Belohlavek State University of New York at Binghamton, USA
Sergei O. Kuznetsov State University Higher School of Economics, Moscow,

Russia

Program Committee

Radim Belohlavek State University of New York at Binghamton, USA
Sadok Ben Yahia Faculté des Sciences de Tunis, Tunisia
Claudio Carpineto Fondazione Ugo Bordoni, Roma, Italy
Jean Diatta Université de la Réunion, France
Vincent Duquenne Université Pierre et Marie Curie, Paris, France
Peter Eklund University of Wollongong, Australia
Samir Elloumi Faculté des Sciences de Tunis, Tunisia
Sebastien Ferre Irisa/Université de Rennes 1, France
Mohamed M. Gammoudi ISG, Kairouan, Tunisia
Bernhard Ganter TU-Dresden, Dresden, Germany
Marianne Huchard LIRMM, Montpellier, France
Ali Jaoua University of Qatar, Qatar
Bjoern Koester Webstrategy, GmbH, Germany
Stanislav Krajci UPJŠ Košice, Slovakia
Sergei Kuznetsov State University Higher School of Economics, Moscow,

Russia
Léonard Kwuida Bern University of Applied Science, Switzerland
Engelbert Mephu Nguifo CRIL CNRS FRE 2499 - IUT de Lens, France
Boris Mirkin Birkbeck College, University of London, UK
Rokia Missaoui UQO, Gatineau, Canada
Amedeo Napoli LORIA, Nancy, France
Lhouari Nourine LIMOS, Université de Clermont Ferrand, France
Sergei Obiedkov State University Higher School of Economics, Moscow,

Russia
Uta Priss Napier University, Edinburgh, United Kingdom
Sebastian Rudolph Institute AIFB, University of Karlsruhe, Germany
Yahya Slimani Faculty of Sciences, Tunis, Tunisia
Petko Valtchev DIRO, Université de Montréal, Canada
Vilem Vychodil State University of New York at Binghamton, USA
Rudolf Wille TU Darmstadt, Germany
Serhiy Yevtushenko Kiev, Ukraine

Additional Reviewers

Olivier Bedel Irisa/Université de Rennes 1, France
Chaima Ben Youssef Faculté des Sciences de Tunis, Tunisia
Ines Bouzouita Faculté des Sciences de Tunis, Tunisia
Peggy Cellier Irisa/Université de Rennes 1, France
Alain Gély LIMOS, Clermont Ferrand, France
Tarek Hamrouni Faculté des Sciences de Tunis, Tunisia
Mehdi Kaytoue LORIA, Nancy, France
Mondher Maddouri Faculté des Sciences de Tunis, Tunisia
Jan Outrata Palacký University, Olomouc, Czech Republic

Organization Committee

Michal Krupka (Chair) Palacký University, Olomouc, Czech Republic
Eduard Bartl State University of New York at Binghamton, USA
Jan Konecny State University of New York at Binghamton, USA
Tomas Kuhr Palacký University, Olomouc, Czech Republic
Petr Osicka Palacký University, Olomouc, Czech Republic
Jan Outrata Palacký University, Olomouc, Czech Republic

Sponsoring Institutions

PIKE ELECTRONIC, Czech Republic – main sponsor

PIKE Electronic is one of the leading Central European IT companies providing
complex service in the field of software application development. The Company
delivers or participates on large-scale projects around the globe, cooperating with
partners such as Siemens AG, Siemens E&A, SMS DEMAG, TIBCO, Hewlett–
Packard, Accenture or Oracle. The main strategic target is specialization in “core
business” areas, consolidation, effective distribution and use of long-term expe-
riences and know-how in segments of Process Automation, SOA & Enterprise
Application Integration , Information Systems for Health Insurance, Business
Intelligence, Telecommunication, Banking, and Logistic.
PIKE ELECTRONIC and the Department of Computer Science of Palacký Uni-
versity have been cooperating for more than ten years. In the recent years, PIKE
ELECTRONIC participated in a large research project on Relational Data Anal-
ysis which was supported by the Academy of Sciences of the Czech Republic
during 2004–2008. The principal investigator was Professor Radim Belohlavek
from the Department of Computer Science, the principal co-investigator was Dr.
Stanislav Opichal from PIKE. The research results of this project were published
in premier international journals and in proceedings of recognized international
conferences.

SwissCentrum software, Czech Republic

Faculty of Science, Palacký University, Czech Republic

Table of Contents

Preface

Invited Contributions

Recent Interfaces for Formal Concept Analysis . 1
Bernhard Ganter

The GUHA Method and its Meaning for Data Mining 3
Petr Hájek

Biclustering Methods Meets Formal Concept Analysis 5
George Karypis

Rough Sets and Formal Concept Analysis: Foundations and the Case
Studies of Feature Subset Selection and Knowledge Structure Formation . 7

Dominik Ślȩzak

Papers

A Formal Concept Analysis of Harmonic Forms and Interval Structures . . 9
Tobias Schlemmer, Stefan E. Schmidt

Connecting Many-valued Contexts to General Geometric Structures 23
Tim B. Kaiser

Concept Lattice Mining for Unsupervised Named Entity Annotation 35
Thomas Girault

An Efficient Hybrid Algorithm for Mining Frequent Closures and
Generators . 47

Laszlo Szathmary, Petko Valtchev, Amedeo Napoli, Robert Godin

Optimal Decompositions of Matrices with Grades into Binary and
Graded Matrices . 59

Eduard Bartl, Radim Belohlavek, Jan Konecny

Parallel Recursive Algorithm for FCA . 71
Petr Krajca, Jan Outrata, Vilem Vychodil

Proto-fuzzy Concepts, their Retrieval and Usage . 83
Ondrej Kŕıdlo, Stanislav Krajči

Application of the Formal Concept Analysis in Evaluation of Results
of ANEWS Questionnaire and Physical Activity of the Czech Regional
Centers . 97

Jiř́ı Zacpal, Erik Sigmund, Josef Mitáš, Vladimı́r Sklenář

A Model-driven Engineering Based RCA Process for Bi-level Models
Elements / Meta-elements: Application to Description Logics 109

Xavier Dolques, Jean-Rémy Falleri, Marianne Huchard, Clémentine
Nebut

Extending Attribute Exploration by Means of Boolean Derivatives 121
José Antonio Alonso-Jiménez, Gonzalo A. Aranda-Corral,
Joaqúın Borrego-Dı́az, M. Magdalena Fernández-Lebrón, M. José
Hidalgo-Doblado

FCA Software Interoperability . 133
Uta Priss

GARM: Generalized Association Rule Mining . 145
Tarek Hamrouni, Sadok Ben Yahia, Engelbert Mephu Nguifo

Concept-based Recommendations for Internet Advertisement 157
Dmitry I. Ignatov, Sergei O. Kuznetsov

The Mathematical in Music Thinking . 167
Rudolf Wille, Renate Wille-Henning

An Application of Formal Concept Analysis to Neural Decoding 181
Dominik Endres, Peter Földiák, Uta Priss

Some Links Between Decision Tree and Dichotomic Lattice 193
Stéphanie Guillas, Karell Bertet, Muriel Visani, Jean-Marc Ogier,
Nathalie Girard

On Generalization of Fuzzy Concept Lattices Based on Change of
Underlying Fuzzy Order . 207

Pavel Martinek

On the Isomorphism Problem of Concept Algebras . 217
Léonard Kwuida, Hajime Machida

Factorization of Concept Lattices with Hedges by Means of
Factorization of Residuated Lattices . 231

Michal Krupka

Author Index . 243

Preface

The present volume contains regular papers from CLA 2008, the Sixth Interna-
tional Conference on Concept Lattices and Their Applications. CLA 2008 was
held in Olomouc, Czech Republic, from October 21 to October 23, 2008, and was
jointly organized by the Palacký University, Olomouc, and the State University
of New York at Binghamton. The areas of interest for CLA include various topics
related to formal concept analysis, such as foundational aspects, concept lattices
and related structures, data mining, attribute implications and data dependen-
cies, algorithms, visualization, data preprocessing, redundancy and dimension-
ality reduction, information retrieval, classification, clustering, ontologies, and
applications in various domains.
The conference received 29 initial submissions from which 19 were accepted as
regular papers (acceptance rate for regular papers is 0.66). Contributions to CLA
2008 were refereed by at least two reviewers (2.88 reviews per paper on average)
on the basis of their originality, quality, significance, and presentation. When
one of the program chairs was involved in a paper, the reviewing process of this
paper was managed independently by the other chair.
The program of CLA 2008 consisted of presentations of regular papers and
posters, and four invited talks, namely by Bernhard Ganter (TU Dresden, Ger-
many), Petr Hájek (Academy of Sciences of the Czech Republic), George Karypis
(University of Minnesota, USA), and Dominik Slezak (Infobright Inc., Canada).
We would like to express our thanks to the authors who submitted their papers
to CLA 2008, to the invited speakers, to the members of Program Committee
who managed the review of papers, to additional reviewers, to the members of
the Organization Committee, as well as to the conference attendees, who all
helped make CLA 2008 a successful event.

October 2008 Radim Belohlavek
Sergei O. Kuznetsov

Program Chairs of CLA 2008

Recent Interfaces for Formal Concept Analysis

Bernhard Ganter

TU-Dresden, Dresden, Germany

Abstract. We report on recent developments connecting FCA with other research

areas, focussing on such with connections to Dresden. These include approaches to

Rough Sets, to Dependencies, to Machine Learning, to Description Logics, and to

Algebraic Biology. It seems that the systematic theoretical foundation of FCA paves

the way to many different fields and that FCA has a potential to bridge some gaps

between different areas.

The GUHA Method and its Meaning for Data
Mining

Petr Hájek

Institute of Computer Science,
Academy of Sciences of the Czech Republic

Abstract. The talk presents the history and present state of the GUHA method, its

theoretical foundations and its relation and meaning for data mining. (Joint work with

M. Holena a J. Rauch.)

Biclustering Methods Meets Formal Concept
Analysis

George Karypis

University of Minnesota, Twin Cities, Minneapolis, USA

Abstract. The purpose of this talk is to provide an overview of the problem of bi-

clustering, review the various state-of-the-art methods that have been developed in

recent years for solving it, and discuss how Formal Concept Analysis methods can

benefit from or can be used in bi-clustering.

Rough Sets and Formal Concept Analysis:
Foundations and the Case Studies of Feature
Subset Selection and Knowledge Structure

Formation

Dominik Ślȩzak

Infobright Inc., Canada/Poland

Abstract. The theories of Rough Sets (RS) and Formal Concept Analysis (FCA) are

well-established from the point of view of both mathematical foundations and real-life

applications. The interest in searching for similarities and dissimilarities between RS

and FCA has been constantly growing, both with respect to pure theory, as well as with

an objective of developing hybrid techniques, better adjusted to practical problems.

In this talk, we outline introductory notions of RS and we draw basic lines of its

comparison with FCA. As the first case study, we consider the KDD-related problem of

feature subset selection and show how to model some new approaches to approximate

selection (a more flexible and more practically applicable extension of the classical

RS-based feature subset selection principles) in the FCA terminology. As the second

case study, we consider the latest Infobright’s open source data warehouse platform

(www.infobright.org) and we discuss possibilities of improving its performance by using

new RS-FCA-based knowledge structures automatically calculated from data.

A Formal Concept Analysis of Harmonic Forms
and Interval Structures

Tobias Schlemmer and Stefan E. Schmidt

Technische Universität Dresden,
Fachrichtung Mathematik, 01062 Dresden, Germany

Tobias.Schlemmer@mailbox.tu-dresden.de, midt1@msn.com
http://www.math.tu-dresden.de/~schlemme/

Abstract. While small concept lattices are often represented by line
diagrams to better understand their full structure, large diagrams may
be too complex to do this. However, such a diagram may still be used
to receive new ideas about the inherent structure of a concept lattice.
This will be demonstrated for a certain family of formal contexts arising
from mathematical musicology. In particular, we investigate how chord
patterns can be characterised by their interval structure. For such con-
texts of pattern structures, it turns out that each corresponding concept
lattice incorporates two competing building principles, one emanating
from the top the other from the bottom of the lattice.

Key words: formal concept lattice, harmonic form, musicology, interval

1 Introduction

Harmonic forms provide basic notions for the descriptions of chords. Well-known
examples are the harmonic form of a major triad which stands for all major
chords and, similarly, the minor triad which is the harmonic form of minor
chords.

Besides harmonies and chords, harmonic forms play an important role for
tuning software like Mutabor [1]. In general, applications of mathematical mu-
sicology to music software unfold different questions about the mathematical
structure of harmonic forms in tone systems.

In the past, formal concept analysis has been applied to various fields of music
already (e. g. [3], [4], [5], and [6]). Here as well as in other fields of mathematical
musicology (cf. Mazzola et al. [7]), harmonic forms have been analysed to a
certain extent, however, there are still plenty of open problems to address.

The description of the structure of harmonic forms leads to concept lattices
that are often considered as too large to be drawn meaningfully. However, the
diagrams will serve us as a source of information useful for finding more adequate
mathematical models.

c© Radim Belohlavek, Sergei O. Kuznetsov (Eds.): CLA 2008, pp. 9–22,
ISBN 978–80–244–2111–7, Palacký University, Olomouc, 2008.

2 Qualitative analysis of harmonic forms

To describe musical objects, we need mathematical notions of them. A funda-
mental one is that of a tone system, which can be modelled as a collection of
tones and their interval structure (see also [9], [10]):

A triple T = (T, δ, I) is called an (algebraic) tone system, if T is a set,
I = (I,+, 0) is an Abelian group and δ : T × T → I is a map such that for all
t1, t2, t3 ∈ T the following hold:

δ(t1, t2) + δ(t2, t3) = δ(t1, t3) and (1)
δ(t1, t2) = 0 iff t1 = t2. (2)

The elements of the set T are called tones and each subset of T is called a chord.
The elements of I are considered as intervals. For s, t ∈ T , the interval from s to
t is given by i ∈ I if i = δ(s, t) holds; in this case we can agree upon s + i := t.
For a tone t, the set of all intervals from t is given by I(t) := δ[{t}×T]; it follows
t + I(t) = T and I(s) = δ(s, t) + I(t) for all s, t ∈ T .

We call T homogeneous if I(t) is a subgroup of I for some tone t; in this case,
we observe that I(s) = I(t) = δ[T × T] holds for all tones s and t in T. We refer
to T as a (freely) n-generated tone system if T is homogeneous, δ[T × T] = I,
and I is a (freely) n-generated group.

A transposition by the interval i ∈ I is defined as the map τi : T → T
such that t 7→ t + i (if t + i exists for every tone t). Obviously, in case of a
homogeneous tone system, a transposition τi exists for every i ∈ δ[T × T]. In
particular, an n-generated tone system allows a transposition by any interval
of I, and we observe, that the set of all transpositions forms a transformation
group canonically isomorphic to the interval group I.

A morphism from a tone system T = (T, δ, I) to a tone system T′ = (T ′, δ′, I ′)
is defined as a pair φ := (φT , φI), consisting of a map φT : T → T ′ and a group
homomorphism φI : I → I′, such that for all s, t ∈ T we have

φI

(
δ(s, t)

)
= δ′

(
φT (s), φT (t)

)
. (3)

If, in addition, φT and φI are bijections then φ is called an isomorphism
(from T to T′). Every transposition τ induces via (τ, idI) an automorphism on
T.

For every positive integer n, a freely n-generated tone system is always iso-
morphic to the tone system (Zn, δ, Zn) where δ(x, y) := y − x for all x, y ∈ Zn.

In the following we consider the 1-generated tone system T = (Z, δ, Z) and
we fix a positive integer O ∈ Z+, which we consider as an interval called octave.
Let ZO denote the residue ring of integers modulo O and let TO := (ZO, δO, ZO)
be the 1-generated algebraic tone system (where δO(x, y) denotes the difference
y−x in ZO). Following the language of musicology, TO is called a chroma system,
and its elements are refereed to as chromas. More specifically, we will refer to TO

as O-tone equal tempered chroma system, in short O-tet. The most commonly
used of these are the 12-tet (T12) and the 7-tet (T7).

10 Tobias Schlemmer, Stefan E. Schmidt

Table 1. parameters describing concept lattices of harmonic forms.

Group # of harmonic forms # of irreducibles (rows/columns) # of concepts

Z1 2 1 2
Z2 3 2 3
Z3 4 3 4
Z4 6 4 6
Z5 8 6 9
Z6 14 11 18
Z7 20 13 42
Z8 36 25 142
Z9 60 39 1 460
Z10 108 73 9 325
Z11 188 112 1 798 542
Z12 352 212 208 946 771

The canonical group homomorphism φO : Z → ZO (which maps every integer
x to its residue modulo O, denoted by xO) induces via (φO, φO) a morphism from
T onto TO. Every chord X in T is mapped to the chord XO := {xO | x ∈ X} in
TO, which will be called the harmony of X.

Chords and harmonies can efficiently be classified by the occurrence of inter-
vals and chromas. In particular, two chords or harmonies have the same pattern
if they are related by a transposition. The corresponding pattern classes we refer
to as chordal forms or harmonic forms, respectively.

The degree of consonance or dissonance of a harmony is mostly influenced
by its pattern.

Harmonic forms and their hierarchical order have been studied by Rudolf
Wille and other authors ([5]). Though the corresponding concept lattice for
the 7-tet T7 has a nice diagram (see figure 1), the number of concepts of TO

is rapidly growing for increasing octave O. Table 1 shows some statistics about
these concept lattices. For every chroma system there are printed the number of
harmonic forms, the count of rows and columns in the formal context (describing
the order of the harmonic forms), and the number of formal concepts in the
corresponding concept lattice.

In other important chroma systems the hierarchical order of harmonic forms
is too complex to be examined in the fashion above. Therefore, it is interesting
to use other properties to clarify the structure of harmonic forms.

One important property is the interval structure of harmonic forms, since
the intervals contained in a harmonic form have a major impact on their degree
of consonance or dissonance. One example is shown in figure 2. Here, for the
7-tet a formal context is composed of the set of harmonic forms as objects, the
set of intervals as attributes, and the interval occurrence as incidence relation.
Also, in comparison with figure 1, this concept lattice is significantly simpler
(but ordered oppositely).

The other corresponding lattices are relatively small too, as shown in table
2, which enables us to have a view on the 12-tet lattice (fig. 3).

A Formal Concept Analysis of Harmonic Forms and Interval Structures 11

Fig. 1. Dedekind-McNeille completion of the order of harmonic forms in Z7.

12 Tobias Schlemmer, Stefan E. Schmidt

u
n
is

o
n

se
co

n
d

th
ir

d
fo

u
rt

h

rest

0 ×
0, 1 × ×
0, 2 × ×
0, 1, 2 × × ×
0, 3 × ×
0, 1, 3 × × × ×
0, 2, 3 × × × ×
0, 1, 2, 3 × × × ×
0, 1, 4 × × ×
0, 2, 4 × × ×
0, 1, 2, 4 × × × ×
0, 1, 3, 4 × × × ×
0, 2, 3, 4 × × × ×
0, 1, 2, 3, 4 × × × ×
0, 1, 3, 5 × × × ×
0, 1, 2, 3, 5 × × × ×
0, 1, 2, 4, 5 × × × ×
0, 1, 2, 3, 4, 5 × × × ×
0, 1, 2, 3, 4, 5, 6 × × × ×

Fig. 2. Formal context and concept lattice which qualitatively describes the contained
intervals of harmonic forms in the 7-tet

Table 2. Statistics of harmony interval concept lattices

Group # of harmonic forms # forms clar. # forms red. # intervals # int. red. #concepts

Z1 2 2 1 1 1 2
Z2 3 3 2 2 2 3
Z3 4 3 2 2 2 3
Z4 6 5 3 3 3 5
Z5 8 5 3 3 3 5
Z6 14 7 5 5 4 7
Z7 20 9 4 4 4 9
Z8 36 12 6 5 5 13
Z9 60 13 7 5 5 16
Z10 108 20 6 6 6 33
Z11 188 23 6 6 6 33
Z12 352 32 7 6 7 65

A Formal Concept Analysis of Harmonic Forms and Interval Structures 13

Figures 2 and 3 are largely Boolean lattices (except the node named “rest”).
It is also visible in figure 3 that not every node has a label. In the language of
music this means that the intervals cannot be combined freely. They have to
fulfil certain restrictions.

On the other hand, in this approach we consider neither the order nor the
multiplicity of intervals. So with this method some sets of harmonic forms are
identified. For example the major triad and the minor triad share the same
label since they consist of a minor third, a major third and a fourth as chroma
intervals.

In comparison with the concept lattices of the 7-tet and the 12-tet, the ones
of the 6-tet and the 8-tet are less symmetric (figure 4). This means, the lattices
have a more complex underlying structure.

3 Analysis reflecting interval multiplicities

The Dedekind-McNeille completion of the ordering of harmonic forms does
not reflect the notion of an interval. However, it describes a much finer granular-
ity than given by the previously discussed type of lattice (derived from interval
occurrence). The gap between these two lattice types can be filled by considering
many-valued contexts, which reflect multiplicities of intervals within harmonic
forms.

Figure 5 shows such a context in the 7-tet. Its ordinary scaled version is
shown in figure 6 and the corresponding concept lattice appears in figure 7. This
lattice has more concepts than the one presented in figure 2, but it contains
less information than the one in figure 1. Though the multiplicity of intervals
is reflected by the lattice, their internal arrangement remains neglected. For
example, the harmonic forms of {0, 1, 3} and {0, 2, 3} are different but share the
same node. This impacts the musical interpretation, as some harmonic forms
(like the major triad and the minor triad in the 12-tet) are indistinguishable.

Furthermore, the lattice of figure 7 has a very regular structure. In the upper
part, the free distributive lattice with three generating elements is visible. The
concepts below it form a typical configuration for all lattices of this family, which
can be seen more clearly in the lattices investigated in the sequel.

After observing the beautiful structure provided by the 7-tet, we investigated
higher orders in a similar fashion. Our suggestive approach was to draw the
diagrams by ordering the intervals from left to right according to their sizes. For
the 8-tet this can be seen in the left diagram of figure 8.

Aiming for further insight, the following question arises: Which lattices allow
nice diagrams and how can these diagrams be realised? To get a clue how to
answer this question we focus again on the left diagram in figure 8. The right
hand side of this diagram shows some interesting structural specialities: There
are shorter chains from top to bottom of the lattice than on the left hand side.
This phenomenon has the following cause: The concepts on the right hand side
share the fifth (distance 4), which is an element of order 2 in the interval group.
So these intervals occur only in pairs. This differs from the other intervals, which

14 Tobias Schlemmer, Stefan E. Schmidt

Fig. 3. Concept lattice qualitatively describing the contained intervals of harmonic
forms in the 12-tet. The list of harmonic forms in the lower node is truncated.

A Formal Concept Analysis of Harmonic Forms and Interval Structures 15

Fig. 4. Concept lattice qualitatively describing the contained intervals of harmonic
forms in the 6-tet and the 8-tet

pattern unison second third fourth

rest

0 1

0, 1 2 1

0, 2 2 1

0, 1, 2 3 2 1

0, 3 2 1

0, 1, 3 3 1 1 1

0, 2, 3 3 1 1 1

0, 1, 2, 3 4 3 2 1

0, 1, 4 3 1 2

0, 2, 4 3 2 1

0, 1, 2, 4 4 2 2 2

0, 1, 3, 4 4 2 2 3

0, 2, 3, 4 4 2 2 2

0, 1, 2, 3, 4 5 4 3 3

0, 1, 3, 5 4 1 3 2

0, 1, 2, 3, 5 5 3 4 3

0, 1, 2, 4, 5 5 3 3 4

0, 1, 2, 3, 4, 5 6 5 5 5

0, 1, 2, 3, 4, 5, 6 7 7 7 7

Fig. 5. Many-valued context describing the contained intervals of the 7-tet

16 Tobias Schlemmer, Stefan E. Schmidt

u
n
is

o
n

(d
=

0
)

se
co

n
d

(d
=

1
)

2
×

se
co

n
d

(d
=

1
)

3
×

se
co

n
d

(d
=

1
)

4
×

se
co

n
d

(d
=

1
)

5
×

se
co

n
d

(d
=

1
)

6
×

se
co

n
d

(d
=

1
)

7
×

se
co

n
d

(d
=

1
)

th
ir

d
(d

=
2
)

2
×

th
ir

d
(d

=
2
)

3
×

th
ir

d
(d

=
2
)

4
×

th
ir

d
(d

=
2
)

5
×

th
ir

d
(d

=
2
)

6
×

th
ir

d
(d

=
2
)

7
×

th
ir

d
(d

=
2
)

fo
u
rt

h
(d

=
3
)

2
×

fo
u
rt

h
(d

=
3
)

3
×

fo
u
rt

h
(d

=
3
)

4
×

fo
u
rt

h
(d

=
3
)

5
×

fo
u
rt

h
(d

=
3
)

rest

0 ×
0, 1 × ×
0, 2 × ×
0, 1, 2 × × × ×
0, 3 × ×
0, 1, 3 × × × ×
0, 2, 3 × × × ×
0, 1, 2, 3 × × × × × × ×
0, 1, 4 × × × ×
0, 2, 4 × × × ×
0, 1, 2, 4 × × × × × × ×
0, 1, 3, 4 × × × × × × ×
0, 2, 3, 4 × × × × × × ×
0, 1, 2, 3, 4 × × × × × × × × × × ×
0, 1, 3, 5 × × × × × × ×
0, 1, 2, 3, 5 × × × × × × × × × × ×
0, 1, 2, 4, 5 × × × × × × × × × × ×
0, 1, 2, 3, 4, 5 × × × × × × × × × × × × × × × ×
0, 1, 2, 3, 4, 5, 6 ×

Fig. 6. Scaled formal context quantitatively describing the contained intervals of har-
mony patterns in the 7-tet

A Formal Concept Analysis of Harmonic Forms and Interval Structures 17

Fig. 7. Concept lattices of the context counting the intervals in the 7-tet

Fig. 8. Concept lattice describing the contained intervals in the 8-tet in two different
chain decompositions

18 Tobias Schlemmer, Stefan E. Schmidt

can be combined more freely. For example the harmonic form represented by the
harmony {0, 1, 2, 3, 4} has only three (unordered) pairs of chromas containing a
third, namely {0, 2}, {1, 3}, {2, 4}.

Thus, divisibility of the group order has an impact on the (potential) layout
and also the aesthetics of the generated diagram. On the other hand, harmonic
forms of T4 can be embedded into T8 in various ways. The most important ones
are defined by the mappings of chromas f1 : t 7→ t and f2 : t 7→ 2t. Each of these
maps preserves to a reasonable extent the interval structure.

This suggests to rearrange the order of the intervals in the diagram to better
unfold the lattice diagram. Coprime intervals (where coprime is meant in the
number theoretic sense) should be positioned far apart from each other, while
those with small greatest common divisor not equal to 1, should be in close
proximity. The unfolded lattice is shown on the right hand side of figure 8.

It turns out that divisibility is the main property which makes the upper part
of such a pattern lattice deviate from a product of chains. The lower part of the
pattern lattice is of a significantly different shape. To discuss this, we point out
the following general fact: In the chroma system TO intervals can be described
as Lee distances (see [11]) between chromas.

The lowest point of such a diagram (as given in figure 8) represents the
harmonic form of the complete chroma set ZO. Here, the Lee distances between
unordered pairs of chromas form the set {0, . . . , bO/2c}. In the diagram the
upper neighbour of the concept of the complete harmonic form represents an
almost complete chroma set of size one less than ZO. That means, all intervals
occur with the same frequency O− 2. Next, selecting O− 2 chromas, results in
a harmonic form with two chromas omitted. Thus, each interval which ends in
one of these two points will occur only O − 4 times in the pattern. But there
is one exception: The interval between the two deleted points has been counted
twice. Consequently, this interval occurs (still) O − 3 times in the harmonic
form. Obviously, with an increasing number of deleted chromas, the number of
intervals additionally vanishing, decreases further.

Because of the above, the lattice is divided into several levels of object con-
cepts according to the number of chromas in the harmonic forms. This is not
hard to understand since every harmonic form with k chromas contains k(k−1)

2
intervals (where multiplicities are respected). The latter means that the concept
of such a harmonic form has k(k−1)

2 + 1 attribute concepts of interval sets above
it. Adding a chroma increases the number of interval concepts by k.

In case of example T12, the above mentioned levels of harmonic forms become
increasingly apparent towards the bottom part of the lattice T12 (see figure 9).
The right hand side of the diagram shows the “lightning rod chains”, which
result from the even group order leading to the pairwise occurrence of tritone
intervals (distance 6) as described above.

The structure of the left hand side in the diagram of T12 is induced by the
divisibility of 1, 2, 3 and 4. Though nesting can simplify the diagram in certain
cases, the resulting lattices are still too complex for us to analyse. The reason
is that every interval chain < n

2 generates all the levels described above. An

A Formal Concept Analysis of Harmonic Forms and Interval Structures 19

Fig. 9. Concept lattice of the harmony pattern vs. interval count context of the 12-tet

20 Tobias Schlemmer, Stefan E. Schmidt

Fig. 10. Concept lattice created omitting all but the intervals 1, 2 and 4 in the 12-tet

example of such a large projection which does not allow a sensible nesting is
demonstrated in figure 10.

4 Conclusions and further research topics

The current work shows how one can overcome the obstacles of getting a mean-
ingful interpretation of concept lattices of increasing complexity. In particular,
we analyse concept lattices describing harmonic forms and their intervals in
different ways, focusing on the 7-tet and the 12-tet.

For future analysis we propose that the information hidden in complex dia-
grams (e. g. as given in figure 9) may be used to further investigate the inherent
structure of the concept lattice.

A Formal Concept Analysis of Harmonic Forms and Interval Structures 21

Ongoing work is concerned with a description of the interval structure of a
tone system and its influence on the structure of the concept lattices of harmonic
forms in case of a totally ordered (or, more generally, lattice ordered) interval
group.

Another extension of this work will be the investigation of tone systems
with more complicated interval structures, for example the diatonic scale and
Leonhard Euler’s Tonnetz.

This area of research also aims to have an impact on the further development
of the tuning software Mutabor.

References

1. Mutabor team: Mutabor. Software http://www.math.tu-dresden.de/~mutabor/.
2. Ganter, B., Wille, R.: Formal concept analysis: mathematical foundations.

Springer, Berlin (1999)
3. Wille, R., Wille-Henning, R.: Towards a semantology of music. In Priss, U.,

Polovina, S., Hill, R., eds.: ICCS. Volume 4604 of Lecture Notes in Computer
Science., Springer (2007) 269–282

4. Wille, R., Wille-Henning, R.: Beurteilung von Musikstücken durch Adjektive: Eine
begriffsanalytische Exploration. In: Von Intentionalität zur Bedeutung konvention-
alisierter Zeichen: Festschrift für Gisela Harras zum 65. Geburtstag. Volume Bd.
35. G. Narr, Tübingen (2006) 453

5. Wille, R.: Musiktheorie und Mathematik. In: Musik und Mathematik: Salzburger
Musikgespräch 1984 unter Vorsitz von Herbert von Karajan. Springer-Verlag,
Berlin (1985) 4–31

6. Wille, R.: Mathematische Sprache in der Musiktheorie. In: Jahrbuch Überblicke
Mathematik 1980. Bibliographisches Institut, Mannheim (1980) 167–184

7. Mazzola, G., Göller, S., Müller, S.: The topos of music: geometric logic of concepts,
theory, and performance. Birkhauser Verlag, Boston, MA (2002)

8. Wille, R.: Triadic concept graphs. In Mugnier, M.L., Chein, M., eds.: Concep-
tual Structures: Theory, Tools and Applications. Volume 1453 of Lecture Notes in
Computer Science., Springer (1998) 194–208

9. Neumaier, W., Wille, R.: Extensionale Standardsprache in der Musiktheorie – eine
Schnittstelle zwischen Musik und Informatik. In Hesse, H., ed.: Mikrotöne. Volume
III. Edition Helbing edn. Helbing, Insbruck (1990) 139–167

10. Neumaier, W.: Was ist ein Tonsystem? : eine historisch-systematische Theorie der
abendländischen Tonsysteme, gegründet auf die antiken Theoretiker Aristoxenos,
Eukleides und Ptolemaios, dargestellt mit Mitteln der modernen Algebra. Vol-
ume 9. Lang, Frankfurt am Main (1986)

11. Lee, C.: Some properties of nonbinary error-correcting codes. Information Theory,
IEEE Transactions on 4(2) (Jun 1958) 77–82

22 Tobias Schlemmer, Stefan E. Schmidt

Connecting Many-valued Contexts to General
Geometric Structures

Tim B. Kaiser

Technische Universität Dresden
Institut für Algebra

Abstract. We study the connection between certain many-valued con-
texts and general geometric structures. The known one-to-one correspon-
dence between attribute-complete many-valued contexts and complete
affine ordered sets is used to extend the investigation to π-lattices and
class geometries. The former are identified as a subclass of complete affine
ordered sets, which exhibit a close relation to concept lattices which are
closely tied to the corresponding context. The latter can be related to
complete affine ordered sets using residuated mappings and the notion
of a weak parallelism.

1 Introduction

In [5] the notion of an affine ordered set enables us to understand a many-valued
context in order-theoretic and geometric terms. In [4] affine ordered sets were
specialized to complete affine ordered sets to allow an algebraic interpretation.
Here, we relate complete affine ordered sets to two other known types of general
geometric structures, that is,

• π-lattices and
• equivalence class geometries (or short class geometries).

In [6], π-lattices were introduced as an abstraction of affine geometries over rings
and modules, yielding the possibility to study geometry in a very general setup.
They will turn out to be a well describable specialization of complete affine
ordered sets, which opens up an intimate connection to the concept lattices
arising from plain conceptual scaling of the corresponding context.
Class geometries are a generalization of congruence class geometries. They carry
a certain type of parallelism – called weak parallelism– arising naturally in the
context of coordinatizing geometric closure structures via the congruence classes
of an algebra (in the sense of universal algebra), cf. [7]. The weak parallelism of
class geometries can be related to the parallelism of complete affine ordered sets
by applying a rather abstract result – a residuated pair of mappings between
atomic complete lattices where one carries a weak parallelism induces a weak
parallelism on the other.
As a first step, we will provide the necessary basic definitions. The second step
will lead to an elaboration on the connection between complete affine ordered

c© Radim Belohlavek, Sergei O. Kuznetsov (Eds.): CLA 2008, pp. 23–34,
ISBN 978–80–244–2111–7, Palacký University, Olomouc, 2008.

sets and π-lattices. In a third step, we will show how a weak parallelism on
an atomic lattice can induce a weak parallelism on another atomic lattice via
an adjunction. The results will be applied in the concluding step to describe a
connection between complete affine ordered sets and class geometries. Finally,
we will give a summary of what we achieved.
Throughout the paper we assume that the reader is knowledgeable of the basic
concepts of order theory and formal concept analysis, as provided, for instance,
in [2] and [1].

2 Attribute-complete Many-valued Contexts and
Complete Affine Ordered Sets

We recall the relevant definitions from [5] and [4].
For a mapping f : A −→ B between sets A and B, the kernel of f is defined as

ker(f) := {(a1, a2) | f(a1) = f(a2)}.

A many-valued context K := (G,M,W, I) is called attribute-complete if it

• is complete, that is, every m ∈M can be regarded as a map m : G→W ,
• has a key attribute, that is, there exists an attribute m ∈M with ker(m) =
∆G := {(g, g) | g ∈ G},

• is simple, that is, different attributes m1,m2 ∈M are not functionally equiv-
alent, that is, ker(m1) = ker(m2) implies m1 = m2, and

• for all N ⊆ M there exists an attribute m ∈ M such that m and N are
functionally equivalent, that is, ker(m) =

⋂
n∈N ker(n).

A system of equivalence relations (SER) is a pair (G,E) where G is a set and
E is a set of equivalence relations on G which contains the identity relation. A
SER is called closed if its set of equivalence relations forms a closure system.

Let] be the symbol for the disjoint union. Then the lifting of an ordered
set (P,≤) is given by (P] {⊥},≤] ({⊥}×P] {⊥})) and denoted as (P,≤)⊥.
Since the following notion is central in this paper we provide it as

Definition 1 ((atomistic, complete) affine ordered set). We call a triple

A := (Q,≤, ‖)

affine ordered set, if (Q,≤) is a partially ordered set, ‖ is an equivalence rela-
tion (called parallelism) on Q, and the axioms (A1) - (A4) hold. Let A(Q) :=
Min(Q,≤) denote the set of all minimal elements in (Q,≤) and A(x) := {a ∈
A(Q) | a ≤ x}.

(A1) ∀x ∈ Q : A(x) 6= ∅
(A2) ∀x ∈ Q∀a ∈ A(Q)∃!t ∈ Q : a ≤ t ‖ x
(A3) ∀x, y, x′, y′ ∈ Q : x′ ‖ x ≤ y ‖ y′ & A(x′) ∩A(y′) 6= ∅ ⇒ x′ ≤ y′

24 Tim B. Kaiser

(A4) ∀x, y ∈ Q∃x′, y′ ∈ Q : x � y & A(x) ⊆ A(y)
⇒ x′ ‖ x & y′ ‖ y & A(x′) ∩A(y′) 6= ∅ & A(x′) * A(y′).

The elements of A(Q) are called points and, in general, elements of Q are called
subspaces. We say that a subspace x is contained in a subspace y if x ≤ y.
If the lifting of (Q,≤) forms a complete lattice L(A), the affine ordered set A
is called complete affine ordered set. We call a complete affine ordered set A
atomistic if the corresponding complete lattice L(A) is atomistic.

For a point a and a subspace x we denote by π(a|x) the subspace which con-
tains a and is parallel to x. Axiom (A2) guarantees that there is exactly one such
subspace. For every x ∈ Q we observe that θ(x) := {(a, b) ∈ A(Q)2 |π(a|x) =
π(b|x)} is an equivalence relation on the set of points.

We introduce the following condition for affine ordered sets:

(A34) ∀x, y ∈ Q : x ≤ y ⇐⇒ A(x) ⊆ A(y) & θ(x) ⊆ θ(y)

If we assume that only (A1) and (A2) hold in Definition 1 the axioms (A3)
and (A4) are equivalent to (A34).

In [4] it was shown that the notions of

• attribute-complete many-valued contexts,
• closed SERs, and
• complete affine ordered sets

with their respective morphisms form categories which are equivalent.
We recall how the objects of these equivalent categories can be translated into

each other. To an attribute-complete many-valued context K := (G,M,W, I) we
can assign a closed system of equivalence relations via

E(K) := (G, {ker(m) |m ∈M}).

To a closed system of equivalence relations E := (G,E) we can assign a complete
affine ordered set – the ordered set of its labeled equivalence classes – via

A(E) := ({([x]θ, θ) | θ ∈ E},≤, ‖)

where ≤ is defined by

([x]θ1, θ1) ≤ ([y]θ2, θ2) : ⇐⇒ [x]θ1 ⊆ [y]θ2 & θ1 ⊆ θ2

and ‖ is defined by

([x]θ1, θ1) ‖ ([y]θ2, θ2) : ⇐⇒ θ1 = θ2.

3 π-Lattices and Complete Affine Ordered Sets

The notion of a π-lattice stems from [6] where it is situated as an abstraction of
a geometry over rings. For a complete lattice L, we define

L+ := L \
∧
L.

A π-lattice is defined as follows:

Connecting Many-valued Contexts to General Geometric Structures 25

Definition 2 (π-lattice). Let V be a complete atomistic lattice with set of
atoms A(V). Then an equivalence relation ‖ ⊆ V+ × V+ is called parallelism
if it satisfies the following axioms

(E) ∀p ∈ A(V)∀x ∈ V+∃!y ∈ V+ : p ≤ y ‖ x
(M) ∀p ∈ A(V)∀x, y ∈ V+ : x ≤ y =⇒ π(p|x) ≤ π(p|y).

We call an atomistic complete lattice with parallelism π-lattice.

It turns out that complete affine ordered sets are a natural generalization of
π-lattices.

Proposition 1. Let V be a π-lattice. Then (V+,≤V , ‖) forms a complete affine
ordered set.

Proof. Since V is a π-lattice, ‖ is an equivalence relation. We have to show
that (A1) - (A4) hold for (V \ {0},≤V , ‖). Since V is atomistic (A1) holds. (E)
directly implies (A2). For showing (A34), let x ≤ y for x, y ∈ V+. Obviously
A(x) ⊆ A(y) follows directly from x ≤ y. Furthermore, θ(x) ⊆ θ(y) by (M). For
the other direction, already A(x) ⊆ A(y) implies x ≤ y since we have

x =
∨
A(x) ≤

∨
A(y) = y

because V is atomistic. By construction (V+)⊥ = V is a complete lattice. ut

The notion of parallelism for affine ordered sets fulfills the criteria of a par-
allelism from the definition of π-lattices without problems.

Proposition 2. Let A := (Q,≤, ‖) be an affine ordered set. Then (E) and (M)
hold in L(A).

Proof. (E) follows directly from (A2). To show (M) let x ≤ y for x, y ∈ L(A)+
and p ∈ A(L(A)). We have to show that π(p |x) ≤ π(p | y). By (A34) we have

θ(π(p |x)) = θ(x) ⊆ θ(y) = θ(π(p | y)).

Additionally, it follows directly that

A(π(p |x)) = [p]θ(x) ⊆ [p]θ(y) = A(π(p | y))

and therefore by applying the equivalence in (A34) from right to left we get
π(p |x) ≤ π(p | y) which shows (M). ut

Propositions 1 and 2 yield the following characterization of π-lattices in terms
of complete affine ordered sets:

Theorem 1. The atomistic complete affine ordered sets are in one-to-one cor-
respondence with π-lattices. More precisely, moving between the two structures
requires only attaching or respectively removing the bottom element while the
parallelism can be reused.

26 Tim B. Kaiser

We will illuminate what it means for a complete affine ordered set to be
atomistic. We call a system of equivalence relations E := (D,E) regular if its set
of equivalence relations E is regular, that is, if there do not exist two different
equivalence relations sharing an equivalence class.

Proposition 3. Let A be a complete affine ordered set and let E be a closed
system of equivalence relations with

A ∼= A(E) & E(A) ∼= E.

Then A is atomistic if and only if E is regular.

Proof. “⇒”: Let E := (D,E) be a regular closed system of equivalence relations
and let A(E) be the associated complete affine ordered set. Then we have to
show for a subspace x from A(E) that x =

∨
A(x). But since the subspaces of

A(E) are the labeled equivalence classes of E we know that x = (X, θ) for an
equivalence class X of an equivalence relation θ ∈ E. Then we have∨

A(x) =
∨

({p},∆) | p ∈ X} = (X, θ(X)).

But θ(X) = θ since E is regular. Therefore,
∨
A(x) = (X, θ(X)) = (X, θ) and

hence A(E) is atomistic.
“⇐”: Let A := (Q,≤, ‖) be an atomistic complete affine ordered set and let E(A)
be the associated closed system of equivalence relations. We have to show that
E(A) is regular, that is, for a point p ∈ A(Q) where [p]θ(x) = [p]θ(y) it follows
that θ(x) = θ(y). Since A is atomistic we have

x =
∨

[p]θ(x) =
∨

[p]θ(y) = y.

Hence E(A) is regular. ut

The subclass of atomistic complete affine ordered sets can be related to con-
cept lattices arising in a certain fashion from the many-valued context corre-
sponding to the affine ordered set. To be able to formulate this connection, we
need the following

Definition 3 (derived context via nominal scaling). Let K := (G,M,W, I)
be a complete many-valued context. Then the formal context Knom := (G,N, J)
is called derived context via nominal scaling of K if

N := {(m,w) ∈M ×W | ∃g ∈ G : m(g) = w} and

J := {(g, (m,w)) ∈ G×N | (g,m,w) ∈ I}.

Now we explain the connection between atomicity of complete affine ordered
sets and conceptual scaling.

Connecting Many-valued Contexts to General Geometric Structures 27

Proposition 4. Let K := (G,M,W, I) be a simple many-valued context with
key attribute, let A := A(K) be the associated affine ordered set and let Knom be
the derived context of K via plain nominal scaling. Let ϕ : A → B(Knom) be a
mapping where (C, θ) 7→ (C,CJ). Then ϕ is an order-preserving mapping which
is

• surjective if and only if A is complete and
• injective if and only if A is atomistic.

Proof. To see that (C,CJ) ∈ B(Knom) we have to show that C = CJJ , that
is that C is an extent of a formal concept of the concept lattice of Knom. It is
obvious that C ⊆ CJJ since ·JJ is a closure operator. By construction of A we
know that there exists a h ∈ G and a m ∈M such that

C = [h]ker(m) = {g ∈ G |m(g) = m(h)} = {g ∈ G | (g, (m,m(h))) ∈ J}.

Hence, (m,m(h)) ∈ CJ . But then for all g ∈ CJJ we have gJ(m,m(h)) which
shows that if g ∈ CJJ then g ∈ C. Therefore C = CJJ . It is obvious that ϕ is
order-preserving.
“⇒”: Let A be complete. We show that ϕ is surjective. Since the extents of
B(Knom) are exactly the meets of equivalence classes induced by K, and the set
of equivalence classes induced by K is already meet-closed it is immediate that
ϕ is surjective.
Let A be atomistic. We show that ϕ is injective. Let ϕ(C1, θ1) = ϕ(C2, θ2). Then
(C1, C1

J) = (C2, C2
J) which implies C1 = C2. But since we know by Proposition

3 that E(A) is regular we have θ1 = θ2.
“⇐”: Let ϕ be surjective. Then every extent of B(Knom) is an image of ϕ. But
since the extents of B(Knom) are exactly the meets of equivalence classes induced
by K, we know that the set of equivalence classes is meet-closed and therefore
A is complete.
Let ϕ be injective. Then whenever (C1, C1

J) = ϕ(C1, θ1) = ϕ(C2, θ2) = (C2, C2
J)

which is equivalent to C1 = C2 we have θ1 = θ2. That means, E(A) is regular.
Again, by Proposition 3 we know that A is atomistic. ut

The proof of the previous proposition yields the following

Corollary 1. Let K := (G,M,W, I) be an attribute-complete many-valued con-
text, let A := A(K) be the associated complete affine ordered set and let Knom

be the derived context of K via plain nominal scaling. Then

B(Knom) ∼= L(A)

if and only if A is atomistic. ut

The combination of Propositions 2 and 3 and Corollary 1 can be cast as:

Theorem 2. Let K := (G,M,W, I) be an attribute-complete many-valued con-
text. Then the following conditions are equivalent:

28 Tim B. Kaiser

• E(K) is regular
• A(K) is atomistic
• A(K) induces a π-lattice
• L(A(K)) ∼= B(Knom)

ut

Example 1. We get a nice example of an attribute-complete many-valued context
if we consider a K-vector space V. Let

K(V) := (V,End(V), V, I)

where V is the set of vectors of V, End(V) is the set of endomorphisms of V,
and I is defined as

(v, ϕ,w) ∈ I : ⇐⇒ ϕ(v) = w.

Since for vector spaces, every congruence relation is already representable as
the kernel of an endomorphism (and the kernels of endomorphisms are always
congruence relations), we know that E(K(V)) is closed. The lattice of the cor-
responding complete affine ordered set is isomorphic to the lattice of affine sub-
spaces of the vector space V. Since E(K(V)) is regular we know by Theorem 2
that A(K(V)) is atomistic, its lattice is isomorphic to the concept lattice derived
by nominal scaling, and it induces a π-lattice.

4 Weak Parallelisms and Affine Ordered Sets

In this section, we will derive insights about trace parallelisms induced by resid-
uated mappings between atomic lattices. An application of these abstract results
in the next section will lead to a better understanding of the connection between
affine ordered sets and class geometries.
In the following let L and M denote complete lattices. For a lattice L, let A(L)
denote the set of the atoms of L and for s ∈ L let A(s) := {p ∈ A(L) | p ≤ s}
denote the atoms less than or equal to s. A lattice L is called atomic if for every
s ∈ L+ we have A(s) 6= ∅.

Definition 4 (residuated maps). A map ϕ : L −→M is called residuated if
it is

∨
– preserving. For a residuated map, there exists a map ϕ+ : M −→ L,

called residual, which is
∧

– preserving with

ϕm ≤ l⇔ m ≤ ϕ+l

The maps uniquely determine each other. If one of the maps is surjective, the
other is injective, and vice versa. The maps are called adjoint to each other. We
call (ϕ,ϕ+) a residuated pair or an adjunction (this is sometimes also called a
covariant Galois connection).

Note, that for a residuated pair (ϕ,ϕ+) where ϕ is injective, we have ϕ+ϕ =
∆, since ϕϕ+ϕ = ϕ. In general ϕ+ϕ is a closure operator and ϕϕ+ is a kernel
operator.

Connecting Many-valued Contexts to General Geometric Structures 29

Definition 5 (weak parallelism). Let L be an atomic complete lattice. We
call a relation ‖ on L+ weak parallelism if the following holds for arbitrary
r, s, t, u ∈ L+ and arbitrary p ∈ A(L).

(P1) r ‖ r
(P2) r ‖ s ≥ t ‖ u⇒ r ‖≥ u
(P3) r ‖ s ≥ p⇒ r ∨ p ≥ s
(P4) ∃!s : r ‖ s ≥ p

We say for r, s ∈ L+ with r ‖≥ s that s is part-parallel to r. If ‖ is an
equivalence relation the weak parallelism is called pre-parallelism.

We will investigate the connection between affine ordered sets and the intro-
duced weak parallelism.

Proposition 5. Let A be a complete affine ordered set. Then L(A) is an atomic
complete lattice whith pre-parallelism.

Proof. Obviously, L(A) is atomic (by (A1)) and complete. It remains to verify the
axioms (P1)–(P4) for L(A). Axiom (P1) follows from the fact that the parallelism
of A is an equivalence relation. Axiom (A2) grants us that (P4) holds.
To show (P2), let r ‖ s ≥ t ‖ u. Let p ≤ u be a point. By (A3) we know that
from u ‖ t ≤ s ‖ π(p|r) we get u ≤ π(p|r)). Therefore we have r ‖ π(p|r) ≥ u.
To show (P3), let r ‖ s ≥ p. Let q ≤ s be an arbitrary point of s. By Proposition
2 we know that (M) holds. Therefore r ≤ r ∨ p yields s = π(q|r) ≤ π(q|r ∨ p).
But p ≤ s ≤ π(q|r ∨ p) implies π(q|r ∨ p) = r ∨ p. Hence, s ≤ r ∨ p. ut

Example 2. The converse of the
previous proposition does not hold: In
general, atomic complete lattices with
pre-parallelism do not induce a
complete affine ordered set. If we
remove the bottom element of the
lattice in Figure 1 we can not consider
the resulting structure as an affine
ordered set since θ(a) = θ(x) would
imply a = x.

�������� x x ‖ x

�������� a a ‖ a

��������
Fig. 1. Complete atomic lattice with
trivial pre-parallelism

As in the case of π-lattices – where it was enough to require an affine ordered
set to be atomistic to let the concepts coincide – for atomistic lattices a pre-
parallelism is already a parallelism.

We will show that a residuated pair between two complete atomic lattices
where the latter carries a weak parallelism yields a weak parallelism on the
former. This parallelism will also be called trace parallelism.

Theorem 3. Let M and L be complete atomic lattices and let ‖L be a weak
parallelism on L. Furthermore, let ϕ : M ↪→ L be a

∨
– preserving, injective

30 Tim B. Kaiser

mapping with ϕA(M) ⊆ A(L) and let (ϕ,ϕ+) form a residuated pair. Then we
define a relation on M+ as follows

r ‖M s :⇔ ∃y ∈ L : ϕr ‖L y & ϕ+y = s.

The relation ‖M is a weak parallelism.

Proof. In the following, let r, s, t, u ∈M and p ∈ A(M).
For (P1), we have to show that ‖M is reflexive. Since ϕϕ+ϕr = ϕr and ϕ
is injective, we have ϕ+ϕr = r. Since ϕr ‖L ϕr we have r ‖M r via setting
y := ϕ+ϕr in the definition of ‖M .
For (P2), let us assume that r ‖M s ≥ t ‖M u. We have to show the existence of
an element v ∈ M with v ≥ u and r ‖M v. From r ‖M s we know there exists
y ∈ L such that ϕr ‖L y and ϕ+y = s. From t ‖M u we know there exists z ∈ L
such that ϕt ‖L z and ϕ+z = u. But since ϕ+y ≥ t implies y ≥ ϕt we have
ϕr ‖L y ≥ ϕt ‖L z. Applying (P2) yields the existence of an element q ∈ L with
q ≥ z and ϕr ‖L q. We have v := ϕ+q ≥ ϕ+z = u and r ‖M v.
For (P3), let us assume r ‖M s ≥ p. From r ‖M s we know there exists y ∈ L
such that ϕr ‖L y and ϕ+y = s. Since s = ϕ+y ≥ p implies y ≥ ϕp and ϕ maps
atoms to atoms we can apply (P3) in M . This yields y ≤ ϕr ∨ ϕp = ϕ(r ∨ p)
which implies s = ϕ+y ≤ ϕ+ϕ(r ∨ p) = r ∨ p as required.
For (P4), we have an atom p ∈ A(M) and an arbitrary element r ∈ M+. We
have to show that there exists exactly one s ∈ M+ with r ‖M s ≥ p. We can
apply (P4) for ϕp and ϕr which yields the existence of exactly one y ∈ L+ with
ϕr ‖L y ≥ ϕp. We set s := ϕ+y. Since y ≥ ϕp implies s = ϕ+y ≥ p and by
construction of s we have r ‖M s it remains to show that s is unique. Assume
we have an element s′ ∈M+ with r ‖M s′ ≥ p. This means that there exists an
element y′ ∈ L+ with ϕr ‖L y′ and ϕ+y′ = s′. But since ϕr ‖L y′ ≥ ϕp (P4)
yields y′ = y we have s = s′. ut

In the following theorem we characterize relations which arise from weak par-
allelisms in the manner described in Theorem 3 by ”part-parallelity”. This result
can be used to see how the two weak parallelisms in Theorem 3 are connected.

Theorem 4. Let M and L be complete atomic lattices and let ‖L be a weak
parallelism on L, furthermore, let (ϕ,ϕ+) be a residuated pair for M and L and
let ‖M be defined as in the previous theorem. Then we have

r ‖M≥ s⇔ ϕr ‖L≥ ϕs.

Proof. Since r ‖M≥ s there exists an u ∈ M+ with r ‖M u ≥ s. By definition
of ‖M we have the existence of an element y ∈ L with ϕr ‖L y and ϕ+y = s.
Since ϕϕ+ is a kernel operator we have ϕs = ϕϕ+y ≤ y which yields that ϕr is
part-parallel to ϕs. The proof is finished since the argument is symmetric. ut

5 Class Geometries and Affine Ordered Sets

Throughout this section, let E := (D,E) be a closed system of equivalence
relations. We know that we can assign a complete affine ordered set, denoted

Connecting Many-valued Contexts to General Geometric Structures 31

by A(E), to E. Alternatively, we can also assign the ordered set of equivalence
classes ({[x]θ | θ ∈ E},⊆) to E. It is convenient to attach a bottom element to
get a lattice

G(E) := (S ∪ {∅},⊆)

which we call class geometry of E. If the equivalence relations can be regarded
as the congruence relations of an algebra (in the sense of universal algebra) we
call their class geometry congruence class geometry. Congruence class geometries
were introduced and characterized geometrically via their closure operators in [7].

Now, we want to relate the class geometry G := G(E) and the lattice of the
affine ordered set L := L(A(E)) of a closed system of equivalence relations to
each other. Let ϕ+ : L→ G be defined by ϕ+(C, θ) := C. Since∧

i∈I

(Ci, θi) = (
⋂
i∈I

Ci,
⋂
i∈I

θi),

we have
ϕ+

∧
i∈I

si =
⋂
i∈I

Ci =
∧
i∈I

ϕ+si

for si = (Ci, θi). Note that ϕ+ is surjective.
From Proposition 9 in [2], p. 14, we know that for any residual map its

residuated is given by
ϕs :=

∧
{l | s ≤ ϕ+l}.

If we define for a closed system of equivalence relations (D,E) the smallest
relation containg M ⊆ D as

θ(M) :=
⋂
{θ ∈ E |M ×M ⊆ θ}

the above definition of the residual yields in our context that ϕ : S ↪→ L is
defined by

ϕC := (C, θ(C)).

Since ϕ+ is surjective, it follows that ϕ is injective. This implies that ϕS is a
kernel system in L. We summarize the results of the argumentation in

Theorem 5. Let E := (D,E) be a closed system of equivalence relations. Let
G := G(E) be its class geometry and let L := L(A(E)) be the lattice of its affine
ordered set. Then (ϕ,ϕ+) (as defined above) forms an adjunction between G and
L, where ϕ is injective and ϕ+ is surjective. This implies that G is embedded in
L as a kernel system via ϕ.

As an illustration of the previous theorem we provide

Example 3. Figure 2 shows the well-known non-modular lattice N5. Figure 3
shows the lattice of congruence relations of N5. Figure 4 shows the congruence
class geometry of N5 embedded as a kernel system into the lattice of the affine
ordered set of (the congruence relations of) N5. The kernel system is marked by
black dots in Figure 4.

32 Tim B. Kaiser

��������1

�������� c
????????

��������a

������������� �������� b

��������
0

????????

��������

Fig. 2. N5

��������∇

��������θ({a,1})

�������� ��������θ({a,0})

????????

��������
θ({b,c})

????????

��������

��������
∆

Fig. 3. The congruence lattice of N5

It is easily observable that both, the class geometry G and the lattice L of
the complete affine ordered set, form atomic lattices. By Proposition 5 we know
that the parallelism of the affine ordered set constitutes a weak parallelism (even
a pre-parallelism) in the sense of Definition 5. We use the residuated pair (ϕ,ϕ+)
to apply Theorem 3. Since ϕ maps atoms to atoms, Theorem 3 yields that

r ‖S s :⇔ ∃l ∈ L : ϕr ‖ l & ϕ+l = s

defines a weak parallelism on S+.
What does it mean for two equivalence classes C,D to be weakly parallel in

S in terms of their equivalence relations? Expanding the definition we get

C ‖S D
⇔ ∃(P,ψ) ∈ L : θ(C) = ψ & P = D
⇔ D is a class of θ(C).

Surprisingly, this is exactly the same weak parallelism as is used in [7] on the
closed sets of a closure operator to be able to characterize this closure operator as
assigning to a setM the smallest congruence class of a suitable algebra containing
M .

6 Conclusion

Studying the connection between complete affine ordered sets and π-lattices
yielded the fruitful characterization of π-lattices as atomistic affine ordered sets
and opened up the possibility to interpret these structures as concept lattices.
Through an adjunction between a complete affine ordered set and its correspond-
ing class geometry we could view the class geometry as a kernel system in the
affine ordered set and were able to recognize the induced parallelism as known
from congruence class spaces, where it is used to coordinatize geometric spaces.
We conclude that the findings in this paper support the thesis that affine ordered
sets are a conceptually useful paradigm to connect different notions arising when
studying geometric structures abstractly.

Connecting Many-valued Contexts to General Geometric Structures 33

'&%$!"#•(A,∇A)

'&%$!"#•({0,a},θ({0,a})

jjjjjjjjjjjjjjjjjjj '&%$!"#•

({0,b,c},θ({1,a}))=
=

=
=

~~~~~~~~ '&%$ !"#•

({1,b,c},θ({0,a}))�
�

�
�

@@@@@@@@ '&%$ !"#• ({1,a},θ(1,a}))

TTTTTTTTTTTTTTTTTTT

��������({0},θ({b,c}))

~~~~~~~~

jjjjjjjjjjjjjjjjjjjj '&%$!"#•
({b,c},θ({b,c}))

TTTTTTT

@@@@@@@@

~~~~~~~~ �������� ({1},θ({b,c}))

@@@@@@@@

TTTTTTTTTTTTTTTTTTTT

��������
({a},θ({b,c}))

IIIIIIIIIIIIIIIIIIIIIII

uuuuuuuuuuuuuuuuuuuuuuu

'&%$ !"#•
({0},∆)

'&%$ !"#•
({b},∆)

uuuuuuuuuuuuuuuuuuuuuuu '&%$ !"#•
({a},∆)

'&%$ !"#•
({c},∆)

IIIIIIIIIIIIIIIIIIIIIII '&%$ !"#•
({1},∆)

'&%$ !"#•
(∅,∅)

tttttttttttttttttttttt

JJJJJJJJJJJJJJJJJJJJJJ

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

PPPPPPPPPPPPPPPPPPPPPPPPPPPP

Fig. 4. Congruence class geometry of N5 embedded as kernel system in the lattice of
the labeled congruence classes of N5

References

1. Davey, B. A., Priestly, H. A.: Introduction to Lattices and Order. Cambridge
University Press, Cambridge 1990.

2. Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations.
Springer, Berlin – Heidelberg – New York 1999.

3. Kaiser, T. B.: Representation of Data Contexts and their Concept Lattices in
General Geometric Spaces. In F. Dau (Ed.): Conceptual Structures: Common Se-
mantics for Sharing Knowledge. LNAI 3596. Springer, Heidelberg 2005, 195–208.

4. Kaiser, T. B.: Closure Systems of Equivalence Relations and Their Labeled Class
Geometries. In Sadok B. Yahia, Engelbert M. Nguifo, Radim Belohlavek, ((ed.):
Concept Lattices and Applications. LNAI 4932, Springer, Berlin – Heidelberg –
New York 2008, 96-106

5. Kaiser, T. B., Schmidt, S. E.: Geometry of Data Tables. In P. Eklund (Ed.):
Concept Lattices. LNAI 2961. Springer, Heidelberg 2004, 222–235.

6. Schmidt, S. E.: Grundlegungen zu einer allgemeinen affinen Geometrie.
Birkhäuser, Basel – Boston – Berlin 1995.

7. Wille, R.: Kongruenzklassengeometrien. Springer, Berlin – Heidelberg – New York
1970.

34 Tim B. Kaiser



Concept Lattice Mining for
Unsupervised Named Entity Annotation

Thomas Girault

Orange labs, 2 avenue Pierre Marzin, 22307 Lannion Cedex
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex, France

thomas.girault@orange-ftgroup.com

Abstract. We present an unsupervised method for named entity anno-
tation, based on concept lattice mining. We perform a formal concept
analysis from relations between named entities and their syntactic depen-
dencies observed in a training corpus. The resulting lattice contains con-
cepts which are considered as labels for named entities and context an-
notation. Our approach is validated through a cascade evaluation which
shows that supervised named entity classification is improved by using
the annotation produced by our unsupervised disambiguation system.

1 Introduction

Lexical ambiguity is a fundamental problem which is central in many tasks
involving natural language processing (e.g. information retrieval, information
extraction, . . . ). Our study focuses on a kind of lexical units (LU), named entities
(NE), a generic denomination for proper names including persons, locations,
organisations. As most LU considered outside a context, NE are ambiguous since
their form can potentially refer to different meanings or objects. Our approach to
disambiguation is based on formal concept analysis (FCA), a generic method for
data analysis and knowledge representation which infers formal concepts from
relational data. In this work, FCA is used to build a knowledge-base that is
exploited for NE annotation.

The problem of ambiguity can be considered according to several Word Sense
Disambiguation (WSD) approaches [1]. Knowledge-based approaches attempt to
select the meaning of words using lexicons, dictionaries or thesauri (e.g. Word-
Net). Corpus-based approaches examine the occurrence of LU and their contexts
using machine learning techniques. Supervised learning disambiguates LU ac-
cording to pre-defined labels whereas unsupervised techniques discriminate the
meanings of unlabelled LU thanks to similarity of their contexts.

Since corpus annotation is a tedious and costly task, this work is focused on
unsupervised approaches. Among them, formal concept analysis (FCA) [2] has
been selected : this symbolic unsupervised machine learning technique operates
on relational data to infer formal concepts which can be structured into a concept

c© Radim Belohlavek, Sergei O. Kuznetsov (Eds.): CLA 2008, pp. 35–46,
ISBN 978–80–244–2111–7, Palacký University, Olomouc, 2008.



lattice. FCA is applied on relations between NE and their syntactic dependen-
cies extracted from English news wire articles. The sets of NE sharing the same
syntactic dependencies constitute the formal concepts which are considered as
units of meaning for the annotation of NE. The concept lattice obtained can be
seen as a hierarchical knowledge-base modelling meaning overlapping on several
levels of granularity. To our knowledge, these properties attached to concept lat-
tices have not yet been exploited in an unsupervised WSD task. In this context,
we propose a conceptual annotation method for NE disambiguation.

In this paper, we address the problem of exploiting a concept lattice for
unsupervised NE annotation. We first introduce (Section 2) the problem of NE
ambiguity by exposing few examples from our corpus in which relations between
NE and their syntactic dependencies are extracted. These relations constitute a
formal context from which FCA is performed (section 3). The resulting lattice
contains formal concepts which are considered as labels for NE and dependency
annotation (Section 4). Our approach is validated through a cascade evaluation
(section 5) which shows that supervised NE classification is improved by using
the annotation produced by our unsupervised disambiguation system.

2 Corpus-Based Methods for Word Sense Disambiguation

This section introduces corpus-based word sense disambiguation (WSD) with a
small sample of a corpus where NE occurrences are semantically labelled. Su-
pervised learning disambiguates LU according to labelled pre-defined meanings
whereas unsupervised techniques discriminate the meanings of unlabelled LU
thanks to similarity of their lexical contexts. Our unsupervised approach is built
upon the study of syntactic relations between NE and other LU occurring in an
utterance.

2.1 Tagset Granularity for Supervised NE Classification

Named Entity Recognition (NER) is a subtask of Information Extraction. Dif-
ferent NER systems were evaluated, among others, as a part of the Message
Understanding Conferences [3] in 1995 and in the CoNLL 2003 shared task [4].
The most efficient NER systems are built upon supervised corpus-based learning
for the detection and classification of NE. They rely on semantically annotated
corpora which we can illustrate with the following examples (figure 2.1) :

1. Indialoc has acquired 120,000 tonnes of diesel in three cargoes, . . .
2. Cricket - : Indialoc wins the toss and bat against Sri Lankaloc.
3. Tennis - : Musterper upset, Philippoussisper wins, Stoltenbergper loses.
4. Schumacherper wins Belgian Grand Prix.
5. Clintonper wins democratic re-nomination.
6. Siam Commercialorg wins agency bond auctions.

Fig. 1. Samples extracted from the English CoNLL-2003 annotated corpus.

36 Thomas Girault



The English CoNLL 2003 data is a collection of news wire articles from
the Reuters Corpus in which the NE are manually labelled with respect to the
coarse-grained semantic tagset {person, location, organisation, miscellaneous}.

The examples (1) and (2) illustrate a case of ambiguity : the NE ”India”
is labelled as location but a more fined granularity would distinguish the sport
nation and the wholesale importer. In addition we could note that LU interacting
with NE are ambiguous as well : the LU ”wins” occurs with different meanings
for the domains of politics, sport or business. Thus, we think that the original
tagset should be enriched with a refined semantic description. However, a manual
refinement would be a tedious and a costly task. In addition, we cannot define a
general semantic tagset since it is domain dependent : for instance a biomedical
semantic tagset should discriminate viruses and proteins and it would not be
suitable to describe geographic entities such as rivers or mountains.

2.2 Unsupervised Corpus-Based Disambiguation

Instead of assigning predefined labels to LU, an alternative strategy is to dis-
criminate their meanings by analysing their co-occurrences in the utterances of
a corpus. This unsupervised approach is founded from the assumption that LU
(NE in our case) which occur in similar contexts tends to have close meanings.
Distributional methods [5] relying on Harris’ hypothesis consider that the share
of contexts having common syntactic patterns (e.g. subject-verb, modifier-noun)
constitutes an indicator of semantic relatedness.

2.3 Named Entity Dependency Extraction

Before applying distributional hypothesis for NE disambiguation, the LU at-
tached syntactically to NE need to be identified. We suppose that the NE fron-
tiers have been already detected. Our method deals with two kinds of dependen-
cies. External dependencies are mainly nouns, verbs and prepositions occurring
before or after a NE. They are extracted with patterns defined manually relying
on morphosyntactic tagging and phrase chunking available with the CoNLL-2003
corpus1. The patterns extracts expressions such as :

– noun + preposition + NE (e.g. [election of, Clinton], [results of, European
Super League]);

– noun + NE (e.g. [champion, Pete Sampras]);
– NE + noun (e.g. [Russian, government]);
– NE + verb (e.g. [Clinton, signed], [India, wins]).

Internal dependencies correspond to non prepositional tokens occurring in the
NE, such as first names or surnames. For example, the list of internal dependen-
cies of International Boxing Federation, is {international, boxing, federation}.

This work on extraction provides a set of pairs (NE, syntactic dependency)
where each element is potentially ambiguous.
1 Morphosyntactic tagging and chunking have been generated automatically and are

therefore noisy.

Concept Lattice Mining for Unsupervised Named Entity Annotation 37



3 Formal Concept Analysis for Knowledge Base
Acquisition

In this section, the approach for knowledge-base acquisition using FCA is ex-
posed. We illustrate FCA with examples taken from our linguistic data. We
then discuss the advantages of FCA for dealing with meaning overlapping and
granularity of meanings.

3.1 Formal Context of Syntactic Relations

Classical distributional methods could deal with ambiguity of the whole set of
LU. However, these methods consider them from a unique point of view whereas
for our problem, the data seems more naturally represented according to two
interconnected views as the figure (2) shows :

– a view on named entities which is associated to a set of objects
O = {o1, o2, · · · , om}.

– a view on their dependencies (syntactic co-texts + internal components)
represented by a set of attributes A = {a1, a2, · · · , an}

These views are connected by a relation R ⊆ O × A, where R(o, a) means that
the object o has the attribute a (i.e. the NE o has the dependency a).

fan of

interview of

match against

album of

live performance of

wins

speech of

election of

actor

film with

syntaxic co-text

A

Michael Jackson

Roger Federer

Arnold Schwarzenegger

Bill Clinton

named entities

O

Fig. 2. Relations between NE and their dependencies.

In the FCA terminology, the triple K = (O,A,R) is called a formal context.
It corresponds to a bigraph (from the figure (2)) of objects (NE) in relation with
attributes (syntactic co-texts + internal components).

38 Thomas Girault



3.2 Formal Concept Analysis

For the understanding of the paper, we introduce standard definitions and no-
tations of FCA [2]. For E ⊆ O and I ⊆ A, we define two sets E′ ⊆ A
and I ′ ⊆ O extending them : E′ = {a ∈ A|∀o ∈ E : (o, a) ∈ R} as the
set of all attributes from I that are in relation with all objects from E and
I ′ = {o ∈ O|∀a ∈ I : (o, a) ∈ R}, the set of all objects from O that are in
relation with all attributes from I. For instance, if I = {speech of, election of}
then I ′ = {Bill Clinton, Arnold Schwarzenegger}. For E = {Michael Jackson},
we have, E′ = {album, live performance of, interview of, fan of}.

We can define a formal concept of the formal context K to be a pair (E, I)
satisfying E ⊆ O, I ⊆ A, E′ = I and I ′ = E. E is called the extent and
I is called the intent of concept. For instance, the pair ({Bill Clinton, Arnold
Schwarzenegger},{wins, election of, speech of}) is a formal concept. The concepts
are partially ordered according to the relation ≤ :

(E1, I1) ≤ (E2, I2) ⇔ E1 ⊆ E2 ⇔ I2 ⊆ I1

For instance, we have C2 ≤ C0 for the concepts C2 = ({Arnold Schwarzeneg-
ger,Roger Federer}, {wins,interview of, fan of}) and C0 = ({Michael Jackson,
Roger Federer, Arnold Schwarzenegger}, {interview of, fan of}). The relation ≤
form a complete lattice L, called the concept lattice of K.

>
Arnold,Roger,Michael,Bill

∅

c0
Arnold,Michael,Roger

interview of,fan of

c1
Arnold,Bill,Roger

wins

c2
Arnold,Roger

wins,interview of,fan of

c3
Arnold,Bill

wins,election of,
speech of

c5
Roger

fan of,interview of,
wins, match against

c4
Michael

album of,interview of,
live performance of,fan of

c6
Arnold

actor, fan of, film with,
wins, election of, speech of

⊥
∅

wins, election of, speech of, interview of, fan of, live per-
formance, album of, actor, film with, match against

Fig. 3. Concept lattice for the formal context of figure (2). A concept box is contains
a name, an extent and an intent.

Concept Lattice Mining for Unsupervised Named Entity Annotation 39



3.3 The Concept Lattice : a Discriminative Knowledge Base

The general approach for building the concept lattice from linguistic data is sim-
ilar to the work of Cimiano et al. [6]. The algorithm AddIntent [7] has been used
for the construction of the lattice. It adopts an incremental procedure allowing
dynamic lattice structuring according to new objects or attributes discovered
from new utterances. Thus, a lattice could be seen as a knowledge-base already
structured which could be adapted to a new corpus. This is an interesting prop-
erty considering the weak evolutivity of classical lexical resources such as the-
sauri. According to this perspective, Priss [8] has been able to encapsulate the
FrameNet thesauri within relational concept analysis framework.

As the figure (3) depicts, the concept lattice structure is organised accord-
ing to several granularity layers. The upper part of the lattice is represented by
general concepts grouping objects which share ambiguous attributes. The oppo-
site part of the lattice has very specific concepts having ambiguous objects. The
intermediate zone of the lattice provides concepts which seem more appropriate
for LU disambiguation. Although the lattice model is generally considered as
symbolic and discrete representation, the intent/extent overlapping reveals po-
tential continuity of meanings. To our knowledge, these properties attached to
concept lattices have not been exploited yet for an unsupervised WSD task.

4 Unsupervised Named Entity Annotation

In this section, we describe our FCA based methodology for annotation of re-
lations between a NE and its context in an utterance. FCA is not only used
to aggregate data, but also to perform a classification of NE. The unsupervised
annotation is based on a selection of formal concepts according to n NE and its
dependencies. We illustrate the method with an example and we finally introduce
a dimensionality reduction method for the visualisation of formal concepts.

4.1 Concept Lattice Mining for Conceptual Annotation

Formal concepts are now considered as units of meaning potentially useful for
LU annotation. As we noticed previously, the overlapping of intents and extents
between formal concepts is linked to the intuition that some concepts are more
similar than others since they share more objects or more attributes. Thus, the
formal concepts could be associated to a metric space where the distance between
two concepts measures a degree of semantic similarity.

In a new utterance, we suppose that a new NE o ∈ O and its dependencies
Atts ⊆ A have been detected thanks to the extraction patterns (section 2.3). For
a disambiguation task, we consider that the meaning of o relies on the meaning
of its dependencies in Atts occurring in the context : in other words, o can
be annotated with a formal concept x ∈ L according to the concepts for the
dependencies in Atts.

Our model for conceptual annotation of named entities is based on querying
the concept lattice. In the lattice L the object o is associated to Co = ({o}′′, {o}′)

40 Thomas Girault



and similarly the concepts for the attributes of Atts are the elements Cai from
CAtts = {({ai}′, {ai}′′)|ai ∈ Atts}. We are looking for a representative concept in
the lattice which interpolates the concepts Co and Cai. We will call this concept
x the prototype and we search it among the concepts containing o in their extent
or at least one dependency ai in their intent. More formally, x ∈ L(o,Atts) where
L(o,Atts) = {(E, I) ∈ L|o ∈ E ∨ Atts ∩ I 6= ∅}. The prototype x is defined as
the concept whose average dissimilarity to the concepts Co and Cai is minimal.

X = argmin
x∈L(o,Atts)

∑
c∈CAtts∪{Co}

similarity(c, x) (1)

In order to deal with similarities, we define two matrices A(o,Atts) and
O(o,Atts) in which each row corresponds to a formal concept from L(o,Atts).
The columns ofA(o,Atts) are assigned to the intent of the concepts and similarly,
the columns of O(o,Atts) are assigned to the extent of the concepts. Thus, the
formal concepts are represented by a vector for extents and a vector for intents.
Note that we can also consider M(o,Atts) which is the concatenation of the
matrices A(o,Atts) and O(o,Atts).

Similarity measures can then be applied between the concept vectors of
A(o,Atts), O(o,Atts) or M(o,Atts) : measures such as Euclidean, cosine, cor-
relation, Hamming or Jaccard can be chosen, depending of if we consider the
vectors (and the formal context) as boolean or as weighted by the frequency
counts of relations (cooccurrences) observed in the corpus. In the last case, the
weights assigned to objects and attributes would be respectively∑
ai∈intent(C)

card(R(o, ai)) and
∑

oi∈extent(C)

card(R(oi, a)).

4.2 Example from CoNLL Data

To illustrate the method, we propose to annotate the expression ”English di-
vision” from which the pair (o,Atts) = (English,{division}) is extracted. In a
classical dictionary, the LU division is typically ambiguous because it can de-
notes, for instance, a group of military troops or a group of teams in an organised
sport. The following list enumerates the concepts associated to (o,Atts)

1. ([’SCOTTISH PREMIER DIVISION’, ’SCOTTISH PREMIER’, ’ENGLISH’, ’FRENCH’, ’SCOTTISH’], [’division’, ’premier’])

2. ([’DUTCH’, ’ENGLISH’, ’SCOTTISH’], [’division’, ’results’, ’league’])

3. ([’ENGLISH’, ’DUTCH’], [’division’, ’draw’, ’division leaders’, ’league’, ’results’, ’result’, ’news agency’])

4. ([’ENGLISH’, ’SCOTTISH’], [’league soccer’, ’league’, ’division’, ’premier’, ’results’, ’league standings’, ’league cup’, ’summaries’])

5. ([’ENGLISH’, ’SCOTTISH PREMIER DIVISION’, ’DUTCH’, ’FRASER’, ’MOROCCAN’, ’SCOTTISH’, ’SWISS’, . . . ,’HUNGARIAN’], [’division’])

6. ([’WELSH’, ’ENGLISH’], [’division’, ’referee’, ’results’])

7. ([’GERMAN’, ’DUTCH’, ’ENGLISH’], [’division’, ’results’, ’result’])

8. ([’GERMAN’, ’ENGLISH’], [’result’, ’division’, ’law’, ’summaries’, ’results’])

9. ([’ENGLISH’], [’standings’, ’premier’, ’results’, ’county’, ’result’, ’league cup’, ’news agency’, ’city’, ’langage’, ’soccer matches’, ’play scores’, . . . ])

10. ([’WELSH’, ’SCOTTISH’, ’FRENCH’, ’GERMAN’, ’AUSTRIA’, ’DUTCH’, ’MOROCCAN’, ’ENGLISH’, ’SWISS’, ’POLISH’], [’division’, ’results’])

11. ([’ENGLISH’, ’FRENCH’, ’SCOTTISH’], [’division’, ’premier’, ’results’, ’summaries’])

12. ([’AUSTRIA’, ’DUTCH’, ’ENGLISH’], [’division’, ’draw’, ’results’])

13. ([’SWISS’, ’ENGLISH’], [’division’, ’results’, ’league leaders’])

14. ([’NATIONAL LEAGUE EASTERN DIVISION’, ’DUTCH’, ’ENGLISH’, ’AMERICAN LEAGUE EAST DIVISION’, ’NATIONAL LEAGUE CENTRAL
DIVISION’, ’SCOTTISH’], [’league’, ’division’])

15. ([’GERMAN’, ’ENGLISH’, ’FRENCH’, ’SCOTTISH’], [’division’, ’results’, ’summaries’])

Concept Lattice Mining for Unsupervised Named Entity Annotation 41



In the lattice L(English,{division}), the object ”English” is represented in
the lattice by the concept C9 and the attribute ”division” is represented by
the concept C5. Most concepts appears to denote the sport division meaning
and it remains to select an appropriate concept for the annotation of the query.
The prototype calculation has been done on this example according to several
similarity metrics. The Euclidean and hamming distances chosen among others
for the similarity measures, have both selected the concept C4 which seems a
acceptable for the annotation.

4.3 Dimensionality Reduction for Visualisation of Formal Concepts

The technique presented here has not yet been linked to the disambiguation pro-
cess. It illustrates our intuition that continuous semantic provided with distance
fits with a high structured representation such as concept lattices. For a better
understanding of this intuition, we propose to visualise formal concepts through
a cartographic representation where distance between formal concepts translates
the notion of semantic proximity.

We have describe previously a simple way to associate a set of formal con-
cepts to matrices. Since the vectors associated to concepts potentially have a
huge dimension, we propose to use dimensionality reduction methods on the
matrix M(o,Atts). These methods are able to compress M(o,Atts) such as
each vector/concept representation is reduced to two dimensions. Among these
methods we have chosen curvilinear component analysis (CCA) [9] which can be
seen as a non linear extension to principal component analysis. The first results
of this method are depicted by the figure (4).

['SCOTTISH PREMIER DIVISION', 'SCOTTISH PREMIER']
1

['premier']

['SWISS']
13

['league leaders']

['DUTCH']
3

['division leaders', 'news agency']

['SCOTTISH']
4

['league soccer', 'league standings', 'league cup']

['WELSH']
6

['referee']

7
['result']

['GERMAN']
8

['law']

['ENGLISH']
9

['standings', 'county championship matches', 'county', 'city', 'langage', 'soccer matches', '...']

2

['POLISH', 'MOROCCAN']
10

['results']
['AMERICAN LEAGUE EAST DIVISION', 'NATIONAL LEAGUE EASTERN DIVISION', 'NATIONAL LEAGUE CENTRAL DIVISION']

14
['league']

['AUSTRIA']
12

['draw']

['DIVISION', 'ROMANIA', 'FIRST UNION CORP', 'HUNGARIAN', 'TAICHUNG DIVISION', 'FRASER', '...']
5

['division']

['FRENCH']
11

15
['summaries']

Fig. 4. Visualisation of formal concepts associated to the query (English, {division})
using CCA.

42 Thomas Girault



Reduced labelling has been used to improve the readability of the figure.
In this scheme, the label for an object o is drawn above the object concept
γ(o) = ({o}′′, {o}′) while the label for an attribute a is drawn below the attribute
concept µ(a) = ({a}′, {a}′′).

Our approach does not take advantage of the partial ordering between con-
cepts that has been already computed. However, according to these figure, the
general to specific ordering seems globally respected whereas it has not been
taken into account for the rendering of the map : the most general and the most
specific concepts occur to opposite sides of the map. The figure (4) also helps
to understand where is the prototype C4 among the other concepts resulting to
the query.

5 Experiments and Evaluation

Previously, we have described an unsupervised method for conceptual annota-
tion of NE. The evaluation of such unsupervised methods is subjective by nature
since several concepts would be relevant to disambiguate a NE. In this section,
we present a validation of our approach according to an existing task (super-
vised NE classification) that we are able to evaluate the performance. We then
describe the cascade evaluation protocol [10] which considers the unsupervised
conceptual annotation as a pre-processing step for a supervised NE classification
task. We conclude the section with a study of the results obtained through this
experiment.

5.1 CoNLL 2003 Data

The CoNLL-2003 named entity English data consists of three files : one training
file (train), one development file (testa) and one test file (testb). Figure (5) gives
an overview of the characteristics of the corpus.

Articles Sentences Tokens Locations Misc Organisations Persons
Training corpus (train) 946 14987 203621 7140 3438 6321 6600
Development corpus (testa) 216 3466 51362 1837 922 1341 1842
Test (testb) 231 3684 46435 1668 702 1661 1617

Fig. 5. CoNLL 2003 corpus .

Our learning methods have been trained with the training and development
data sets. The concept lattice obtained contains 14834 concepts for 8934 objects,
13983 attributes and 57170 relations in the formal context. The figure (6) depicts
a conceptual annotation produced by our system on a CoNLL sample.

Concept Lattice Mining for Unsupervised Named Entity Annotation 43



. . .
eighth-seeded JJ I-NP O O
Olympic JJ I-NP O I-MISC
champion NN I-NP Att52 O
Lindsay NNP I-NP Obj46 I-PER
Davenport NNP I-NP Obj46 I-PER
looking VBG I-VP O O
like IN I-PP O O
her PRP I-NP O O
most RBS I-ADVP O O
likely JJ I-ADVP O O
semifinal JJ I-NP O O
opponents NNS I-NP O O
. . O O O

– Att52= {champion, gold medallist, winner}
– Obj46= {Mary Pierce, Nate Miller, Kenny

Harrison, Johan Museeuw, Boris Becker,
Tanya Dubnicoff, Donovan Bailey, Carl Lewis,
Richard Krajicek, Nathalie Lancien, Yvegeny
Kafelnikov, Lindsay Davenport,Conchita Mar-
tinez,Thomas Muster}

Fig. 6. Example of conceptual annotation in the CoNLL 2003 corpus.

The Euclidean measure has been used for the prototype determination of
the intent matrix A(Lindsay Davenport, {champion}) and for the extent matrix
O(Lindsay Davenport, {champion}). It selects two concepts C52 and C46 : the
intent of C52 provides a disambiguation of ”champion” and the extent of C46

gives an annotation for ”Lindsay Davenport”.

5.2 Cascade Evaluation

In the framework of cascade evaluation [10], unsupervised learning is considered
as a pre-processing step for a supervised NE classification task that we are able
to evaluate. This cascade process reveals whether the conceptual annotation pro-
vides interesting enrichments to improve the supervised task on the CoNLL 2003
corpus. The protocol consists in comparing errors produced by two classifiers A
and B, when they perform on the test corpus (testb), after a training step on
the same training data (train + testa).

The system A is a supervised classifier trained normally on the labelled train-
ing corpus. As Ehrmann and Jacquet proposed [11], the system B provides two
annotations for NE. The first is given by our unsupervised annotation system
exploiting the concept lattice learned on the unlabelled training corpus. This
pre-processing step provides enrichments to the initial corpus description. The
system B can then benefit from these additional enrichments during the super-
vised learning step in order to produce the second annotation layer.

5.3 Experimental Results with Transformation-Based Learning

We have adapted the transformation-based learning (TBL) algorithm [12] to
design a supervised NER system. The algorithm initializes the NE labels with a
language model classifier (unigram), trained on the training corpus. The goal is
to correct this initial classification according to the original NE labels specified
in the training corpus. The next steps follow an iterative process : it corrects
the initial incorrect classification by inferring a sequence of transformation rules.
They are successively applied over the corpus in order to improve progressively
the NE classification.

The resulting rules are instantiated from a list of extraction patterns de-
fined manually. These patterns are able to explore co-texts features in a window

44 Thomas Girault



of +/- 3 words : among the available features, we have considered the word,
its morphosyntactic tag and the concept identifiers given by our unsupervised
conceptual annotation method.

The figure (7) shows the results of the cascade evaluation. The left column
indicates the performances reached by classifier A applied on the test corpus
provided with morphosyntactic tagging. The right column corresponds to results
obtained with the classifier B which has be used on the test corpus enriched with
the conceptual annotation.

A : TBL B : conceptual annotation + TBL
Precision Recall Fβ=1 Precision Recall Fβ=1

Lieu 66.56% 66.19% 66.38 75.09% 65.65% 70.06
Organisation 52.22% 55.18% 53.66 61.55% 46.91% 53.24
Person 59.68% 68.62% 63.84 75.32% 57.82% 65.42
Misc. 83.58% 60.74% 70.35 85.21% 67.46% 75.30
Total 62.67% 63.61% 63.14 73.81% 59.27% 65.75

Fig. 7. Cascade evaluation results.

According to these results, the unsupervised annotation system increases
the precision score to 11.14% and the Fβ=1 (where Fβ = (1+β2)·(precision·recall)

β2·precision+recall )
measure to 2.61. However, a regression of 4.4% has been observed for recall.

6 Conclusion, Discussion and Future Work

We have presented an unsupervised method for named entity annotation, which
is based on formal concept analysis. This method exploits a concept lattice struc-
turing relations between named entities and their related lexical units, observed
in text corpora. We have assumed that formal concepts are relevant units for
the disambiguation of named entities. The selection of a concept for an annota-
tion results of a query to the lattice. In addition, we have proposed a method
based on dimensionality reduction for the visualisation of formal concepts. We
have adapted the cascade evaluation protocol to validate the choice of concepts
for annotation. It shows that a supervised named entity classifier improves its
precision when it relies on the conceptual annotation produced by our unsuper-
vised FCA-based system. Even if, our system does not reach the performances
obtained by the best named entity recognizers, the first results are encouraging
since some improvements are possible.

The syntactic extraction process could be improved by using a dependency
parser : this could help to cover more syntactic patterns. It could also provide
some additional information such as normalised forms (e.g. {is, was, were} → to
be) or typed syntactic relations (e.g. subject-object, head-modifier).

The cascade evaluation framework, could compare our approach to other su-
pervised and unsupervised classifiers : we would be particularly interested in the
comparison with other FCA based classifiers [13]. At the present time, we are

Concept Lattice Mining for Unsupervised Named Entity Annotation 45



working on a semi-supervised lattice based classifier in which formal concepts
are tagged with the NE labels (persons, locations, organisations, miscellaneous)
available in the training corpus. Thus, the lattice would then be usable directly
as a supervised NE classifier which would be able to produce unsupervised con-
ceptual annotation with additional supervised labelling.

References

1. Pedersen, T.: 6. In: Unsupervised corpus-based methods for WSD. Springer (2006)
133–166

2. Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations.
Springer-Verlag (1999)

3. Grishman, R., Sundheim, B.: Message understanding conference 6: A brief history.
In: COLING. (1996) 466–471

4. Sang, E.F.T.K., Meulder, F.D.: Introduction to the conll-2003 shared task:
Language-independent named entity recognition. CoRR cs.CL/0306050 (2003)

5. Nazarenko, A., Zweigenbaum, P., Bouaud, J., Habert, B.: Corpus-based identifi-
cation and refinement of semantic classes (1997)

6. Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora
using formal concept analysis. Journal of Artificial Intelligence Research 24 (2005)
305–339

7. van der Merwe, D., Obiedkov, S.A., Kourie, D.G.: Addintent: A new incremental
algorithm for constructing concept lattices. [15] 372–385

8. Priss, U., Old, L.J.: Modelling lexical databases with formal concept analysis. J.
UCS 10(8) (2004) 967–984

9. Hérault, J., Jausions-Picaud, C., Guérin-Dugué, A.: Curvilinear component anal-
ysis for high-dimensional data representation: I. theoretical aspects and practical
use in the presence of noise. In: IWANN (2). (1999) 625–634

10. Candillier, L., Tellier, I., Torre, F., Bousquet, O.: Cascade evaluation of clustering
algorithms. In Fürnkranz, J., Scheffer, T., Spiliopoulou, M., eds.: 17th European
Conference on Machine Learning (ECML’2006). Volume LNAI 4212 of LNCS.,
Berlin, Germany, Springer Verlag (september 2006) 574–581

11. Ehrmann, M., Jacquet, G.: Vers une double annotation des entités nommées.
Traitement automatique des langues 47(3) (2006) 63–88

12. Brill, E.: Transformation-based error-driven learning and natural language pro-
cessing: A case study in part-of-speech tagging. Computational Linguistics 21(4)
(1995) 543–565

13. Kuznetsov, S.O.: Machine learning and formal concept analysis. [15] 287–312
14. Girault, T.: Exploitation de treillis de Galois en désambigüısation non super-

visée d’entités nommées. In: 15ème conférence sur le Traitement Automatique des
Langues Naturelles (TALN’08). (2008) 260–269

15. Eklund, P.W., ed.: Concept Lattices, Second International Conference on Formal
Concept Analysis, ICFCA 2004, Sydney, Australia, February 23-26, 2004, Proceed-
ings. In Eklund, P.W., ed.: ICFCA. Volume 2961 of Lecture Notes in Computer
Science., Springer (2004)

46 Thomas Girault



An Efficient Hybrid Algorithm for Mining
Frequent Closures and Generators

Laszlo Szathmary1, Petko Valtchev1, Amedeo Napoli2, and Robert Godin1

1 Dépt. d’Informatique UQAM, C.P. 8888,
Succ. Centre-Ville, Montréal H3C 3P8, Canada

Szathmary.L@gmail.com, valtchev.petko@uqam.ca, godin.robert@uqam.ca
2 LORIA UMR 7503, B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France

napoli@loria.fr

Abstract. The effective construction of many association rule bases re-
quires the computation of both frequent closed and frequent generator
itemsets (FCIs/FGs). However, these two tasks are rarely combined.
Most of the existing solutions apply levelwise breadth-first traversal,
though depth-first traversal, depending on data characteristics, is often
superior. Hence, we address here a hybrid algorithm that combines the
two different traversals. The proposed algorithm, Eclat-Z, extracts fre-
quent itemsets (FIs) in a depth-first way. Then, the algorithm filters FCIs
and FGs among FIs in a levelwise manner, and associates the generators
to their closures. In Eclat-Z we present a generic technique for extend-
ing an arbitrary FI-miner algorithm in order to support the generation
of minimal non-redundant association rules too. Experimental results
indicate that Eclat-Z outperforms pure levelwise methods in most cases.

1 Introduction

The discovery of meaningful associations is a key data mining task [1]. An as-
sociation miner typically proceeds in two steps: (i) extract all frequent patterns
X of a database, and (ii) break each pattern X into a premise Y , and a con-
clusion X \ Y parts to form a rule Y → X \ Y . Interestingness measures, such
as support and confidence, are applied to prune the set of extracted association
rules. However, the number of the remaining rules may still be way too high to
be practical. As a remedy, various concise representations of the family of valid
association rules have been proposed [2,3,4,5,6]. A good survey can be found
in [7].

Here we focus on the computation of frequent closed itemsets (FCIs) and
frequent generators (FGs), which underlie the minimal non-redundant associ-
ation rules (MNR) for instance. Following [2], these are rules with the form
P → Q \ P , where P ⊂ Q, P is a (minimal) generator (a.k.a. key-sets or free-
sets) and Q is a closed itemset. In other terms, in such rules the premise is min-
imal and the conclusion is maximal. As shown in [7],MNR is a lossless, sound,
and informative representation of all valid rules. Moreover, further restrictions

c© Radim Belohlavek, Sergei O. Kuznetsov (Eds.): CLA 2008, pp. 47–58,
ISBN 978–80–244–2111–7, Palacký University, Olomouc, 2008.



can be imposed on the rules inMNR, leading to more compact representations
such as the generic basis or the proper basis (see [7] for a complete list).

From a computational point of view, constructingMNR or its sub-structures
requires the family of frequent closed itemsets (FCIs) and their generators (FGs),
and possibly the precedence order between FCIs. A few methods for extracting
both FCIs and FGs have been published in the mining literature, e.g. A-Close [8]
or Titanic [9]. Generators have been targeted within the concept analysis field
as well [10], e.g. by Zart [11]. Well-known FCI/FG-miners exclusively apply
levelwise strategies, although the levelwise itemset miners are knowingly out-
performed by depth-first methods (e.g. Eclat [12], Charm [13], Closet [14]) on a
broad range of dataset profiles, especially on dense ones. Hence the idea of de-
signing a hybrid FCI/FG-miner. The algorithm that we propose called Eclat-Z
splits the FCI/FG-mining task into three steps. First, it applies the well-known
vertical algorithm Eclat for extracting the set of FIs. Second, it processes the FIs
in a levelwise manner to filter FCIs and FGs. This is why Eclat-Z is said to be a
hybrid algorithm. Finally, the algorithm associates FGs to their closures (FCIs)
to provide the necessary starting point for the production of MNR. Experi-
mental results show that Eclat-Z outperforms two other efficient competitors,
A-Close and Zart. During the design of Eclat-Z we had to face a challenge. The
Eclat algorithm, due to its depth-first nature, provides the FIs in a completely
unordered way. However, the levelwise post-processing steps require the FIs in
ascending order by length. We managed to solve this problem with a special file
indexing that proves to be efficient, generic, and gives no memory overhead at
all. As we will see, the idea of Eclat-Z can be generalized and used for arbitrary
FI-mining algorithm, either breadth-first or depth-first.

The main contribution of this work is a universal way of extending FI-miners
for computing minimal non-redundant association rules too. We present a novel
method for storing FIs in the file system if FIs are not provided in ascending
order by length. Thanks to our special file indexing technique, which requires
no additional memory, FIs can be sorted in a lengthwise manner. Once itemsets
are available in this order, we show an original technique for filtering generators,
closed itemsets, and associating generators to their closures.

The paper is organized as follows. Section 2 provides the basic concepts and
essential definitions. In Section 3, we give an overview of the Eclat algorithm.
This is followed in Section 4 with the detailed description of the Eclat-Z algo-
rithm, where we also give a running example. Next, we provide experimental
results in Section 5 for comparing the efficiency of Eclat-Z to A-Close and Zart.
Finally, conclusions and future work are discussed in Section 6.

2 Basic Concepts

Consider the following 5 × 5 sample dataset: D = {(1, ABDE), (2, AC),
(3, ABCE), (4, BCE), (5, ABCE)}. Throughout the paper, we will refer to
this example as “dataset D” .

48 Laszlo Szathmary, Petko Valtchev, Amedeo Napoli, Robert Godin



We consider a set of objects or transactions O = {o1, o2, . . . , om}, a set of at-
tributes or items A = {a1, a2, . . . , an}, and a relation R ⊆ O×A. A set of items
is called an itemset. Each transaction has a unique identifier (tid), and a set of
transactions is called a tidset.3 For an itemset X, we denote its corresponding
tidset, often called its image, as t(X). For instance, in dataset D, the image of
AB is 135, i.e. t(AB) = 135. Conversely, i(Y ) is the itemset corresponding to
a tidset Y . The length of an itemset is its cardinality, whereas an itemset of
length k is called a k-itemset (or a k-long itemset). The support of an item-
set X, denoted by supp(X), is the size of its image, i.e. supp(X) = |t(X)|. An
itemset X is called frequent, if its support is not less than a given minimum
support (denoted by min_supp), i.e. supp(X) ≥ min_supp. The image function
induces an equivalence relation on ℘(A): X ∼= Z iff t(X) = t(Z) [15]. Moreover,
an equivalence class has a unique maximum w.r.t. set inclusion and possibly
several minima, respectively called closed itemset (a.k.a. concept intents in con-
cept analysis [16]) and generator itemsets (a.k.a. key-sets in database theory or
free-sets). The support-oriented definitions exploiting the monotony of support
upon ⊆ in ℘(A) are as follows:

Definition 1 (closed itemset; generator). An itemset X is closed ( gener-
ator4) if it has no proper superset (subset) with the same support (respectively).

The closure of an itemset X (denoted by X ′′ following standard FCA notation)
is thus the largest itemset in the equivalence class of X. For instance, in dataset
D, the sets AB and AC are generators, and their closures are ABE and AC,
respectively (i.e. the equivalence class of AC is a singleton). In our approach, we
rely on the following two properties:

Property 1. A closed itemset cannot be the generator of a larger itemset.

Property 2. The closure of a frequent non-closed generator g is the smallest
proper superset of g in the set of frequent closed itemsets.

An association rule r: P1 → P2 involves two itemsets P1, P2 ⊆ A, s.t. P1∩P2 = ∅,
and P2 6= ∅. The support of a rule r is supp(r) = supp(P1∪P2) and its confidence
conf(r) = supp(P1 ∪ P2)/supp(P1). Frequent rules are defined in a way similar
to frequent itemsets, whereas confident rules play an equivalent role for the
confidence measure. A valid rule is both frequent and confident. Finding all
valid rules in a database is the target of a typical association rule mining task.

As their number may grow up to exponential, reduced sub-families of valid
rules are defined, which nevertheless convey the same information (lossless).
Associated expansion mechanisms allow for the entire family to be retrieved
from the reduced ones without any non-valid rules to be mixed in (soundness).
The minimal non-redundant association rule family (MNR) is made of rules
P → Q \ P , where P ⊂ Q, P is a (minimal) generator and Q is a closed

3 For convenience, we write an itemset {A, B, E} as ABE, and a tidset {1,3,5} as 135.
4 Generators are also called “keys” or “key itemsets”.

An Efficient Hybrid Algorithm for Mining Frequent Closures and Generators 49



itemset. A more restricted family arises from the additional constraint of P and
Q belonging to the same equivalence class, i.e. P ′′ = Q. It is known as the generic
basis for exact (100% confidence) association rules [7]. Here the basis refers to
the non-redundancy of the family w.r.t. a specific criterion. Inexact rule bases
can also be defined by means of generators and closures, e.g. the informative
basis [7], which further involves the inclusion order between closures.

3 Vertical Frequent Itemset Mining

The frequent itemset mining methods from the literature can be roughly split
into breadth-first and depth-first miners. Apriori -like [1] levelwise breadth-first
algorithms exploit the anti-monotony of frequent itemsets in a straightforward
manner: they advance one level at a time, generating candidates for the next level
and then computing their support upon the database. Depth-first algorithms, in
contrast, organize the search space in a tree. Typically using a sorted representa-
tion of the itemsets, they factor out common prefixes and hence limit the comput-
ing effort. Typical depth-first FI-miners include Eclat [17] and FP-growth [18].

3.1 Common Characteristics

Eclat was the first FI-miner using a vertical encoding of the database combined
with a depth-first traversal of the search space (organized in a prefix-tree) [17].

Vertical miners rely on a specific layout of the database that presents it in an
item-based, instead of a transaction-based, fashion. Thus, an additional effort is
required to transpose the global data matrix in a pre-processing step. However,
this effort pays back since afterwards the secondary storage does not need to
be accessed anymore. Indeed, the support of an itemset can be computed by
explicitly constructing its tidset which in turn can be built on top of the tidsets
of the individual items. Moreover, in [12], it is shown that the support of any
k-itemset can be determined by intersecting the tid-lists of any two of its (k−1)-
long subsets.

The central data structure in a vertical FI-miner is the IT-tree that represents
both the search space and the final result. The IT-tree is an extended prefix-tree
whose nodes are X × t(X) pairs. With respect to a classical prefix-tree or trie,
in an IT-tree the itemset X provides the entire prefix from the root to the node
labeled by it (and not the difference with the parent node prefix).

Example. Figure 1 presents the IT-tree of our example. Observe that the node
ABC × 35 for instance can be computed by combining the nodes AB × 135
and AC × 235. To that end, tidsets are intersected and itemsets are joined. The
support of ABC is readily established to 2.

3.2 Eclat

Eclat is a plain FI-miner traversing the IT-tree in a depth-first manner in a
pre-order way, from left-to-right [17,12].

50 Laszlo Szathmary, Petko Valtchev, Amedeo Napoli, Robert Godin



Fig. 1. IT-tree: Itemset-Tidset search tree of dataset D

At the beginning, the IT-tree is reduced to its root (empty itemset). Eclat ex-
tends the root one level downwards by adding the nodes of all frequent 1-itemsets.
Then, each of the new nodes is extended similarly: first, candidate descendant
nodes are formed by adding to its itemset the itemset of each right sibling; sec-
ond, the tidsets are computed by intersection and the supports are established;
and third, the frequent itemsets are added as effective descendant nodes of the
current node.

Running example. Using Figure 1, we illustrate the execution of Eclat on dataset
D with min_supp = 1 (20%). Initially, the IT-tree comprises only the root node
whose support is 100%. Frequent items with their tidsets are then added under
the root. Each of the new nodes is recursively extended, following a left-to-
right order and processing the corresponding sub-trees in a pre-order fashion.
For instance, the subtree of A comprises all frequent itemsets starting with A.
Thus, at step two, all 2-long supersets of A are formed using the right siblings
of A (frequent 1-itemsets). As AB, AC, AD, and AE are all frequent, they
are added as descendant nodes under the node of A. The extend procedure is
then recursively called on AB and the computation goes one level deeper in the
IT-tree. When the algorithm stops, all frequent itemsets are discovered.

4 The Eclat-Z Algorithm

Eclat-Z is a hybrid algorithm that combines the vertical FI-miner Eclat with
an original levelwise extension. Eclat finds all FIs that we save in the file sys-
tem. Then, this file is processed in a levelwise manner, i.e. itemsets are read
in ascending order by length, generators and closed itemsets are filtered, and
finally generators are associated to their closures. In the following, we present
the algorithm in detail.

4.1 Processing Itemsets in Ascending Order by Length

Sorting itemsets in ascending order by length is required for such algorithms that
produce FIs in an unordered way. Eclat, the algorithm used as itemset mining
“engine” here, is a good example of such an algorithm. Levelwise algorithms, like

An Efficient Hybrid Algorithm for Mining Frequent Closures and Generators 51



Table 1. Order of frequent itemsets produced by Eclat

order itemset support
1) ABCE 2
2) ABC 2
3) ABE 3
4) AB 3
5) ACE 2
6) AC 3
7) AE 3
8) A 4

order itemset support
9) BCE 3
10) BC 3
11) BE 4
12) B 4
13) CE 3
14) C 4
15) E 4

Apriori, represent an easier case because they produce FIs in ascending order
by length. If someone wants to use such an algorithm, he can continue with the
second part in Section 4.2. Here, in the first part, we present an efficient, file-
system based approach to process FIs in ascending order by their length. For
our example, we use dataset D with min_supp = 2 (40%). Eclat produces FIs
in an unordered way, as shown in Table 1.

As in practice it is impossible to keep all FIs in the main memory, we write FIs
in a binary file. In main memory we have an index, called PosIndex, for storing
file positions (Figure 2). PosIndex is a simple array of integers. At position k
it indicates where the last k-long itemset is written in the binary file. PosIndex
must always be kept up-to-date. On the left part of Figure 2, it is indicated how
PosIndex changes in time between t0 and t15. The right side of the same figure
shows the final state of PosIndex. Figure 3 shows the contents of the file. For
conciseness, support values are omitted. The file structure is explained through
the following examples.

Running example for storing itemsets. In our implementation of Eclat an IT-
node is processed when we return in recursion. Thus, the first FI found by Eclat
is ABCE (see Table 1). It is a 4-itemset. The size of the PosIndex array is
dynamically increased to size 4 + 1 (+1, because position 0 is not used). The
array is initialized: at each of its position we store −1 (time t0). As the length
of the found itemset is 4, we read the value of PosIndex at position 4. This
value (−1), together with the itemset is written to the binary file (see Figure 3).
The value that we read from PosIndex is a backward pointer that shows the file
position of the previous itemset with the same length. As the value is −1 here, it
simply means that this is the first itemset of this length. After writing ABCE
to the file, the 4th position of PosIndex is updated to 0 (t1), because the last
4-long itemset together with its backward pointer was written to position 0 in
the file. ABC is written similarly, and PosIndex is updated (t2). When ABE
is written to the file, its backward pointer is set to 5. This value is read from
PosIndex at position 3, since ABE is a 3-itemset. The process continues until
all FIs are found. The final state of PosIndex is indicated on the right side of
Figure 2.

52 Laszlo Szathmary, Petko Valtchev, Amedeo Napoli, Robert Godin



Fig. 2. The PosIndex structure. Timeline (left) and final state (right)

Fig. 3. Contents of the file with the FIs. File positions are also indicated

Running example for reading itemsets. Figure 3 illustrates how to read k-itemsets
from the file (here k = 1, shown in dark grey). First, we look for the last
1-itemset, which is registered in PosIndex (Figure 2) at position 1. The value
points at position 45 in the file. Itemset E is read, and we seek to the previous
1-itemset at position 43. C is read, seek to position 38. B is read, seek to position
26. A is read, and −1 indicates that there are no more 1-itemsets. This way FIs
can be processed in ascending order by length.

4.2 Finding Generators, Closures, and Associating Them

In the previous subsection, we presented the first part of the algorithm, i.e. how
to get frequent itemsets in ascending order by their length, even if they are
produced in an unordered way. In this subsection we continue with the second
part namely how to associate generators to their closures, once FIs are available
in a good order. The main block is shown in Algorithm 1. Two kinds of tables are
used, namely Fi for i-long frequent, and Zi for i-long frequent closed itemsets.

The readTable function is in charge of reading frequent itemsets of a given
length. If such an algorithm is used that produces FIs in an unordered way, like
Eclat, then readTable reads FIs from the binary file, as explained previously.
The function returns FIs in an Fi table. Fields of the table are initialized: item-
sets are marked as “keys” and “closed”. Of course, during the post-processing
step these values may change. Frequent attributes (frequent 1-itemsets) repre-
sent a special case. If they are present in each object of the dataset, then they
are not generators, because they have a smaller subset with the same support,

An Efficient Hybrid Algorithm for Mining Frequent Closures and Generators 53



Algorithm 1 (Eclat-Z):

1) maxItemsetLength← (size of the largest FI found by the FI-miner);
2) FG ← {}; // global list of frequent generators
3) F1 ← readTable(1); // get frequent 1-itemsets
4) for (i← 1; i < maxItemsetLength; i← i + 1) {
5) Fi+1 ← readTable(i + 1); // get frequent (i + 1)-itemsets
6) findKeysAndClosedItemsets(Fi+1, Fi); // filtering
7) Zi ← {l ∈ Fi | l.closed = true};
8) Find-Generators(Zi);
9) }
10) Zi ← {l ∈ Fi | l.closed = true};
11) Find-Generators(Zi);
12)
13) return

⋃
i Zi;

namely the empty set. In this case the empty set is a useful generator (w.r.t.
rule generation).

The findKeysAndClosedItemsets procedure is in charge of filtering FCIs
and FGs among FIs. The filtering procedure is based on Def. 1.

The Find-Generators procedure takes as input a Zi table. The method is
the following. For each frequent closed itemset z in Zi, it finds its proper subsets
in the global list FG, registers them as generators of z, deletes them from FG,
and adds non-closed generators from Fi to FG. Properties 1 and 2 guarantee that
whenever the subsets of an FCI are looked up in the list FG, only its generators
are returned.

Running example. The execution of Eclat-Z on dataset D with min_supp = 2
is illustrated in Table 2. Frequent 1-itemsets are read and stored in F1. Since
their support values are less than the total number of objects in the dataset, all
of them are keys (generators). They are also marked as “closed”. Then, frequent
2-itemsets are read too and stored in F2. The algorithm compares F2 to F1 in
order to filter non-closed and non-generator elements. The itemset BE has two
subsets in F1 with the same support, which means that BE is not a generator,
and B and E are not closed (by Def. 1). The remaining closed itemsets A and C
are copied from F1 to Z1, and their generators are determined. In the global list
of frequent generators (FG), which is still empty, they have no subsets, which
means that both A and C are generators themselves. Non-closed generators of
F1 (B and E) are added to the FG list. Comparing F3 to F2, it turns out that
ABE and BCE are not generators, while AB, AE, BC, and CE are not closed.
The remaining closed itemsets AC and BE are copied to Z2. The generator of
AC is itself, and the generators of BE are B and E. These two generators are
removed from FG and AB, AE, BC, and CE are added to FG. The 4-itemset
ABCE is the longest FI in the example. Its generators are read from FG. When
the algorithm stops, all FCIs with their generators are determined (see the union

54 Laszlo Szathmary, Petko Valtchev, Amedeo Napoli, Robert Godin



Table 2. Execution of Eclat-Z on dataset D with min_supp = 2 (40%)

F1 key? supp closed?
{A} yes 4 yes
{B} yes 4 yes
{C} yes 4 yes
{E} yes 4 yes

Z1 supp generators
{A} 4
{C} 4
FGbefore = {}
FGafter = {B, E}

F2 key? supp closed?
{AB} yes 3 yes
{AC} yes 3 yes
{AE} yes 3 yes
{BC} yes 3 yes
{BE} yes 4 yes
{CE} yes 3 yes

Z2 supp generators
{AC} 3
{BE} 4 {B, E}
FGbefore = {B, E}
FGafter = {AB, AE, BC, CE}

F3 key? supp closed?
{ABC} yes 2 yes
{ABE} yes 3 yes
{ACE} yes 2 yes
{BCE} yes 3 yes

Z3 supp generators
{ABE} 3 {AB, AE}
{BCE} 3 {BC, CE}
FGbefore = {AB, AE, BC, CE}
FGafter = {ABC, ACE}

F4 key? supp closed?
{ABCE} yes 2 yes

Z4 supp generators
{ABCE} 2 {ABC, ACE}
FGbefore = {ABC, ACE}
FGafter = {}

of the Zi tables in Table 2). If Eclat-Z leaves the generators of a closed itemset
empty, it simply means that the generator is identical to the closed itemset (this
is the case for A, C, and AC in the example). Recall that the support of a
generator is equivalent to the support of its closure.

5 Experimental Results

We evaluated Eclat-Z against Zart [11] and A-Close [8]. The algorithms were
implemented in Java under the Coron data mining platform [19].5 The experi-
ments were carried out on a bi-processor Intel Quad Core Xeon 2.33 GHz machine
running under Ubuntu GNU/Linux with 4 GB RAM. For the experiments we
have used the following datasets: T20I6D100K, C20D10K, and Mushrooms.
The T20I6D100K6 is a sparse dataset, constructed according to the properties
of market basket data that are typical weakly correlated data. The C20D10K is
a census dataset from the PUMS sample file, while the Mushrooms7 describes
mushrooms characteristics. The last two are highly correlated datasets.

5 http://coron.loria.fr
6 http://www.almaden.ibm.com/software/quest/Resources/
7 http://kdd.ics.uci.edu/

An Efficient Hybrid Algorithm for Mining Frequent Closures and Generators 55



Table 3. Response times of Eclat-Z and other statistics (response times of Zart
and A-Close, number of FIs, number of FCIs, number of FGs, and the proportion
of the number of FGs to the number of FIs)

min_supp execution time (sec.) # FIs # FCIs # FGs #FGs
#FIs

Eclat-Z Zart A-Close
T20I6D100K

1% 4.11 6.58 24.06 1,534 1,534 1,534 100.00%
0.75% 3.31 12.39 29.44 4,710 4,710 4,710 100.00%
0.5% 5.82 34.61 72.88 26,836 26,208 26,305 98.02%
0.25% 24.55 121.03 204.69 155,163 149,217 149,447 96.32%

C20D10K
30% 1.07 6.27 11.27 5,319 951 967 18.18%
20% 1.71 11.32 20.77 20,239 2,519 2,671 13.20%
10% 5.17 23.99 40.70 89,883 8,777 9,331 10.38%
5% 20.24 49.29 62.64 352,611 21,213 23,051 6.54%

Mushrooms
30% 0.82 2.87 5.86 2,587 425 544 21.03%
20% 3.36 7.72 11.68 53,337 1,169 1,704 3.19%
10% 37.46 46.37 29.43 600,817 4,850 7,585 1.26%
5% 368.03 391.97 50.20 4,137,547 12,789 21,391 0.52%

Table 3 contains the experimental evaluation of Eclat-Z against Zart and
A-Close. All times reported are real, wall clock times as obtained from the Unix
time command between input and output. We have chosen Zart and A-Close
because they represent two efficient algorithms that produce exactly the same
output as Eclat-Z. Zart and A-Close are both levelwise algorithms. Zart is an
extension of Pascal [15], i.e. first it finds all FIs using pattern-counting inference,
then it filters FCIs, and finally the algorithm associates FGs to their closures.
A-Close reduces the search space to FGs only, then it calculates the closure for
each generator. The way A-Close computes the closures of generators is quite
expensive because of the huge number of intersection operations.

In the sparse dataset T20I6D100K, almost all frequent itemsets are closed
and generators at the same time. It means that most equivalence classes are
singletons, thus A-Close cannot reduce the search space significantly. Since the
closure computation of A-Close is quite expensive, Eclat-Z performs much bet-
ter. Zart and Eclat-Z are similar in the sense that first both algorithms extract
FIs. While Zart is based on Pascal, Eclat-Z is based upon Eclat. The better per-
formance of Eclat-Z is due to the better performance of its FI-miner “engine”.

In datasets C20D10K and Mushrooms, the number of FGs is considerably
less than the total number of FIs. In this case, Zart can take advantage of its
pattern counting inference technique, and A-Close can benefit from its search
space reduction. Despite these optimizations, Eclat-Z still outperforms the two
algorithms in most cases. However, if the number of FGs is much less than the
number of FIs (for instance in Mushrooms by min_supp = 5%), A-Close gives
better response times.

56 Laszlo Szathmary, Petko Valtchev, Amedeo Napoli, Robert Godin



As a conclusion we can say that Eclat-Z clearly outperforms its levelwise
competitors on sparse datasets, and it also performs very well on dense, highly
correlated datasets if the minimum support threshold is not set too low.

6 Conclusion

In this paper we presented a generic algorithm called Eclat-Z that identifies FCIs
and their associated generators. From this output numerous concise representa-
tions of valid association rules can be readily derived.

Eclat-Z splits the FCI/FG-mining problem into three tasks: (1) FI-mining,
(2) filtering FCIs and FGs, and (3) associating FGs to their closures (FCIs). The
FI-mining part is solved by a well-known depth-first algorithm, Eclat. However,
with Eclat we had to face a challenge: it produces itemsets in an unordered way.
Thanks to a special file indexing technique, we managed to solve this issue in an
efficient way, thus steps (2) and (3) can post-process FIs in a levelwise manner.
As seen, the idea of the hybrid algorithm Eclat-Z can be generalized and used for
any FI-mining algorithm, be it breadth-first or depth-first. Experimental results
prove that Eclat-Z is highly efficient and outperforms its levelwise competitors
in most cases.

The study led to a range of exciting questions that are currently investigated.
Eclat-Z is highly efficient, but first it traverses the whole set of FIs. While in
sparse datasets it causes no problem, it can be a drawback in dense datasets
with very low minimum support. It would be interesting to combine the search
space reduction of A-Close with the efficiency of Eclat-Z. A further challenge
lies in the computation of the FCI precedence order that underlies some of the
association rule bases from the literature.

References

1. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large
Databases. In: Proc. of the 20th Intl. Conf. on Very Large Data Bases (VLDB
’94), San Francisco, CA, USA, Morgan Kaufmann Publishers Inc. (1994) 487–499

2. Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining Minimal
Non-Redundant Association Rules Using Frequent Closed Itemsets. In: Proc. of the
Computational Logic (CL ’00). Volume 1861 of LNAI., Springer (2000) 972–986

3. Kryszkiewicz, M.: Representative Association Rules. In: Proc. of the 2nd Pacific-
Asia Conf. on Research and Development in Knowledge Discovery and Data Mining
(PAKDD ’98), Melbourne, Australia, Springer-Verlag (1998) 198–209

4. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Closed set based discovery of
small covers for association rules. In: Proc. 15emes Journees Bases de Donnees
Avancees (BDA). (1999) 361–381

5. Duquenne, V.: Contextual implications between attributes and some representa-
tional properties for finite lattices. In: Beitraege zur Begriffsanalyse, B.I. Wis-
senschaftsverlag, Mannheim (1987) 213–239

6. Luxenburger, M.: Implications partielles dans un contexte. Mathématiques, Infor-
matique et Sciences Humaines 113 (1991) 35–55

An Efficient Hybrid Algorithm for Mining Frequent Closures and Generators 57



7. Kryszkiewicz, M.: Concise Representations of Association Rules. In: Proc. of the
ESF Exploratory Workshop on Pattern Detection and Discovery. (2002) 92–109

8. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering Frequent Closed
Itemsets for Association Rules. In: Proc. of the 7th Intl. Conf. on Database Theory
(ICDT ’99), Jerusalem, Israel (1999) 398–416

9. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing Iceberg
Concept Lattices with TITANIC. Data and Knowledge Engineering 42(2) (2002)
189–222

10. Valtchev, P., Missaoui, R., Godin, R.: Formal Concept Analysis for Knowledge
Discovery and Data Mining: The New Challenges. In: Proc. of the 2nd Intl. Conf.
on Formal Concept Analysis, Springer Verlag (Feb 2004) 352–371

11. Szathmary, L., Napoli, A., Kuznetsov, S.O.: ZART: A Multifunctional Itemset
Mining Algorithm. In: Proc. of the 5th Intl. Conf. on Concept Lattices and Their
Applications (CLA ’07), Montpellier, France (Oct 2007) 26–37

12. Zaki, M.J.: Scalable Algorithms for Association Mining. IEEE Transactions on
Knowledge and Data Engineering 12(3) (2000) 372–390

13. Zaki, M.J., Hsiao, C.J.: CHARM: An Efficient Algorithm for Closed Itemset Min-
ing. In: SIAM Intl. Conf. on Data Mining (SDM’ 02). (Apr 2002) 33–43

14. Pei, J., Han, J., Mao, R.: CLOSET: An Efficient Algorithm for Mining Frequent
Closed Itemsets. In: ACM SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery. (2000) 21–30

15. Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining frequent
patterns with counting inference. SIGKDD Explor. Newsl. 2(2) (2000) 66–75

16. Ganter, B., Wille, R.: Formal concept analysis: mathematical foundations.
Springer, Berlin/Heidelberg (1999)

17. Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New Algorithms for Fast
Discovery of Association Rules. In: Proc. of the 3rd Intl. Conf. on Knowledge
Discovery in Databases. (August 1997) 283–286

18. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In: Proc. of the 2000 ACM SIGMOD Intl. Conf. on Management of Data (SIGMOD
’00), ACM Press (2000) 1–12

19. Szathmary, L.: Symbolic Data Mining Methods with the Coron Platform. PhD
Thesis in Computer Science, Univ. Henri Poincaré – Nancy 1, France (Nov 2006)

58 Laszlo Szathmary, Petko Valtchev, Amedeo Napoli, Robert Godin



Optimal Decompositions of Matrices with
Grades into Binary and Graded Matrices?

Eduard Bartl1, Radim Belohlavek1,2, Jan Konecny1

1 Dept. Systems Science and Industrial Engineering
T. J. Watson School of Engineering and Applied Science

Binghamton University–SUNY, PO Box 6000, Binghamton, NY 13902–6000, USA
ebartl1@binghamton.edu,rbelohla@binghamton.edu,jkonecn1@binghamton.edu

2 Dept. Computer Science, Palacky University, Olomouc
Tomkova 40, CZ-779 00 Olomouc, Czech Republic

Abstract. The paper contributes to factor analysis of relational data.
We study the problem of decomposition of object-attribute matrices with
grades, i.e. matrices whose entries contain degrees to which objects have
attributes. The degrees are taken from a bounded partially ordered scale.
Examples of such matrices are binary matrices, matrices with entries
from a finite chain, or matrices with entries from the unit interval [0, 1].
We study the problem of decomposition of a given object-attribute ma-
trix I with grades into an object-factor matrix A and a binary factor-
attribute matrix B, with the number of factors as small as possible.
We present a theorem describing optimal decompositions. The theorem
shows that decompositions which use as factors particular formal con-
cepts associated to I are optimal in that the number of factors involved
is the smallest possible. Furthermore, we present an approximation al-
gorithm for finding those decompositions and illustrative examples.

1 Introduction and Problem Setting

Problem description in brief This paper presents results on optimal decomposi-
tions of matrices with grades. Examples of such matrices are binary (or Boolean)
matrices, i.e. matrices which entries are 0 or 1. Other examples are matrices
which contain numbers from the unit interval [0, 1] as their entries. In general we
consider non-numerical matrices with entries from particular complete lattices
L (binary matrices and matrices with entries from [0, 1] are particular examples
with L = {0, 1} and L = [0, 1], respectively).

We consider the following problem. Let L be a partially ordered scale bounded
from below and above by 0 and 1 (details specified later). Given an n×m matrix
I with entries from L (i.e. Iij ∈ L), we want to decompose I into a product

I = A ◦B

? Supported by grant No. 1ET101370417 of GA AV ČR and by institutional support,
research plan MSM 6198959214.

c© Radim Belohlavek, Sergei O. Kuznetsov (Eds.): CLA 2008, pp. 59–70,
ISBN 978–80–244–2111–7, Palacký University, Olomouc, 2008.



of an n×k matrix A with entries from L (i.e. Ail ∈ L) and a k×m binary matrix
B (i.e. Blj ∈ {0, 1}) with k as small as possible. The composition operation ◦
which we consider is defined by

(A ◦B)ij =
k∨

l=1

Ail ⊗Blj , (1)

where ⊗ is defined by a⊗1 = a and a⊗0 = 0. Note that if L = {0, 1} then A◦B
is the well-known Boolean product of binary matrices. Note also that if we allow
Ail ∈ L and Blj ∈ L and if ⊗ is a t-norm then ◦ is the product of graded matrices
well-known in fuzzy set theory, see e.g. [15], and that such decompositions were
considered in [4, 7].

Factor analysis model For a decomposition I = A ◦ B given by (1), Iij can be
interpreted as a degree to which there is a factor l such that l applies to object i
and l is associated to attribute j (j is a particular manifestation of l). This way,
a decomposition I = A ◦ B provides us with a factor analysis model (see [1, 13,
16] for references on factor analysis): A relationship between objects and original
attributes given by I is described using a relationship between the objects and
new variables, called factors, which is given by A, and a relationship between
factors and the original attributes, which is given by B. Note that we assume
that B is binary, i.e. that the relationship between factors and attributes is a
yes-or-no relationship. This feature distinguishes our approach from those which
we considered earlier.

Needless to say, one can consider decompositions I = A ◦ B given by (1),
in which A is binary and B arbitrary. Obviously, using IT = BT ◦ AT , one
can reduce this type of decomposition to the first type (A arbitrary, B binary).
Therefore, we do not consider such case.

Contribution of the paper We present a theorem regarding optimal decomposi-
tions of a given matrix I which shows that decompositions which use as factors
particular formal concepts, called crisply generated concepts, are optimal in that
they involve the least number of factors among all decompositions of I. Further-
more, we present an approximation algorithm for finding those decompositions
and provide illustrative examples.

Related and previous work The paper is a continuation of our previous work [4,
6, 7]. In particular, in [4, 7] we considered decompositions I = A ◦ B given by
(1), in which both A and B were arbitrary, i.e. none of them was required to be
binary.

Preliminaries from fuzzy logic We use standard notions of fuzzy logic and fuzzy
sets, see e.g. [2, 12, 15]. In particular, we use complete residuated lattices as
structures of truth degrees. Recall that a complete residuated lattice is an algebra
L = 〈L,∧,∨,⊗,→, 0, 1〉 such that 〈L,∧,∨, 0, 1〉 is a complete lattice, 〈L,⊗, 1〉
is a commutative monoid, and ⊗ and → satisfy so-called adjointness condition,
i.e. a⊗ b ≤ c if and only if a ≤ b → c. We assume familiarity with examples and

60 Eduard Bartl, Radim Belohlavek, Jan Konecny



basic properties of residuated lattices. As an example, for L = [0, 1], a ⊗ b =
max(0, a+b−1), a → b = min(1, 1−a+b), the algebra L = 〈[0, 1],∧,∨,⊗,→, 0, 1〉
is a complete residuated lattice (so-called standard  Lukasiewicz algebra). An L-
set in a universe set U is a mapping A : U → L.

2 Optimal Decompositions

2.1 Composition as
∨

-superposition of matrices

We first observe that I = A ◦B for n× k and k×m matrices A (graded) and B
(binary) means that I is a

∨
-superposition of particular rectangular matrices.

Definition 1. Let K1,K2 ⊆ L. An n×m matrix J with entries from L is called
(K1,K2)-rectangular iff there exist L-sets C in {1, . . . , n} and D in {1, . . . ,m}
with C(i) ∈ K1 and D(j) ∈ K2 such that J = C ⊗D, i.e.

Jij = C(i)⊗D(j) (2)

for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

In particular, we need (L, {0, 1})-rectangular matrices and call these just
“rectangular”. The term “rectangular” is inspired by the “shape” of such matri-
ces. The following matrices are examples of ({0, 1}, {0, 1})-rectangular (J1) and
([0, 1], {0, 1})-rectangular (J2) matrices:

J1 =


0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

, J2 =


0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.5 0.5 0.5 0.0 0.0
0.0 0.0 1.0 1.0 1.0 0.0 0.0
0.0 0.0 0.2 0.2 0.2 0.0 0.0
0.0 0.0 1.0 1.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0

.

In the above example, J1 = C ⊗D where C and D are characteristic functions
of {3, 4, 5, 6} and {3, 4, 5}, respectively; J2 = C ⊗ D where C(1) = C(2) =
C(7) = C(8) = 0, C(3) = 0.5, C(4) = 1.0, C(5) = 0.2, C(6) = 1.0, and
D(1) = D(2) = D(6) = D(7) = 0, D(3) = D(4) = D(5) = 1.

The role of (L, {0, 1})-rectangular matrices is shown by the following theorem.

Theorem 1. I = A ◦ B for n × k and k × m matrices A and B with Ail ∈ L
and Blj ∈ {0, 1} iff I is a

∨
-superposition of k (L, {0, 1})-rectangular matrices

J1, . . . , Jk, i.e. iff

I = J1 ∨ J2 ∨ · · · ∨ Jk.

Proof. Denote by Jl the ◦-product A l ◦Bl of the l-th column A l of A and the
l-th row Bl of B, i.e. (Jl)ij = Ail ⊗ Blj . I = A ◦ B means Iij = (A ◦ B)ij , i.e.
Iij =

∨k
l=1(Ail ⊗ Blj). Therefore, I = J1 ∨ J2 ∨ · · · ∨ Jk. Since B is a binary

matrix, Jl are (L, {0, 1})-rectangular matrices. �

Optimal Decompositions of Matrices with Grades into Binary and Graded
Matrices

61



Example 1. To illustrate the content of Theorem 1, consider the following de-
composition I = A ◦B:  0.3 1.0 0.0 0.0 0.0 0.3

1.0 1.0 0.0 0.0 1.0 1.0
1.0 0.9 1.0 1.0 0.0 0.8
1.0 0.2 0.0 0.0 1.0 0.2

 =

 0.3 0.0 0.0 1.0
1.0 0.0 1.0 0.7
0.8 1.0 0.0 0.9
0.2 0.0 1.0 0.0

 ◦

 1 1 0 0 0 1
1 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 0 0

.

In this example L = {0, 0.1, . . . , 0.9, 1} and a ⊗ b = min(a, b). According to
Theorem 1, I is a

∨
-superposition of four matrices, J1, J2, J3, J4 where Jl is a

◦-product of the l-th column of A and the l-th row of B, i.e.(
0.3 1.0 0.0 0.0 0.0 0.3
1.0 1.0 0.0 0.0 1.0 1.0
1.0 0.9 1.0 1.0 0.0 0.8
1.0 0.2 0.0 0.0 1.0 0.2

)
=(

0.3 0.3 0.0 0.0 0.0 0.3
1.0 1.0 0.0 0.0 0.0 1.0
0.8 0.8 0.0 0.0 0.0 0.8
0.2 0.2 0.0 0.0 0.0 0.2

)
∨

(
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 1.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

)
∨(

0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 1.0 0.0

)
∨

(
0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.7 0.0 0.0 0.0 0.0
0.0 0.9 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

)
.

2.2 Formal concepts are optimal factors

Theorem 1 says that in order to find a decomposition I = A◦B, we need to find
a suitable set of (L, {0, 1})-rectangular matrices Jl whose

∨
-superposition gives

I. We now describe decompositions of I which are optimal among all possible
decompositions in that the number k of factors is the smallest possible one. The
decompositions use so-called crisply generated formal concepts of I [5].

Preliminaries on crisply generated formal concepts This section presents prelim-
inaries on formal concepts of data with fuzzy attributes, particularly on crisply
generated formal concepts. The reader is referred, e.g., to [3, 5] for details.

Let X = {1, . . . , n} and Y = {1, . . . ,m} be sets (of objects and attributes,
respectively), I be an n × m matrix with entries from a support set L of a
complete residuated lattice L. The degree Ixy ∈ L is interpreted as a degree
to which object x has attribute y. Consider the operators ↑ : LX → LY and
↓ : LY → LX defined by

C↑(y) =
∧

x∈X(C(x) → Ixy), D↓(x) =
∧

y∈Y (D(y) → Ixy),

where → is the residuum of the complete residuated lattice L. That is, ↑ assigns
an L-set C↑ in Y to a given L-set C in X, and ↓ assigns an L-set D↓ in X
to a given L-set D in Y . C↑(y) can verbally be described as a degree to which
“for each object x ∈ X: if x is from C then x has attribute y” (note that
C↑(y) is just the degree of the last statement “for each · · · ” according to basic
principles of first-order fuzzy logic, see [12]). Likewise, D↓(x) is the degree to

62 Eduard Bartl, Radim Belohlavek, Jan Konecny



which “for each attribute y ∈ Y : if y is from D then x has attribute y” is true.
If L = {0, 1}, ↑ : LX → LY and ↓ : LY → LX coincide with the well-known
concept-derivation operators of the basic setting of formal concept analysis [8,
11]. ↑ and ↓ form a fuzzy Galois connection [2] and the compound operators ↑↓

and ↓↑ form particular closure operators in X and Y [2]. A pair 〈C,D〉 consisting
of an L-set C in X and an L-set D in Y is called a formal concept of I if C↑ = D
and D↓ = C. C and D are called the extent and intent of 〈C,D〉, respectively.
The set of all formal concepts of I is denoted by B(X, Y, I). With a partial order
≤ defined by

〈C1, D1〉 ≤ 〈C2, D2〉 iff C1 ⊆ C2 (iff D2 ⊆ D1)

for 〈C1, D1〉, 〈C2, D2〉 ∈ B(X, Y, I), B(X, Y, I) happens to be a complete lattice,
so-called concept lattice associated to I [2, 3]. Note that C1 ⊆ C2 means that C1

is contained in C2, i.e. for each x ∈ X, C1(x) ≤ C2(x). For L = {0, 1}, B(X, Y, I)
coincides with the ordinary concept lattice [11]. In [5], the following notion was
introduced. A formal concept 〈C,D〉 ∈ B(X, Y, I) is called crisply generated if
there is a crisp L-set Dc ∈ {0, 1}Y , i.e. for each y ∈ Y : Dc(y) = 0 or Dc(y) = 1,
such that C = D↓

c (and thus D = D↓↑
c ). Let Bc(X, Y, I) denote the collection of

all crisply generated formal concepts of I, i.e.

Bc(X, Y, I) = {〈C,D〉 ∈ B(X, Y, I) | there is Dc ∈ {0, 1}Y : C = D↓
c}.

We need the following characterization of crisply generated formal concepts. For
L-sets C1, C2 ∈ LX and D1, D2 ∈ LY , we put 〈C1, D1〉 E 〈C2, D2〉 if for each
x ∈ X, y ∈ Y we have C1(x) ≤ C2(x) and D1(y) ≤ D2(y).

Lemma 1 ([5]). 〈C,D〉 is a crisply generated formal concept iff 〈C,D〉 is max-
imal (w.r.t. E) such that (1) the rectangular matrix J defined by Jxy = C(x)⊗
D(y) is contained in I (i.e. Jxy ≤ Ixy for all x, y) and (2) C(x) =

∧
D(y)=1 Ixy.

Remark 1. Note that condition (2) of Lemma 1 means that for the crisp L-set
Dc ∈ {0, 1}Y corresponding to the 1-cut of D, which is defined by

Dc(y) =
{

1 if D(y) = 1,
0 if D(y) < 1,

(3)

we have C = D↓
c .

Matrices AF and BF For convenience, we identify 1 × p vectors with entries
from L with L-sets in {1, . . . , p} (the l-th coordinate of the vector = the degree
to which l belongs to the L-set). Given a set

F = {〈C1, D1〉, . . . , 〈Ck, Dk〉}
of L-sets Cl and Dl in {1, . . . , n} and {1, . . . ,m}, respectively, with values from
L, define n× k and k ×m matrices AF and BF by

(AF )il = (Cl)(i) and (BF )lj = (Dl)(j).

That is, the l-th column of AF is the transpose of the vector corresponding to
Cl and the l-th row of BF is the vector corresponding to Dl.

Optimal Decompositions of Matrices with Grades into Binary and Graded
Matrices

63



For F ⊆ B(X, Y, I), denote

Fc = {〈C,Dc〉 | 〈C,D〉 ∈ F}.
Note that Dc is defined by (3). We will show that sets Fc corresponding to sets
F of crisply generated formal concepts are fundamental for decompositions we
are looking for.

The first theorem says that for every I, there is a decomposition AFc
◦ BFc

for some F ⊆ Bc(X, Y, I).

Theorem 2 (universality). For every I with entries from L there is F ⊆
Bc(X, Y, I) such that I = AFc ◦ BFc , i.e. I is a product of A with entries from
L and B with entries from {0, 1}.

Proof. Denote for l ∈ {1, . . . ,m}, 〈Cl, Dl〉 = 〈{1/l}↓, {1/l}↓↑〉. Here, {1/l} is a
singleton in {1, . . . ,m}, i.e. and L-set defined by {1/l}(l) = 1 and {1/l}(j) =
0 for j 6= l. 〈Cl, Dl〉 are particular crisply generated formal concepts from
B(X, Y, I) and we have

Iij =
∨m

l=1 Cl(i)⊗Dl(j),

see [2]. Putting thus F = {〈Cl, Dl〉 | l = 1, . . . ,m}, we get I = AFc
◦BFc

. �

However, Theorem 2 and its proof yield only |F| = m, i.e. the number k = |F|
of factors equals the number m of attributes. In general, better decompositions
may exist, i.e. those with k < m. The next theorem shows that the decompo-
sitions which use crisply generated formal concepts of I as factors are optimal
among all decompositions of I.

Theorem 3 (optimality). Let I = A ◦B for n× k and k×m matrices A and
B with Ail ∈ L, Blj ∈ {0, 1}. Then there exists a set F ⊆ Bc(X, Y, I) of crisply
generated formal concepts of I such that for Fc we have

|Fc| ≤ k

and for the n × |Fc| and |Fc| × m matrices AFc
with entries from L and BFc

with entries from {0, 1} we have

I = AFc
◦BFc

.

Proof. Sketch: Let I = A◦B for an n×k matrix A with entries from L and a k×m
binary matrix B. Consider the corresponding rectangular matrices J1, . . . , Jk of
which I is a

∨
-superposition according to Theorem 1. Denoting now the L-

sets in {1, . . . , n} and {1, . . . ,m} corresponding to the l-th column of A and
the l-th row of B by Gl and Hl, respectively, we have Jl = Gl ⊗ Hl. We have
Gl⊗Hl ⊆ I and one can check that also H↓

l ⊗Hl ⊆ I. The pair 〈H↓
l ,Hl〉 satisfies

condition (2) of Lemma 1 (see also Remark 1). Therefore, 〈H↓
l ,Hl〉 is contained

in a maximal (w.r.t. E defined in the paragraph preceding Lemma 1) 〈Cl, Dl〉
which is then, according to Lemma 1, a crisply generated formal concept of I.
As a result, Cl ⊗ Dl ⊆ I. Therefore, for F = {〈C1, D1〉, . . . , 〈Ck, Dk〉} we have
|F| ≤ k. Because (Hl)j ∈ {0, 1} and because we may assume Hl ⊆ Dl, we get

64 Eduard Bartl, Radim Belohlavek, Jan Konecny



Hl ⊆ (Dl)c, cf. (3). So,

I = A ◦B =
k∨

l=1

Gl ⊗Hl ⊆
k∨

l=1

H↓
l ⊗Hl

⊆
k∨

l=1

Cl ⊗ (Dl)c = AFc ◦BFc ⊆
k∨

l=1

Cl ⊗Dl = AF ◦BF ⊆ I,

i.e. AFc ◦BFc = I, finishing the proof. �

Note that using the notation from the proof of Theorem 3, two distinct
〈Gl,Hl〉’s may be contained in a single 〈Cl, Dl〉, i.e. for 〈Gl1 ,Hl1〉 6= 〈Gl2 ,Hl2〉
we can have 〈Cl1 , Dl1〉 = 〈Cl2 , Dl2〉. As a consequence, we may have |F| < k.

3 Algorithm

In this section, we present an approximation algorithm for computing a decom-
position I = A◦B of an n×m matrix I with entries from L into an n×k matrix
A with entries from L and a k×m binary matrix B with k as small as possible.
Note that we do not provide the approximation factor for this algorithm.

Recall that for L = {0, 1} (i.e. the set of grades contains just 0 and 1), our
problem becomes a problem of decomposition of binary matrices. In particular, if
L = {0, 1}, we are given a binary matrix I and our aim is to find a decomposition
I = A ◦ B into an n × k binary matrix A and a k × m binary matrix B with
k as small as possible. This problem is NP-hard and its decision version is NP-
complete, see e.g. [17–19], and also [6].

Due to NP-hardness of a problem of decomposition of binary matrices which
is a particular instance of our problem, we need to look for suitable approxi-
mation algorithms. In the following, we propose a greedy approximation algo-
rithm inspired by the algorithms presented in [6] and [7]. Briefly, starting with
empty Fc, the algorithm selects a crisply generated concept 〈C,D〉 of I that
covers a large part of I which is still uncovered. For each such selected 〈C,D〉,
the corresponding 〈C,Dc〉, see (3), is added to Fc. For determining 〈C,D〉,
we use |D ⊕ j| which denotes the number of pairs 〈i, j′〉 of indices, for which
Iij′ =

(
IFc

∨ (D ∪ { 1/j})↓ ⊗ (D ∪ { 1/j})↓↑
)
ij′ . We refer to this approach as to

Method 1. We also used Method 2 for which |D ⊕ j| takes into account also
entries

(
IFc ∨ (D ∪ { 1/j})↓ ⊗ (D ∪ { 1/j})↓↑

)
ij′ which are close to Iij′ but not

necessarily equal (details will appear in a full version of this paper).
Note that if L = {0, 1}, our algorithm works the same way as the one from

[6]. We performed several experiments with our algorithm. Due to limited scope,
we present the following one. We generated 1,000 matrices I of dimension 15×15
over 5-element chain L with  Lukasiewicz operations. Each matrix was generated
as a product of a 15 × k matrix A and a k × 15 binary matrix B, so we knew
the number of factors (its upper bound, in fact). Table 1 shows the numbers of
factors (average value ± standard deviation) for decompositions of I obtained
by our algorithm (both for Methods 1 and 2).

Optimal Decompositions of Matrices with Grades into Binary and Graded
Matrices

65



Algorithm 1 Find Factors
Input: I (matrix with entries from L)
Output: Fc (set Fc for which I = AFc ◦BFc)

set IFc to empty matrix ((IFc)ij = 0)
while I 6= IFc do

set D to ∅
set V to 0
while there is j such that D(j) < 1 and |D ⊕ j| > V do

select j such that D(j) < 1 which maximizes |D ⊕ j|
set D to (D ∪ { 1/j})↓↑
set V to |D ⊕ j|

end while
set C to D↓

add 〈C, Dc〉 to Fc

set IFc to IFc ∨ C ⊗Dc

end while

Table 1. Number of computed factors

k no. computed factors no. computed factors
Method 1 Method 2

4 5.294 ± 0.660 5.303 ± 0.712
5 7.204 ± 1.113 7.232 ± 1.063
6 8.964 ± 1.770 8.992 ± 1.688
7 10.194 ± 2.066 10.128 ± 1.990
8 11.155 ± 2.209 11.182 ± 2.067
9 11.747 ± 2.247 11.771 ± 1.878
10 12.18 ± 2.035 12.225 ± 2.054

4 Illustrative Example

In this section, we present an illustrative example regarding decompositions of
a matrix with grades into a matrix with grades and a binary matrix.

In our example, we consider n users, m permissions, and a user-to-permission
assignment. The assignment can be represented by an n × m matrix I with
entries from a scale L = {0, r, w, 1}, with 0 representing “no permission”, r and
w representing “permission to read” and “permission to write”, respectively, and
1 representing “full permission”. We define a partial order on L such that 0 is
the least element, 1 is the greatest one, and elements r and w are incomparable,
see Fig. 1.

Furthermore, we need to define operations of multiplication ⊗. We put x⊗y =
x ∧ y, for all x, y ∈ L. The residuum is then determined by ⊗ (due to the
requirement of adjointness, see Section 1) and is defined by x → y = 1 for x ≤ y,
x → y = y for all x > y, and r → w = w, w → r = r.

66 Eduard Bartl, Radim Belohlavek, Jan Konecny



0

r w

1

Fig. 1. Partial order on the scale of permissions

We want to decompose I into a product of n× k matrix A and k×m matrix
B where A and B represent a user-to-role and a role-to-permission relationship,
respectively. Therefore, the factors we want to discover are to be interpreted as
roles, such as “system administrator”, “standard user” or the like. Naturally, we
expect A to be a binary matrix (i.e. Ail ∈ {0, 1}), assigning roles to users (a
user has a given role or not), whereas B is graded matrix (i.e. Blj ∈ L). In order
to be consistent with previous chapters, A should be graded and B should be
binary matrix. Therefore, we use well-known fact that I = A ◦ B is equivalent
to I−1 = B−1 ◦A−1. That is, instead of I we decompose I−1.

As a particular example, we consider 9 users (or employees) and 5 file-types
in some computer system (for instance, “documents”, “archive files” or “system
files” could be some of these types). The user-to-permission relationship is de-
scribed in the table thereunder. The data can be visualized using a rectangular
grid, where , , , and represent permissions 0, r, w, and 1, respectively:

type1 type2 type3 type4 type5

Alice 0 r 1 1 1
Bob 0 0 r r w
Charles 0 r 1 1 1
David 0 0 r r w
Eve 1 1 1 1 1
Frank 0 r 1 1 1
George 0 r 1 1 1
Henry 0 0 r r w
Isaac 0 0 r r w

Our aim is thus to decompose the corresponding graded matrix

I−1 =

 0 0 0 0 1 0 0 0 0
r 0 r 0 1 r r 0 0
1 r 1 r 1 1 1 r r
1 r 1 r 1 1 1 r r
1 w 1 w 1 1 1 w w

 .

Algorithm 1 computes the following decomposition:

I−1 =

 0 0 1
r 0 1
1 r 1
1 r 1
1 w 1

 ◦
( 1 0 1 0 1 1 1 0 0

1 1 1 1 1 1 1 1 1
0 0 0 0 1 0 0 0 0

)
,

Optimal Decompositions of Matrices with Grades into Binary and Graded
Matrices

67



i.e.,

I = A ◦B =



1 1 0
0 1 0
1 1 0
0 1 0
1 1 1
1 1 0
1 1 0
0 1 0
0 1 0


◦
( 0 r 1 1 1

0 0 r r w
1 1 1 1 1

)
.

This decomposition can be displayed as:

= ◦

As we obtained a 9× 3 binary matrix A describing a user-to-role assignment
and 3 × 5 matrix B describing a role-to-permission assignment. Therefore, we
obtained 3 factors: role1, role2, role3. The first role (corresponding to the first
row of matrix B) might be interpreted as “standard user”, the second one (the
middle row of B) as “anonymous user” (“guest”), and the third one (the last
row of B) as “system administrator”.

According to matrix A, we assign roles to users by:

Alice - role1, role2,
Bob - role2,
Charles - role1, role2,
David - role2,
Eve - all roles,
Frank - role1, role2,
George - role1, role2,
Henry - role2,
Isaac - role2.

Next, we compute an approximate decomposition of I ≈ A ◦ B. By this we
mean that we want the entries of I to by similar to the corresponding entries of
A◦B to a degree which exceeds a given similarity threshold f . In our example we
set f = 0.9. Details regarding such similarity will be presented in a full version of
this paper. Let us just note that the similarity is based on the number of matrix
entries which have equal values in I and A ◦B. A graphical representation of an
approximation decomposition computed by our algorithm depicted below.

We can see that the approximate decomposition involves the two factors
corresponding to “standard user” and “anonymous user”, which were involved

68 Eduard Bartl, Radim Belohlavek, Jan Konecny



≈ = ◦

also in the exact decomposition. However, the factor corresponding to “system
administrator” is no longer involved in the approximate decomposition. This
can be seen as the result of our attempt, due to performing an approximate
decomposition, to discover only a small number of factors (roles) which account
for most of the data and, hence, are common. The role of “system administrator”
is not common since the only user with this role is Eve.

5 Conclusions and Future Research

We presented a theorem regarding optimal decomposition of a matrix with grades
into a matrix with grades and a binary matrix. Furthermore, we proposed a
greedy approximation algorithm for computing such decompositions and exam-
ples illustrating such decompositions.

Further issues and future research include the following items:

– Independence of ⊗ and →. It can be shown that the decompositions of a
graded matrix into a graded and a binary matrix do not depend, in a certain
sense, on the operations ⊗ and → on the scale L of grades. We sticked to
the framework which involves ⊗ and → to show how the problem addressed
in this paper fits into the results developed earlier. Details will be presented
in the full version of this paper.

– Decompositions of matrices with grades into matrices with further con-
straints, different from the requirement of binarity of B.

– Approximation algorithms for approximate and exact decompositions of ma-
trices with grades.

– Applications of the underlying factor analysis model and comparison to other
models of factor analysis.

– Role of decompositions in machine learning and data mining (esp. dimen-
sionality reduction).

References

1. Bartholomew, D. J., Knott M.: Latent Variable Models and Factor Analysis, 2nd
Ed., London, Arnold, 1999.

2. Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer,
Academic/Plenum Publishers, New York, 2002.

Optimal Decompositions of Matrices with Grades into Binary and Graded
Matrices

69



3. Belohlavek, R.: Concept lattices and order in fuzzy logic. Annals of Pure and
Applied Logic 128(1–3)(2004), 277–298.

4. Belohlavek, R.: Optimal decompositions of matrices with grades. IEEE Intelligent
Systems 2008 (to appear).

5. Belohlavek, R., Sklenar, V., Zacpal, J.: Crisply generated fuzzy concepts. In: B.
Ganter and R. Godin (Eds.): ICFCA 2005, Lecture Notes in Artificial Intelligence
3403, pp. 268–283, Springer-Verlag, Berlin/Heidelberg, 2005.

6. Belohlavek, R., Vychodil, V.: Discovery of optimal factors in binary data via a
novel method of matrix decomposition (to appear). Preliminary version appeared
as: On Boolean factor analysis with formal concepts as factors. SCIS & ISIS 2006,
Int. Conf. Soft Computing and Intelligent Systems & Int. Symposium on Intelligent
Systems, Sep 20-24, 2006, Tokyo, Japan, pp. 1054-1059.

7. Belohlavek, R., Vychodil, V.: Optimal decompositions of matrices with ordinal
data (submitted).

8. Carpineto, C., Romano, G.: Concept Data Analysis. Theory and Applications.
J. Wiley, 2004.

9. Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C.: Introduction to Algo-
rithms, 2nd Ed. MIT Press, 2001.

10. Frolov, A. A., Húsek, D., Muraviev, I. P., Polyakov, P. A.: Boolean factor analysis
by Hopfield-like autoassociative memory. IEEE Transactions on Neural Networks
Vol. 18, No. 3, May 2007, pp. 698–707.

11. Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations.
Springer, Berlin, 1999.

12. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.
13. Harman, H. H.: Modern Factor Analysis, 2nd Ed. The Univ. Chicago Press,

Chicago, 1970.
14. Keprt, A., Snášel, V.: Binary factor analysis with help of formal concepts. In Proc.

CLA 2004, Ostrava, Czech Republic, 2004, pp. 90-101, ISBN 80–248–0597–9.
15. Klir, G. J., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Theory and Applications.

Prentice-Hall, 1995.
16. McDonald, R. P.: Factor Analysis and Related Methods. Lawrence Erlbaum Asso-

ciates, Inc., 1985.
17. Nau, D. S.: Specificity covering: immunological and other applications, computa-

tional complexity and other mathematical properties, and a computer program.
A. M. Thesis, Technical Report CS–1976–7, Computer Sci.Dept., Duke Univ.,
Durham, N.C., 1976.

18. Nau, D. S., Markowsky, G., Woodbury M. A., Amos D. B.: A Mathematical Anal-
ysis of Human Leukocyte Antigen Serology. Math. Biosciences 40(1978), 243–270.

19. Stockmeyer, L. J.: The set basis problem is NP-complete. IBM Research Report
RC5431, Yorktown Heights, NY, 1975.

20. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In: I. Rival (Ed.): Ordered Sets, 445–470, Reidel, Dordrecht-Boston, 1982.

70 Eduard Bartl, Radim Belohlavek, Jan Konecny



Parallel Recursive Algorithm for FCA?

Petr Krajca, Jan Outrata and Vilem Vychodil

Data Analysis and Modelling Laboratory, SUNY Binghamton
Vestal Parkway E, Binghamton, NY 13902–6000, USA

petr.krajca@binghamton.edu, vychodil@binghamton.edu

Department of Computer Science, Palacky University, Olomouc
Tomkova 40, CZ-779 00 Olomouc, Czech Republic

jan.outrata@upol.cz

Abstract. This paper presents a parallel algorithm for computing for-
mal concepts. Presented is a sequential version upon which we build the
parallel one. We describe the algorithm, its implementation, scalability,
and provide an initial experimental evaluation of its efficiency. The algo-
rithm is fast, memory efficient, and can be optimized so that all critical
operations are reduced to low-level bit-array operations. One of the key
features of the algorithm is that it avoids synchronization which has
positive impacts on its speed and implementation.

1 Introduction

In this paper, we focus on extracting formal concepts, i.e. particular rectangular
patterns, in binary object-attribute relational data. The input data, we are inter-
ested in, takes form of a two-dimensional data table with rows corresponding to
objects, columns corresponding to attributes (features), and table entries being
1’s and 0’s indicating presence/absence of attributes. Tables like these represent
a fundamental form of incidence data. Given a data table, we wish to find all
formal concepts [9, 18] present in the table.

There are several algorithms for computing formal concepts, see [13] for an
overview and comparison. Among the best known algorithms are Ganter’s algo-
rithm [8] and Lindig’s algorithm [14] and their variants. Almost all algorithms
proposed to date are sequential ones. Since parallel computing is recently gain-
ing interests as hardware manufactures are shifting their focus from improving
computing power by increasing clock frequencies to developing processors with
multiple cores, there is a need to have scalable parallel algorithms for formal con-
cept analysis (FCA) which can fully utilize the power of such milticore systems
and deliver results faster than sequential algorithms. In this paper, we propose a
parallel version of an algorithm presented in [16, 17] which is closely related to al-
gorithm Close-by-One [12]. Our algorithm is light weight, fast, memory efficient,
and can be implemented so that it uses just static linear data structures utiliz-
ing only low-level operations present in arithmetic logic units of contemporary
? Supported by grant No. 1ET101370417 of GA AV ČR and by institutional support,

research plan MSM 6198959214.

c© Radim Belohlavek, Sergei O. Kuznetsov (Eds.): CLA 2008, pp. 71–82,
ISBN 978–80–244–2111–7, Palacký University, Olomouc, 2008.



microchips which significantly improves the performance of its implementations.
We describe the algorithm and compare its performance with the other algo-
rithms. We also focus on scalability, i.e. the growth of algorithm’s performance
with respect to the growing number of processors.

Let us note that computing all formal concepts is interesting not only for
FCA itself but has a wide range of applications. For instance, it has been shown
in [3] that formal concepts can be used to find optimal factorization of Boolean
matrices. In fact, formal concepts correspond with optimal solutions to the dis-
crete basis problem discussed by Miettinen et al. [15]. Finding formal concepts
in data tables is therefore an important task.

2 Preliminaries from FCA

In this section we recall basic notions of the formal concept analysis. More details
can be found in monographs [9] and [5].

Let X = {0, 1, . . . ,m} and Y = {0, 1, . . . , n} be our sets of objects and
attributes, respectively. A formal context is a triplet 〈X, Y, I〉 where I ⊆ X ×Y ,
i.e. I is a binary relation between X and Y , 〈x, y〉 ∈ I meaning that object x
has attribute y. As usual, we consider a couple of concept-forming operators [9]
↑ : 2X → 2Y and ↓ : 2Y → 2X defined, for each A ⊆ X and B ⊆ Y , by

A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I}, (1)

B↓ = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}. (2)

By definition (1), A↑ is the set of all attributes shared by all objects from A
and, by (2), B↓ is the set of all objects sharing all attributes from B. Operators
↑ : 2X → 2Y and ↓ : 2Y → 2X defined by (1) and (2) form the so-called Galois
connection [9]. A formal concept (in 〈X, Y, I〉) is any couple 〈A, B〉 ∈ 2X × 2Y

such that A↑ = B and B↓ = A. If 〈A, B〉 is a formal concept then A and B will
be called the extent and intent of that concept, respectively. The subconcept-
superconcept hierarchy ≤ is defined as 〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (or, iff
B2 ⊆ B1, both the ways are equivalent), see [5, 9] for details.

Remark 1. There is a useful view of formal concepts which is often neglected in
literature. Namely, formal concepts in 〈X, Y, I〉 correspond to maximal rectangles
in 〈X,Y, I〉. In a more detail, any 〈A, B〉 ∈ 2X × 2Y such that A× B ⊆ I shall
be called a rectangle in I. Rectangle 〈A, B〉 in I is a maximal one if, for each
rectangle 〈A′, B′〉 in I such that A×B ⊆ A′×B′, we have A = A′ and B = B′.
Now, it is easily seen that 〈A, B〉 ∈ 2X × 2Y is a maximal rectangle in I iff
A↑ = B and B↓ = A, i.e. maximal rectangles = formal concepts.

3 Computing Closures

Here we describe a procedure common to both the sequential and parallel ver-
sions of our algorithm. It generates a new concept from an existing one by
enlarging its intent and shrinking its extent (at the same time).

72 Petr Krajca, Jan Outrata, Vilem Vychodil



Procedure ComputeClosure(〈A, B〉, y)
for i from 0 upto m do1

set C[i] to 0;2

end3

for j from 0 upto n do4

set D[j] to 1;5

end6

foreach i in A ∩ rows[y] do7

set C[i] to 1;8

for j from 0 upto n do9

if table[i, j] = 0 then10

set D[j] to 0;11

end12

end13

end14

return 〈C, D〉15

Representation of the Input Data For the sake of efficiency, we represent each
〈X, Y, I〉 two ways. First, by a two-dimensional array, denoted table, which cor-
responds with I in the usual sense. That is, the array table is filled with 1s and
0s so that table[i, j] = 1 iff 〈i, j〉 ∈ I and table[i, j] = 0 iff 〈i, j〉 6∈ I.

The second representation of the data is an array of ordered lists of objects.
For each attribute y ∈ Y , we let rows[y] be a list of all objects having the
attribute y. Thus, rows[y] contains x ∈ X iff 〈x, y〉 ∈ I. In addition to that, the
numbers of rows contained in rows[y] will be ordered in the ascending order (this
is for the sake of efficiency). For instance, rows[y] = (2, 4, 7) means that the only
objects from X having y in I are the objects 2, 4, and 7. The two-dimensional
array table and the array of lists rows will be used by the subsequent algorithms.

All the algorithms we are going to describe will use sets of objects and at-
tributes represented by their characteristic arrays. That is, in case of attributes,
a subset B ⊆ Y = {0, 1, . . . , n} will be represented by an (n + 1)-element linear
array b of 1s and 0s such b[k] = 1 iff k ∈ B (and b[k] = 0 iff k 6∈ B). By a slight
abuse of notation, we will identify B with b and write B[k] = 1 to denote k ∈ B.

Description of the Algorithm If 〈A, B〉 is a formal concept then due to the
monotony of ↓↑, all the formal concepts whose intents are strictly greater than
B can be written as

〈
(B ∪ C)↓, (B ∪ C)↓↑

〉
, where C ⊆ Y is a set of attributes

such that there is at least one attribute y ∈ Y such that y ∈ C and y 6∈ B. In
particular, if we consider C = {y} ⊆ Y such that y 6∈ B, then〈

(B ∪ {y})↓, (B ∪ {y})↓↑
〉

(3)

is a formal concept such that (B ∪ {y})↓ ⊂ A and B ⊂ (B ∪ {y})↓↑. This is
important from the computational point of view because if we want to compute

Parallel Recursive Algorithm for FCA 73



(B ∪ {y})↓, it suffices to go exactly through all objects in A having attribute y:

(B ∪ {y})↓ = {x ∈ A | 〈x, y〉 ∈ I} = A ∩ {y}↓. (4)

The common attributes of objects from (4) form the intent of (3). We have just
outlined the idea behind our algorithm which generates formal concept (3) given
formal concept 〈A, B〉 and attribute y ∈ Y which does not belong to B. The
corresponding procedure will be called ComputeClosure. It accepts a formal
concept 〈A, B〉 and an attribute y 6∈ B and produces a new formal concept
〈C, D〉 which equals to (3). We can show that the algorithm is sound, see [16].

Remark 2. We have used two representations of the input data to establish de-
sired efficiency of computing new formal concepts, i.e. the redundancy in repre-
sentation is a trade-off for efficiency. The two-dimensional array representation
is used to determine which attributes are not present in the intent of the newly
computed formal concept (see lines 7–14 of ComputeClosure). The second
representation is used to skip rows in which y does not appear. Such rows do
not contribute to the closure (B ∪ {y})↓↑, i.e. they can be disregarded. Our
representation is most efficient for mid-size data sets (hundreds of attributes +
thousands of objects) stored in RAM.

4 Sequential Algorithm

The previous section described how we can efficiently compute a new formal
concept (3) given an initial formal concept 〈A, B〉. In this section we present a
simplified version of our sequential algorithm for computing formal concepts [16,
17] which is suitable for parallelization. The main idea behind this algorithm is
the same as in case of the algorithm Close-by-One proposed by Kuznetsov in [12].

Listing Formal Concepts in a Unique Order The core of our algorithm is a recur-
sive procedure GenerateFrom which lists all formal concepts using a depth-
first search through the space of all formal concepts. The procedure starts with an
initial formal concept 〈∅↓, ∅↓↑〉. During the search, the procedure first generates
a new formal concept R by adding attributes to the intent of the current formal
concept, i.e. it applies the procedure described in ComputeClosure. Then, it
is checked whether R has already been found. If not, it processes R (e.g., prints
it on the screen), and proceeds with generating further formal concepts resulting
from R by adding attributes to its intent, i.e. here GenerateFrom recursively
calls itself with R being the current formal concept.

The key issue here is to have a quick procedure testing whether a newly
generated formal concept has been generated before. We generate the formal
concepts in a unique order which ensures that each formal concept is processed
exactly once. The principle is the following. Let 〈A, B〉 be a formal concept,
y ∈ Y such that y 6∈ B. Put D = (B ∪ {y})↓↑, i.e. the new formal concept
is 〈(B ∪ {y})↓, D〉, see (3). Once D is computed using ComputeClosure, we
check whether

D ∩ {0, 1, . . . , y − 1} = B ∩ {0, 1, . . . , y − 1} (5)

74 Petr Krajca, Jan Outrata, Vilem Vychodil



Procedure GenerateFrom(〈A, B〉, y)
process B (e.g., print B on screen);1

if B = Y or y > n then2

return3

end4

for j from y upto n do5

if B[j] = 0 then6

set 〈C, D〉 to ComputeClosure(〈A, B〉, j);7

set skip to false;8

for k from 0 upto j − 1 do9

if D[k] 6= B[k] then10

set skip to true;11

break for loop;12

end13

end14

if skip = false then15

GenerateFrom(〈C, D〉, j + 1);16

end17

end18

end19

return20

is true. Note that the “⊇”-part of (5) is trivial. Moreover, (5) is true iff D agrees
with B on the attributes 0, 1, . . . , y − 1. In other words, (5) is true iff, for each
i ∈ {0, 1, . . . , y − 1}: i ∈ D iff i ∈ B. Thus, condition (5) expresses the fact that
the closure D of B ∪ {y} does not contain any new attributes which are “before
y”. Condition (5) will be used to check whether we should process D. If (5) will
be false, we will not process D because due to the depth-first search method, D
has already been processed.

Description of the Algorithm The algorithm is represented by a procedure Gen-
erateFrom that accepts two arguments. First, a formal concept 〈A, B〉 repre-
sented by characteristic vectors of objects A and attributes B covered by the
concept. Second, an attribute y which is the first attribute to be added to B.
〈A, B〉 serves as an initial concept from which we start generating other formal
concepts. After its invocation, GenerateFrom proceeds as follows:

– It processes the formal concept 〈A, B〉 (e.g., it prints A and B on screen).
– Then, the procedure checks whether B contains all the attributes from Y , i.e.

whether B represents the greatest intent, in which case we exit current branch
of recursion (lines 2–4).

– The main loop (lines 5–20) iterates over all remaining attributes, starting with
the attribute y. In the body of the main loop (lines 6–18), j denotes the current
attribute which we are about to add to B. The if-condition at line 6 checks
whether j is already present in B. If so, we proceed with another attribute. If
j is not present in B, we try to generate new intent from B ∪{j} (lines 7–17).

Parallel Recursive Algorithm for FCA 75



– At line 7, we compute a new formal concept denoted 〈C, D〉. The loop between
lines 9–14 checks whether B and D satisfy condition (5) for y being j. A flag
skip is initially set to false (line 8). The flag is reset to true iff there is k < j
such that B and D disagree on k.

– If skip is false, i.e. if D and B agree on all attributes up to j − 1, we make
a recursive call of the procedure GenerateFrom to compute descendant
intents of D, starting with the next attribute j + 1 (line 16).

In order to compute all the formal concepts, we invoke GenerateFrom
with 〈∅↓, ∅↓↑〉 and y = 0 as its arguments. Then, after finitely many steps,
the algorithm produces all formal concepts, each of them exactly once. The
soundness of the algorithm is proved in [16], cf. also [12].

Relationship to Other Sequential Algorithms Conceptually, GenerateFrom is
the same algorithm as Close-by-One proposed by Kuznetsov [12] although there
are some technical differences. GenerateFrom can be seen as simpler version
of Close-by-One since we are not interested in the order of generated concepts.
On the other hand, we utilize ComputeClosure which results to a much better
performance. The algorithm is similar to Lindig’s algorithm [13, 14] in that it
performs a depth-first search through the search space of all formal concepts. The
key difference between our algorithm and that proposed by Lindig [14] and its
variants is the way how we test that new formal concept has already been found.
Lindig’s algorithm and its variants use additional data structures to store intents
of found formal concepts. Thus, after a new formal concept is computed, Lindig’s
algorithm looks up for the concept in a data structure, typically a search tree
or a hashing table. Our algorithm uses similar idea as Ganter’s algorithm [8]
to ensure that no concept is generated multiple times, see (5). Compared to
Ganter’s algorithm, the number of concepts which are computed multiple times
and “dropped” is much lower, see [16].

5 Parallel Algorithm

The sequential version of our algorithm, described in previous section, lists all
formal concepts using a depth-first search through the space of all formal con-
cepts. Consider a calling tree of the recursive procedure GenerateFrom. The
parallel version consists in modification of GenerateFrom so that subtrees of
the calling tree are executed simultaneously by independent processes. The prob-
lem to solve is, given a process, which subtree(s) will be executed in the process,
or, put in other words, how to distribute computed formal concepts among the
processes.

Computing Formal Concepts in More Processes In the following we describe our
approach for computing formal concepts in a given fixed number P of separate
processes running in parallel. In the approach, processes are executing subtrees
(of the calling tree of GenerateFrom) containing, in the root node, a call
of GenerateFrom for a formal concept generated by a predefined number of

76 Petr Krajca, Jan Outrata, Vilem Vychodil



attributes. The number of attributes, denoted by L, is a second parameter of the
parallel algorithm. The parameter has an impact on the distribution of computed
formal concepts among the processes, see Remark 3 on page 9.

The algorithm, consisting in modification of GenerateFrom, first simulates
original sequential GenerateFrom until it reaches the recursion level at which
formal concepts generated by 0 < L ≤ n attributes are to be processed. The
initial recursion halts at level which equals L, counting recursion levels from 0
upwards. The formal concepts generated by L attributes, i.e. formal concepts
〈C, D〉 = 〈{y0, . . . , yL−1}↓, {y0, . . . , yL−1}↓↑〉 such that yi ∈ Y , are stored in a
queue instead of being processed. For each of the P processes there is exactly
one queue and the selection of the queue to which we store 〈C, D〉 is the key
point of the algorithm. In fact, by selecting a queue we select a process which
will list all formal concepts descendant to 〈C, D〉. The optimal selection method
should distribute all formal concepts to processes equally. This is, however, very
hard to achieve since we do not know the distribution of formal concepts in the
search space of all formal concepts until we actually compute them all. In the
present version of the algorithm we select process r, where r is the total number
of stored formal concepts so far modulo the number P of processes.

After filling up the queues, the modified procedure then forks itself into P
processes (or, alternatively, runs the following in P − 1 new processes too), and
in each process the original sequential GenerateFrom is called for each formal
concept in the queue of the respective process. This will list all the remaining
descendant formal concepts, in parallel.

Description of the Algorithm The algorithm is represented by a procedure Par-
allelGenerateFrom, the modification of GenerateFrom which accepts one
additional argument: the recursion level counter l, which is used to recognize the
recursion level L at which formal concepts generated by L attributes are to be
stored in a queue rather than processed. After its invocation, ParallelGen-
erateFrom proceeds as follows:

– Until it reaches the recursion level L > 0, the procedure simulates original
GenerateFrom (lines 6–24). The code is identical, with two exceptions: first,
instead of exiting at line 8 it skips to the point where original GenerateFrom
ends and, second, upon each recursive call of itself it increases the recursion
level counter l (line 21). In this step it (sequentially) processes all formal
concepts generated by up to L− 1 attributes.

– When recursion level counter l is equal to L, i.e. the procedure is about to
process formal concept 〈A, B〉 generated by L attributes, it (instead of pro-
cessing 〈A, B〉) stores 〈A, B〉 and y (the attribute to be added to B) to queue
queue[r] of selected process r and exits current branch of recursion (lines 2–4).
In this step, all formal concepts generated by L attributes are stored in the
queues.

– Notice that when ParallelGenerateFrom exits a branch of recursion at
line 4, the execution continues at line 22 because line 21 is the only place where
ParallelGenerateFrom is recursively called. Therefore, it continues at line

Parallel Recursive Algorithm for FCA 77



Procedure ParallelGenerateFrom(〈A, B〉, y, l)
if l = L then1

select r from 0 to P − 1 (e.g. r = (
PP−1

s=0 queue[s]) mod P );2

store (〈A, B〉, y) to queue[r];3

return4

end5

process B (e.g., print B on screen);6

if B = Y or y > n then7

goto line 25;8

end9

for j from y upto n do10

if B[j] = 0 then11

set 〈C, D〉 to ComputeClosure(〈A, B〉, j);12

set skip to false;13

for k from 0 upto j − 1 do14

if D[k] 6= B[k] then15

set skip to true;16

break for loop;17

end18

end19

if skip = false then20

ParallelGenerateFrom(〈C, D〉, j + 1, l + 1);21

end22

end23

end24

if l = 0 then25

for r from 1 upto P − 1 do26

new process27

while set (〈C, D〉, j) to load from queue[r] do28

GenerateFrom(〈C, D〉, j);29

end30

end31

end32

while set (〈C, D〉, j) to load from queue[0] do33

GenerateFrom(〈C, D〉, j);34

end35

end36

return37

25 after exiting the loop between line 10–24. Here, it either exits the current
branch of recursion (if l 6= 0) or continues if the top recursion level (l = 0) has
been reached (i.e., no more branches of recursion are on the call stack).

– On the top recursion level (l = 0), it runs new P − 1 processes running in
parallel (lines 26, 27) and the last step is performed by the new processes too.

– Finally, still on the top recursion level only, in each process, it calls original
GenerateFrom for each formal concept 〈C, D〉 and attribute j in the queue

78 Petr Krajca, Jan Outrata, Vilem Vychodil



of the respective process (lines 28–30 and 33–35). That means, all formal
concepts generated by L or more attributes are processed in separate processes
running in parallel.

In order to compute all the formal concepts, we invoke ParallelGener-
ateFrom with 〈∅↓, ∅↓↑〉, y = 0 and l = 0 as its arguments. Then, after finitely
many steps, the algorithm produces all formal concepts, each of them exactly
once. The soundness of the algorithm follows directly from the soundness of the
sequential version [12, 16] and the fact that processes compute predefined dis-
joint sub-collections of all formal concepts. This also means that the processes do
not interfere with each other and hence the algorithm needs no synchronization.
We postpone the proof to the full version of the paper. The parallelization also
does not increase the overall theoretical complexity of the algorithm which is
the same as for the sequential version.

Remark 3. Note that the parameter L, in addition to the process selection
method, also determines the number of formal concepts computed by each pro-
cess. If L = 1, most of the formal concepts (formal concepts descendant to a
formal concept generated by a single attribute) are computed by one or two
processes. With increasing L, formal concepts are distributed to processes more
equally. On the other hand, however, with increasing L more formal concepts are
computed sequentially and less in parallel. From our experimentation it seems
a good trade-off value is already L = 2, where almost all formal concepts (for
n � L) are computed in parallel and are distributed to processes nearly opti-
mally. This will be further discussed in Section 6.

Remark 4. There have been several approaches to parallel algorithms in FCA.
For instance, [7] proposes a parallelization of Ganter’s algorithm by decomposing
the set of all concepts into non-overlapping subsets which are computed simul-
taneously. Another parallelization of Ganter’s algorithm is presented in [2]. The
basic idea in [2] is that the lexicographically ordered power set 2Y is split into
p intervals of the same length (p indicates a number of processes). Then, each
of the p intervals is executed by an independent process using a serial version of
Ganter’s algorithm. A different approach is shown, e.g., in [11] where the algo-
rithm is based on dividing the input data into disjoin fragments which are then
computed by independent processes. A detailed comparison of the algorithms in
terms of their efficiency and scalability is beyond the scope of this paper and
will be a subject of future investigation.

6 Experimental Evaluation

We have run several experiments to compare the algorithm with other algorithms
for computing formal concepts. In the experiments, we have used Ganter’s [8],
Lindig’s [14] and Berry’s [4] algorithms and were interested in the performance of
the algorithms measured by the running time. Furthermore, we have run several
experiments to compare algorithm performances in dependence on number of

Parallel Recursive Algorithm for FCA 79



dataset mushroom tic-tac-toe Debian tags anonymous web
size 8124× 119 958× 29 14315× 475 32710× 295

density 19 % 34 % < 1 % 1 %

our (1 CPU) 6.543 0.092 12.746 65.221
our (2 CPUs) 3.541 0.047 7.710 33.364
our (4 CPUs) 2.343 0.035 4.545 18.520
our (8 CPUs) 1.393 0.029 3.043 11.466

Ganter’s 834.409 2.158 1720.827 10039.733
Lindig’s 5271.988 14.530 2639.670 13422.643
Berry’s 934.507 5.783 1531.944 3615.078

Fig. 1. Performance for selected datasets (seconds)

used CPUs. For the sake of comparison, we have implemented all the algorithms
in ANSI C. The experiments were done on otherwise idle 64-bit x86 64 hardware
with 8 independent processors (dual processor workstation with Quad-core Intel
Xeon Processor E5345, 2.33 GHz, 12 GB RAM).

Note that even the serial version of our algorithm significantly outperforms
the most commonly used algorithms for FCA. A detailed comparison can be
found in [16]. In this section, we focus primarily on the scalability of our algo-
rithm, i.e., we focus on the speed improvement with growing number of hardware
processors.

Our first experiment compares our algorithm with various FCA algorithms
using several data tables from the UCI Machine Learning Repository [1], UCI
Knowledge Discovery in Databases Archive [10], and our dataset describing pack-
ages in the Debian GNU/Linux [6]. The results, along with the information on
size and density (percentage of 1s) of used data sets, are depicted in Figure 1.
First four rows contain computation times measured in seconds in case of our
algorithm which has been run on 1 (sequential version), 2, 4, and 8 hardware
processors. From all the graphs and tables we can see that our algorithm (sig-
nificantly) outperforms all the other algorithms.

We now focus on the scalability of the algorithm, i.e., ability to decrease
running time using multiple CPUs (or more precisely CPU cores). We have
used selected data sets and various randomly generated data tables. Fig. 2 (left)
contains results for selected datasets while Fig. 2 (right) contains results for ran-
domly generated tables with 10000 objects and 5 % density of 1’s. By a relative
speedup which is shown on y-axes in the graphs, we mean the theoretical speedup
given by number of hardware processors (e.g., if we have 4 processors, the execu-
tion can be 4 times faster). Therefore, the relative speedup is a ratio of running
time using a single CPU (the sequential version of the algorithm) and running
time using multiple CPU cores. Note that the theoretical maximum of speedup
is equal to the number of used CPUs but real speedup is always smaller due to
certain overhead caused by managing of multiple threads of computation. Never-
theless, from the point of view of the speedup, we can see from the experiments

80 Petr Krajca, Jan Outrata, Vilem Vychodil



2

4

6

8

1 2 3 4 5 6 7 8

R
el

at
iv

e
sp

ee
du

p

CPUs

0

2

4

6

8

1 2 3 4 5 6 7 8

R
el

at
iv

e
sp

ee
du

p

CPUs

Fig. 2. Relative speedup dependent on various data tables (solid line—mushrooms,
dashed line—tic-tac-toe, dotted line—Debian tags, dot-and-dashed line—annonymous
web) and used CPU cores (on the left); relative speedup dependent on number of
attributes (solid line—50 attributes, dashed line—100 attributes, dotted line—150 at-
tributes, dot-and-dashed line—200 attributes) and used CPU cores measured using
randomly generated contexts with 10000 objects and 5 % density (on the right).

0

2

4

6

8

1 2 3 4 5 6 7 8

R
el

at
iv

e
sp

ee
du

p

CPUs

0

4

8

12

16

1 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

L

Fig. 3. Relative speedup dependent on density of 1’s (solid line—5 %, dashed line—
10 %, dotted line—20 %) and used CPU cores (on the left); running time dependent
on the argument L (the solid line is for the Debian tags data table and 4 CPUs used,
the dashed line is for the Debian tags data table and 8 CPUs used, the dotted lines
is for the mushrooms data table and 4 CPUs used and dot-and-dashed lines is for the
mushrooms data table and 8 CPUs used) (on the right).

that with growing number of attributes, the real speedup of the algorithm is
near its theoretical limits.

In next experiment, that is depicted in Fig. 3 (left), we were focusing on the
impact of density of 1’s. That is, we have generated data tables with various
densities and observed the impact on the scalability. We have used data tables
of size 100 × 10000. Finally, Fig. 3 (right) illustrates the influence of parameter
L on various data tables and amounts of CPU cores. The experiments indicate
that good choice is L ∈ {2, 3}, see Remark 3.

7 Conclusions

We have introduced a parallel algorithm for computing formal concepts in object-
attribute data tables. The parallel algorithm is an extension of the serial algo-

Parallel Recursive Algorithm for FCA 81



rithm we have proposed in [16]. The algorithm consists of a procedure for com-
puting closures and a recursive procedure for computing formal concepts. The
main feature of the recursive procedure is that it simulates the sequential one up
to a point where the procedure forks into multiple processes and each process
computes a disjoint set of formal concepts. Due to our design of the algorithm,
there is no need for synchronization which significantly improves efficiency of the
algorithm. We have shown that the algorithm is scalable. With growing numbers
of CPUs, the speedup of the computation given by increasing number of CPUs
is near its theoretical limit. The future research will focus on further refinements
of the algorithm and comparison with other approaches.

References

1. Asuncion A., Newman D. UCI Machine Learning Repository. University of Cali-
fornia, Irvine, School of Information and Computer Sciences, 2007.

2. Baklouti F., Levy G.: A distributed version of the Ganter algorithm for general
Galois Lattices. In: Belohlavek R., Snasel V. (Eds.): Proc. CLA 2005, pp. 207–221.

3. Belohlavek R., Vychodil V. On boolean factor analysis with formal concept as
factors. Proceedings of SCIS & ISIS 2006, pp. 1054–1059, 2006. Tokyo, Japan:
Tokyo Institute of Technology.

4. Berry A., Bordat J.-P., Sigayret A. A local approach to concept generation. Annals
of Mathematics and Artificial Intelligence, 49(2007), 117–136.

5. Carpineto C., Romano G. Concept data analysis. Theory and applications. J.
Wiley, 2004.

6. DAMOL Dataset Repository (in preparation).
7. Fu H., Mephu Nguifo E.: A Parallel Algorithm to Generate Formal Concepts for

Large Data. ICFCA 2004, LNCS 2961, pp. 394–401.
8. Ganter B. Two basic algorithms in concept analysis. (Technical Report FB4-

Preprint No. 831). TH Darmstadt, 1984.
9. Ganter B., Wille R. Formal concept analysis. Mathematical foundations. Berlin:

Springer, 1999.
10. Hettich S., Bay S. D.: The UCI KDD Archive University of California, Irvine,

School of Information and Computer Sciences, 1999.
11. Kengue J. F. D., Valtchev P., Djamégni C. T.: A Parallel Algorithm for Lattice

Construction. ICFCA 2005, LNCS 3403, pp. 249–264.
12. Kuznetsov S.: Learning of Simple Conceptual Graphs from Positive and Negative

Examples. PKDD 1999, pp. 384–391.
13. Kuznetsov S., Obiedkov S. Comparing performance of algorithms for generating

concept lattices. J. Exp. Theor. Artif. Int., 14(2002), 189–216.
14. Lindig C. Fast concept analysis. Working with Conceptual Structures–

–Contributions to ICCS 2000, pp. 152–161, 2000. Aachen: Shaker Verlag.
15. Miettinen P., Mielikäinen T., Gionis A., Das G., Mannila H. The discrete basis

problem. PKDD, pp. 335–346, 2006. Springer.
16. Outrata J., Vychodil V. Fast algorithm for computing maximal rectangles from

object-attribute relational data (submitted).
17. Vychodil V.: A new algorithm for computing formal concepts. In: Trappl R. (Ed.):

Cybernetics and Systems 2008: Proc. 19th EMCSR, 2008, pp. 15–21.
18. Wille R. Restructuring lattice theory: an approach based on hierarchies of concepts.

Ordered Sets, pp. 445–470, 1982. Dordrecht-Boston.

82 Petr Krajca, Jan Outrata, Vilem Vychodil



Proto-fuzzy Concepts, their Retrieval and Usage

Ondrej Kŕıdlo and Stanislav Krajči

University of Pavol Jozef Šafárik, Košice, Slovakia

Abstract. The aim of this paper is to define so-called proto-fuzzy con-
cepts, as a base for generating different types of one-sided fuzzy concept
lattices. Fuzzy formal context is a triple of a set of objects, a set of at-
tributes and a fuzzy binary relation over a complete residuated lattice,
which determines the degree of membership of each attribute to each
object. A proto-fuzzy concept is a triple of a subset of objects, a subset
of attributes and a value as the best common degree of membership of
all pairs of objects and attributes from the above-mentioned sets to the
fuzzy binary relation. Then the proto-fuzzy concepts will be found with
a help of cuts and projections to the object-values or attribute-values
plains of our fuzzy-context.

1 Introduction and motivation

Let us have a group of schoolmates of a secondary grammar school and their
studying results of ten subjects as it is shown in the table below. Names of
subjects are in the table as abbreviations (Ma – Math, Sl – Slovak language,
Ph – Physics, Ge – Geography, Bi – Biology, Gr – German, En – English, Ch –
Chemistry, Ae – Aesthetics, Hi – History). Abbreviations of names of students
are in the table.

Table 1. Example of fuzzy formal context.

Ma Sl Ph Ge Bi Gr En Ch Ae Hi

F Fred 1 1 1 3 2 1 2 2 1 2

J Joey 3 1 2 1 1 1 1 3 1 1

A Alice 3 2 3 1 1 1 1 3 2 2

N Nancy 4 2 4 3 2 2 1 2 3 2

M Mary 1 1 1 1 1 1 1 1 1 1

E Eve 1 1 1 1 1 1 1 1 1 1

L Lucy 1 3 1 2 2 2 2 1 2 2

D David 2 3 4 3 4 1 1 2 2 2

P Peter 2 1 2 1 1 2 2 3 1 2

T Tom 1 3 2 2 2 2 2 3 1 2

The table is a concrete example of fuzzy formal context. Students represent
objects, subjects represent attributes and corresponding valuations represent

c© Radim Belohlavek, Sergei O. Kuznetsov (Eds.): CLA 2008, pp. 83–95,
ISBN 978–80–244–2111–7, Palacký University, Olomouc, 2008.



values assigned to every object–attribute pair by fuzzy binary relation over the
set {1, 2, 3, 4, 5} (1 – best, . . . , 5 – worst). Goal is to find groups of students
similar by their studying results of all subjects, or to find subsets of subjects
similar by results of all students. In other words to find pairs of classical subset
of objects or attributes and fuzzy subset of attributes or objects. Similarity is
determined by fuzzy subsets. Those pairs are called one-sided fuzzy concepts
([1]).

The starting point of this paper is to define so-called proto-fuzzy concepts,
triples made of a subset of objects, a subset of attributes and a value from the
set of degrees of membership forming fuzzy binary relation, which is not exceed-
ing for any object-attribute pair of cartesian product of object and attribute
subsets meant above. Every element of the triple is “maximal” opposite to other
two elements. Proto-fuzzy concepts can be taken as a “base structure unit” of
one-sided fuzzy concepts. If values in the table are taken as columns tall as de-
gree of membership of subsistent object–attribute pair to fuzzy binary relation,
then proto-fuzzy concepts could be taken as a maximal “sub-blocks” of satis-
fying triples object-attribute-value of the 3D block representing fuzzy context.
Examples of some proto-fuzzy concepts of the example will be shown in section
3.

2 Basic definitions

Definition 1. A formal context is a triple 〈O,A,R〉 consists of two sets O, the
set of objects, and A, the set of attributes, and a relation R ⊆ O ×A.

Definition 2. A fuzzy formal context is a triple 〈O,A, r〉 consists of two sets
O, the set of objects, and A, the set of attributes, and r is fuzzy subset of
O ×A, mapping from O ×A to L, where L is a lattice.

In the sense of simplicity of an idea “fuzzy” will be used instead of L-fuzzy.

Definition 3. For every l ∈ L define mappings ↑l: P(O) → P(A) and ↓l:
P(A) → P(O): For every subset O ⊆ O put

↑l (O) = {a ∈ A : (∀o ∈ O)r(o, a) ≥ l}

and for all A ⊆ A put

↓l (A) = {o ∈ O : (∀a ∈ A)r(o, a) ≥ l}.

Lemma 1. For all l ∈ L the pair (↑l, ↓l) forms a Galois connection between the
power-set lattices P(O) and P(A).

Definition 4. Let 〈O,A, r〉 be a fuzzy context. A pair 〈O, A〉 is called an l-
concept iff ↑l (O) = A, and ↓l (A) = O, hence the pair is a concept in a classical
context 〈O,A,Rl〉, that

Rl = {(o, a) ∈ O ×A : r(o, a) ≥ l}.

Context 〈O,A,Rl〉 is called an l-cut. The set of all concepts in an l-cut will be
denoted Kl.

84 Ondrej Kŕıdlo, Stanislav Krajči



Table 2. 2-cut.

2 Ma Sl Ph Ge Bi Gr En Ch Ae Hi

F • • • • • • • • •
J • • • • • • • •
A • • • • • • •
N • • • • • •
E • • • • • • • • • •
M • • • • • • • • • •
L • • • • • • • • •
D • • • • • •
P • • • • • • • • •
T • • • • • • • •

In our example the l-cut means a look at the level of success for the value
l. So the l-cut gives an Yes/No answer for the question: Is the result of each
student in each subject at least of the value l? For example a concept 〈O,A〉
from K2 represents the group O of students, that every subject of the set A is
fulfilled at least in the value 2.

By exploring all l-cuts for such l ∈ L, it can be seen that some l-concepts
are equal for different l ∈ L. But information that Eve and Mary are successful
in all subjects for the value 2 is not complete and not as useful as information
that they are successful for 1. This information is not complete, “closed”.

Two interesting properties will be shown in following lemmas and theorems.
It will be a continuation of the knowledge of the paper [3], where some properties
of cuts was shown.

Lemma 2. Let l1, l2 ∈ L that l1 ≤ l2. ↑l1 (O) ⊇↑l2 (O) for every O ⊆ O and
↓l1 (A) ⊇↓l2 (A) for every A ⊆ A.

Proof. The proof will be shown for ↑. The proof for ↓ is likewise.
If l1 ≤ l2 then

{a ∈ A : (∀o ∈ O)r(o, a) ≥ l1} ⊇ {a ∈ A : (∀o ∈ O)r(o, a) ≥ l2}.

Hence ↑l1 (O) ⊇↑l2 (O). ut

Lemma 3. Let O ⊆ O, A ⊆ A and l1, l2 ∈ L. Then ↑l1 (O)∩ ↑l2 (O) =↑l1∨l2

(O) and ↓l1 (A)∩ ↓l2 (A) =↓l1∨l2 (A).

Proof. If a ∈↑l1 (O)∩ ↑l2 (O) then for all o ∈ O is r(o, a) ≥ l1 and r(o, a) ≥ l1. It
follows from above that for every o ∈ O is r(o, a) ≥ l1 ∨ l2 and so a ∈↑l1∨l2 (O).
Hence ↑l1 (O)∩ ↑l2 (O) ⊆↑l1∨l2 (O). The lemma 6 implies that ↑l1∨l2 (O) ⊆↑l1

(O) and ↑l1∨l2 (O) ⊆↑l2 (O). It implies that ↑l1∨l2 (O) ⊆↑l1 (O)∩ ↑l2 (O). From
the both inclusions implies that ↑l1∨l2 (O) =↑l1 (O)∩ ↑l2 (O). The proof for ↓ is
likewise. ut

Proto-fuzzy Concepts, their Retrieval and Usage 85



Theorem 1. Let l1, l2 ∈ L and 〈O,A〉 ∈ Kl1 ∩ Kl2 . Then for all l ∈ L, if
l1 ≤ l ≤ l2 then 〈O,A〉 ∈ Kl.

Proof. The lemma 6 and 〈O,A〉 ∈ Kl1 ∩ Kl2 implies that
A =↑l1 (O) ⊇↑l (O) ⊇↑l2 (O) = A,
O =↓l1 (A) ⊇↓l (A) ⊇↓l2 (A) = O
Hence ↑l (O) = A and ↓l (A) = O, which implies 〈O, A〉 ∈ Kl. ut

Theorem 2. Let l1, l2 ∈ L and 〈O,A〉 ∈ Kl1 ∩ Kl2 . Then 〈O, A〉 ∈ Kl1∨l2 .

Proof. The lemma 7 implies
↑l1∨l2 (O) =↑l1 (O)∩ ↑l2 (O) = A ∩A = A,,
↓l1∨l2 (A) =↓l1 (A)∩ ↓l2 (A) = O ∩O = O.
Hence 〈O,A〉 ∈ Kl1∨l2 . ut

3 Proto-fuzzy concepts and their usage

Definition 5. Triples 〈O,A, l〉 ∈ P(O)× P(A)× L such that
〈O,A〉 ∈

⋃
k∈LKk and l = sup{k ∈ L : 〈O,A〉 ∈ Kk} will be called proto-fuzzy

concepts. The set of all proto-fuzzy concepts will be denoted KP .

For our example will proto-fuzzy concept 〈O, A, l〉 means the group of stu-
dents O, whose best common result of all subjects from the set A is l. In the
following tables are some proto-fuzzy concepts of our example.

{F, J, A, N, M, E, L, D, P, T}
{Sl, Ge, Gr, En, Ch, Ae, Hi}

3

{F, J, A, P, E, M}
{Sl, Bi, Ae , Gr, En , Hi}

2

{F, M, E, L}
{Ma, Ph}

1

The set of all proto-fuzzy concepts will be used for creating one-sided fuzzy
concepts with help of mappings defined below. Mappings will determine which
side will be fuzzy.

Definition 6. Let O ⊆ O be an arbitrary set of objects. The set

KP
O = {〈A, l〉 ∈ P(A)× L : (∃B ⊇ O)〈B,A, l〉 ∈ KP }

will be called the contraction of the set of proto-fuzzy concepts subsistent to the
set O.

Definition 7. Define mappings

⇑: 2O → LA,

⇓: LA → 2O

in the following way: For every subset O of objects and for every fuzzy-subsets
of attributes put

⇑ (O)(a) = sup{l ∈ L : (∃〈A, l〉 ∈ KP
O)a ∈ A}

⇓ (Ã) =
⋃
{O ⊆ O : (∀a ∈ A)(∃〈A, l〉 ∈ KP

O)a ∈ A & l ≥ Ã(a)}.

86 Ondrej Kŕıdlo, Stanislav Krajči



Lemma 4. Let O and A are arbitrary subsets of objects and attributes respec-
tively, and l be an arbitrary value of L such that for every object o of the set
O and for every attribute a of the set A, R(o, a) ≥ l. Then there exist subsets
O ⊇ O, A ⊇ A and value k ∈ L such that k ≥ l and 〈O,A, k〉 ∈ KP .

Proof. It is given that (∀o ∈ O)(∀a ∈ A)r(o, a) ≥ l. Take

A =↑l (O) = {a ∈ A : (∀o ∈ O)r(o, a) ≥ l} ⊇ A.

Then
O =↓l (A) =↓l (↑l (O))

and from the fact that for every l ∈ L the pair (↑l, ↓l) forms a Galois connection,
it implies that ↓l (↑l (O)) ⊇ O and hence 〈O,A〉 ∈ Kl. If

k = sup{m ∈ L : 〈O,A〉 ∈ Km}

the theorem 9 implies that 〈O,A〉 ∈ Kk and so

〈O,A, k〉 ∈ KP .

ut

Lemma 5. Let l ∈ L, O1, O2 ⊆ O and 〈A1, l1〉 ∈ KP
O1

, 〈A2, l2〉 ∈ KP
O2

that
A1 ∩A2 6= ∅ and l1 ∧ l2 ≥ l. Then exists 〈A, k〉 ∈ KP

O1∪O2
that A ⊇ A1 ∩A2 and

k ≥ l.

Proof. 〈A1, l1〉 ∈ KP
O1

it means that

(∀o ∈ O1)(∀a ∈ A1)r(o, a) ≥ l1.

〈A2, l2〉 ∈ KP
O2

it means that

(∀o ∈ O2)(∀a ∈ A2)r(o, a) ≥ l2.

Hence
(∀o ∈ O1 ∪O2)(∀a ∈ A1 ∩A2)r(o, a) ≥ l1 ∧ l2 ≥ l.

The lemma 13 implies that

(∃O ⊇ O1 ∪O2)(∃A ⊇ A1 ∩A2)(∃k ∈ L : k ≥ l)〈O,A, k〉 ∈ KP

hence
〈A, k〉 ∈ KP

O1∪O2
.

ut

Lemma 6. Let O ⊆ O, 〈A1, l1〉, 〈A2, l2〉 ∈ KP
O such that A1 ∩ A2 6= ∅. Then

there exist A ⊆ A and l ≥ l1 ∨ l2 such that 〈A, l〉 ∈ KP
O.

Proto-fuzzy Concepts, their Retrieval and Usage 87



Proof. For all o ∈ O and for all a ∈ A1 ∩A2 is

r(o, a) ≥ l1 and r(o, a) ≥ l2.

Hence
r(o, a) ≥ l1 ∨ l2.

From above and lemma 13 implies that there exist

(∃B ⊇ O)(∃A ⊇ A1 ∩A2)(∃l ∈ L : l ≥ l1 ∨ l2)〈B,A, k〉 ∈ KP .

Hence
〈A, l〉 ∈ KP

O.

ut

Lemma 7. Let O1, O2 be an arbitrary subsets of the set of objects such that
O1 ⊆ O2. Then KP

O1
⊇ KP

O2
.

Proof. Because of O1 ⊆ O2 is

{〈A1, l1〉 ∈ P(A)× L : (∃B1 ⊇ O1)〈B1, A1, l1〉 ∈ KP } ⊇

⊇ {〈A2, l2〉 ∈ P(A)× L : (∃B2 ⊇ O2)〈B2, A2, l2〉 ∈ KP }.

Hence
KP

O1
⊇ KP

O2
.

ut

Theorem 3. The pair of mappings (⇑,⇓) forms a Galois connection between
the power-set lattice P(O) and the fuzzy power-set lattice F(A).

Proof. For every set O, the subset of the set of objects and the fuzzy set Ã, the
fuzzy-subset of the set of attributes, have to be proven that O is the subset of
⇓ (Ã) if, and only if Ã is the fuzzy-subset of ⇑ (O).
⇒

O ⊆⇓ (Ã) =
⋃
{B ⊆ O : (∀b ∈ A)(∃〈A, l〉 ∈ KP

B)b ∈ A & l ≥ Ã(b)}.

Let a ∈ A be an arbitrary attribute. The lemma 14 implies that there exists
Aa ⊆ A, la ∈ L such that a ∈ Aa, la ≥ Ã(a) and

〈Aa, la〉 ∈ KP

⇓(Ã)
.

O ⊆⇓ (Ã) implies that KP
O ⊇ KP

⇓(Ã)
. Hence 〈Aa, la〉 ∈ KP

O. So

Ã(a) ≤ la ≤ sup{l ∈ L : (∃〈A, l〉 ∈ KP
O)a ∈ A} =⇑ (O)(a).

88 Ondrej Kŕıdlo, Stanislav Krajči



Because of arbitrarity of attribute a and from unequality above implies that Ã
is the fuzzy-subset of ⇑ (O).
⇐ Let a ∈ A be an arbitrary attribute. Denote

la =⇑ (O)(a) = sup{l ∈ L : (∃〈A, l〉 ∈ KP
O)a ∈ A}.

The proposition implies that for every a ∈ A, Ã(a) ≤ la. The lemma 15 implies
that there exists Aa ⊆ A such that 〈Aa, la〉 ∈ KP

O, and that implies

O ∈ {B ⊆ O : (∀b ∈ A)(∃〈A, l〉 ∈ KP
B)a ∈ A & l ≥ Ã(b)}

hence

O ⊆
⋃
{B ⊆ O : (∀b ∈ A)(∃〈A, l〉 ∈ KP

B)a ∈ A & l ≥ Ã(b)} =⇓ (Ã).

So the set O is subset of ⇓ (Ã). ut

For the case of object fuzzy side will be used mappings:

⇑: 2A → LO,

⇓: LO → 2A.

Let Õ be a fuzzy subset of objects and A ⊆ A is subset of attributes.

⇑ (A)(o) = sup{l ∈ L : (∃〈O, l〉 ∈ KP
A)o ∈ O}

⇓ (Õ) =
⋃
{T ⊆ A : (∀o ∈ O)(∃〈O, l〉 ∈ KP

T )o ∈ O & l ≥ Õ(a)},

where
KP

A = {〈O, l〉 : (∃T ⊇ A)〈O, T, l〉 ∈ KP }.

Example 1. For example take the fuzzy-subset of the set of attributes,

Ã = {(Ma,1), (Sl,3), (Ph,1), (Ge,3), (Bi,4), (Gr,2), (En,2), (Ch,2), (Ae,4), (Hi,4)}.

In the table below are some proto-fuzzy concepts which contains students whose
results satisfy to Ã. Hence ⇓ (Ã) ={F,L,M,E}. Elements of KP

⇓(Ã)
are shown in

the next table. Hence
⇑ (⇓ (Ã)) =

= {(Ma,1),(Sj,3),(Ph,1),(Ge,3),(Bi,2),(Gr,2),(En,2),(Ch,2),(Ae,2),(Hi,2)}

.

Proto-fuzzy Concepts, their Retrieval and Usage 89



Table 3. Some of proto-fuzzy concepts which satisfy to Ã

{M, E} {Ma,Sl,Ph,Ge,Bi,Gr,En,Ch,Ae,Hi} 1

{M, E, F} {Ma, Sl, Ph, Gr, Ae, Hi} 1

{M, E, L} {Ma, Ph, Ch} 1

{M, E, F, L} {Ma, Ph} 1

{M, E, F} {Ma,Sl,Ph,Bi,Ch,Ae,En,Gr,Hi} 2

{M, E, L} {Ma,Ph,Ge,Bi,Ch,Ae,En,Gr,Hi} 2

{M, E, F, L} {Ma,Ph,Bi,Ch,Ae,En,Gr,Hi} 2

Table 4. Elements of the KP

⇓(Ã)
= KP

{M,E,F,L}

{Ma,Sl,Ph,Ge,Bi,Gr,En,Ch,Ae,Hi} 3

{Ma, Ch, Ae, Gr, En, Hi} 2

{Ma, Ph, Bi, Ch, Ae, Gr, En, Hi} 2

{Ma,Ph,Bi,Gr,En,Ae,Hi} 2

{Ae,Gr,En,Hi} 2

{Ph,Bi,Gr,En,Ae,Hi} 2

{Bi,Gr,En,Ae,Hi} 2

{Bi,Gr,En,Ae,Hi} 2

{Ch,Gr,En,Hi} 2

{Ma,Gr,En,Ae,Hi} 2

{Ma,Ph} 1

90 Ondrej Kŕıdlo, Stanislav Krajči



4 Retrieval of proto-fuzzy concepts

Proto-fuzzy concepts will be retrieved with a help of cuts and “pessimistic sights”
to object-value or attribute-value plains.

Definition 8. Define new binary relations

RA = {(o, l) ∈ O × L : (∀a ∈ A)r(o, a) ≥ l}

and
RO = {(a, l) ∈ A× L : (∀o ∈ O)r(o, a) ≥ l}.

The formal context 〈O, L,RA〉 will be called object–value sight and the formal
context 〈A, L,RO〉 will be called attribute–value sight.

Table 5. Object–value and attribute–value sight

1 2 3 4 5

Fred • • •
Joey • • •
Alice • • •
Nancy • •
Mary • • • • •
Eve • • • • •
Lucy • • •
David • •
Peter • • •
Tom • • •

1 2 3 4 5

Math • •
Slovak language • • •
Physics • •
Geography • • •
Biology • •
German language • • • •
English language • • • •
Chemistry • • •
Aesthetics • • •
History • • • •

Definition 9. Define new mappings

↑A: 2O → L and ↓A: L → 2O,

↑O: 2A → L and ↓O: L → 2A.

For every O ⊆ O, A ⊆ A and l ∈ L put

↑A (O) = inf{sup{l ∈ L : (o, l) ∈ RA} : o ∈ O}

↓A (l) = {o ∈ O : (o, l) ∈ RA}

↑O (A) = inf{sup{l ∈ L : (a, l) ∈ RO} : a ∈ A}

↓O (l) = {a ∈ A : (a, l) ∈ RO}.

Proto-fuzzy Concepts, their Retrieval and Usage 91



Theorem 4. Pairs of mappings (↑A, ↓A) and (↑O, ↓O) form Galois connections
between the power-set lattice P(O) or P(A) and the lattice of values L.

Proof. The proof will be shown only for first pair. The proof for second pair is
likewise.

1. Let O1 ⊆ O2 ⊆ O. It follows from an inclusion above that

{sup{l ∈ L : (o, l) ∈ RA} : o ∈ O1} ⊆

⊆ {sup{l ∈ L : (o, l) ∈ RA} : o ∈ O2}

and from a properties of infimum

inf{sup{l ∈ L : (o, l) ∈ RA} : o ∈ O1} ≥

≥ inf{sup{l ∈ L : (o, l) ∈ RA} : o ∈ O2}.

Hence
↑A (O1) ≥↑A (O2).

2. Let l1, l2 ∈ L. If l1 ≤ l2 then

{o ∈ O : (o, l1) ∈ RA} ⊇ {o ∈ O : (o, l2) ∈ RA}.

Hence
↓A (l1) ⊇↓A (l2).

3. Let O ⊆ O. Denote

so = sup{l ∈ L : (o, l) ∈ RA},

for arbitrary object o ∈ O. From definition of ↑A

↑A (O) = inf{sb : b ∈ O} ≤ so

and from property 2 implies

↓A (↑A (O)) ⊇↓A (so) = {b ∈ O : (b, so) ∈ RA}.

Arbitrarity of o implies that

↓A (↑A (O)) ⊇
⋃
o∈O

{b ∈ O : (b, so) ∈ RA} ⊇ O.

4. Let l ∈ L be an arbitrary value. Denote so = sup{k ∈ L : (o, k) ∈ RA}. For
all

o ∈↓A (l) = {b ∈ O : (b, l) ∈ RA}

is so ≥ l. Hence
↑A (↓A (l)) = inf{sb : b ∈↓A (l)} ≥ l.

ut

92 Ondrej Kŕıdlo, Stanislav Krajči



Definition 10. The pair 〈O, l〉 is called A-concept of the object–value sight
〈O, L,RA〉 iff ↑A (O) = l and ↓A (l) = O. The set of all A-concepts will be
denoted KA.

Definition 11. The pair 〈A, l〉 is called O-concept of the attribute–value sight
〈A, L,RO〉 iff ↑O (A) = l and ↓O (l) = A. The set of all O-concepts will be
denoted KO.

It can be defined an object–value sight for every subset of attributes or
attribute–value sight for every subset of objects, but their usage for this pa-
per wasn’t necessary.

Theorem 5. Let l ∈ L, A1, A2 ⊆ A, O1, O2 ⊆ O such that 〈O, A1, l〉, 〈O1,A, l〉
∈ KP and 〈O2, A2〉 ∈ Kl for context 〈O \O1,A \A1,Rl〉. Then

〈O1 ∪O2, A1 ∪A2, l〉,∈ KP .

Proof. It will be shown that A1 ∪A2 =↓l (O1 ∪O2) and O1 ∪O2 =↑l (A1 ∪A2).
If a ∈ A1 then for all o ∈ O is (o, a) ∈ Rl.
If a ∈ A2 then for all o ∈ O1 ∪O2 is (o, a) ∈ Rl.
If a ∈ A1 ∪A2 then for all o ∈ (O ∩ (O1 ∪O2)) = O1 ∪O2 is (o, a) ∈ Rl.
Hence A1 ∪A2 ⊆↑l (O1 ∪O2).
The opposite inclusion will be shown by contradiction. Let us assume
a ∈↑l (O1 ∪O2) and a 6∈ A1 ∪A2.
From a ∈↑l (O1 ∪ O2) implies that for all o ∈ O1 ∪ O2 ⊇ O2 is (o, a) ∈ Rl.

From a 6∈ A1 ∪ A1 implies that a ∈ (A \ (A1 ∪ A1)) = ((A \ A1) \ A2). It is the
contradiction to precondition 〈O2, A2〉 ∈ Kl for context 〈O \O1,A \A1,Rl〉.

The second equality can be shown likewise. ut

Subcontexts from the theorem will be called auxiliary subcontexts of l-cut.
Concepts of sights will be retrieved with a help of mappings ↑A, ↓A, ↑O and ↓O.
It’s good to know that 〈O, l〉 ∈ KA then 〈O,A, l〉 ∈ KP , because of A is closed.
Denote A as the set of all subjects and O as the group of all students from our
example. Hence

〈O,A, 4〉 ∈ KP ,

〈O \ {N,D},A, 3〉, 〈O,A \ {Ma,Ph,Bi}, 3〉 ∈ KP ,

〈{M,E},A, 1〉, 〈O, {Gr,En,Hi}, 2〉 ∈ KP ,

Let us create auxiliary subcontexts of 3-cut, 2-cut and 1-cut.

Table 6. Auxiliary subcontexts of 3-cut

3 Ma Ph Bi

N •
D •

Proto-fuzzy Concepts, their Retrieval and Usage 93



There are only two concepts in the auxiliary subcontext of 3-cut, 〈{N}, {Bi}〉
and 〈{D}, {Ma}〉. The theorem 23 implies that

〈O \ {N},A \ {Ph,Bi}, 3〉, 〈O \ {D},A \ {Ma,Ph}, 3〉 ∈ KP .

Table 7. Auxiliary subcontext of 2-cut

2 Ma Sl Ph Ge Bi Ch Ae

F • • • • • •
J • • • • •
A • • • •
N • • •
L • • • • • •
D • • •
P • • • • • •
T • • • • •

Because of the convexity of l-concepts, we can omit Eve and Mary from the
set of students for auxiliary subcontext of 2-cut. And for input of theorem 23 for
degree 2 can be used proto-fuzzy concepts 〈{M,E},A, 1〉, 〈O, {Gr,En,Hi}, 2〉 ∈
KP .

Table 8. Auxiliary subcontext of 1-cut

1 Ma Sl Ph Ge Bi Gr En Ch Ae Hi

F • • • • •
J • • • • • • •
A • • • •
N •
L • • •
D • •
P • • • •
T • •

5 Conclusion

Conceptual scaling and theory of triadic contexts will be the object of our future
work and study. We will try to algoritmize outline process.

We are grateful for precious comments of our colleagues RNDr. Peter Eliaš
PhD. and RNDr. Jozef Pócs.

Paper was created with support of grant 1/3129/06 Slovak grant agency
VEGA.

94 Ondrej Kŕıdlo, Stanislav Krajči



References

1. Krajči, S.: Cluster Based Efficient Generation Of Fuzzy Concepts Neural Network
World 5/03 521–530

2. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. 1st.
Springer-Verlag New York, Inc., 1997

3. Snášel, V., Ďuráková, D., Krajči, S., Vojtáš, P.: Merging Concept Lattices of α-
cuts Of Fuzzy Contexts Contributions To General Algebra 14 Proceedings of the
Olomouc Conference 2002 (AAA 64) and the Postdam Conference 2003 (AAA
65) Verlag Johanes Heyn, Klagenfurt 2004

4. Bělohlávek, R.: Lattices Generated By Binary Fuzzy Relations Tatra Mountains
Mathematical Publications 16 (1999),11-19

Proto-fuzzy Concepts, their Retrieval and Usage 95





Application of the Formal Concept Analysis in
Evaluation of Results of ANEWS Questionnaire

and Physical Activity of the Czech Regional
Centers?

Jǐŕı Zacpal1, Erik Sigmund1, Josef Mitáš2, Vladimı́r Sklenář2

1 Dept. Computer Science, Palacky University, Olomouc
Tomkova 40, CZ-779 00 Olomouc, Czech Republic

{vladimir.sklenar,jiri.zacpal}@upol.cz
2 Centre for Kinanthropology Research, Palacky University, Olomouc

tr. Miru 115, CZ-771 11 Olomouc, Czech Republic
{erik.sigmund,josef.mitas}@upol.cz

Abstract. Formal concept analysis is a method of exploratory data
analysis that aims at the extraction of natural clusters from object-
attribute data tables. The clusters, called formal concepts, can be similar
to human-perceived concepts in a traditional sense and can be partially
ordered by a subconcept-superconcept hierarchy. The hierarchical struc-
ture of formal concepts (so-called concept lattice) represents structured
information obtained automatically from the input data table. The goal
of this paper is to describe a method of evaluation of ANEWS question-
naire by Formal concept analysis. We describe a method adjustment of
questionnaire by scaling to classical formal context. After that we sepa-
rate some attributes to groups and make so-called ”aggregate atributes”.
This way we make modified formal context and calculate formal concept
lattice. We define term ”characteristic function” for every concept. This
is function, which for given extent or intent return a real number, which
characterized this concept and is important for evaluation. Our method is
illustrated on ANEWS questionnaire and measured steps in randomized
sample of 15-65 years-old inhabitants of the Czech regional centers.

1 Introduction and problem setting

Questionnaires are being used in many areas of human activities. The aim is
to reveal patterns of behavior and various kinds of dependencies among vari-
ables being surveyed. Descriptive statistics and statistical hypotheses testing are
among the tools traditionally used for evaluation of questionnaires. A practical
disadvantage of the traditional statistical approaches is the need to formulate

? Supported by grant No. 1ET101370417 of GA AV ČR, by grant No. 201/05/0079
of the Czech Science Foundation, by institutional support, research plan MSM
6198959214, and by grant No. 6198959221 ’Physical activity and inactivity of in-
habitants of the Czech Republic in the context of behavioral changes’ of the MSM.

c© Radim Belohlavek, Sergei O. Kuznetsov (Eds.): CLA 2008, pp. 97–108,
ISBN 978–80–244–2111–7, Palacký University, Olomouc, 2008.



hypotheses to be tested. Without any prior structured view on the data con-
tained in the questionnaires, formulation of relevant hypotheses is a difficult
task. Another disadvantage of traditional statistical approaches is the limitation
regarding what statistics can tell about data and how statistical summaries can
be understood by experts in the field of inquiry who are not experts in statistics.

This paper presents results on evaluation of ANEWS questionnaire and phys-
ical activity of the czech regional centers. The paper is a continuation of previous
studies regarding the IPAQ questionnaire, see [5]. At the beginning of our study,
there was a need for an alternative means of evaluation of questionnaires for-
mulated by experts (domain experts) from the Faculty of Physical Culture of
the Palacky University, Olomouc, who are involved in a world-wide project of
monitoring physical activities in today’s population. The experts struggled with
classical statistical techniques and were looking for alternative methods of eval-
uation of the questionnaires. It turned out that basic methods of formal concept
analysis (FCA) [10] are quite useful for the domain experts. Putting briefly, a
concept lattice and its parts provide the experts with an easy-to-understand
hierarchical view on the data.

In terms of FCA, the basic idea is the following. The objects are the indi-
viduals (or their groups) being surveyed in the questionnaires, the attributes
correspond to the variables being monitored by the questionnaires. The corre-
sponding concept lattice or its parts reveals to the domain expert the groups
in dependence on the attributes and the expert can see various dependencies
between attributes, how large the groups are etc. Therefore, the concept lattice
provides the expert with a first insight into the data. Such an insight is crucial.
Very often, this insight is what the expert needs to see. Furthermore, based on
this insight, the expert can pursue more detailed inquiries including those based
on classical statistical techniques.

Recent study focuses on considering groups of individuals as objects. The
present study is based on the idea that some questions are closely related. It’s
useful to group those attributes which resulted from scaling of the questions
into one attribute. Thus we would obtain a more comprehensive view of the
questionnaire. This idea made us create so-called ”aggregate attributes”.

The advantage of taking groups and the relative frequencies instead of indi-
viduals and original attributes is conciseness of the description provided by the
resulting concept lattice which is what the experts asked for. The disadvantage,
as with any other method which involves aggregation and summarization, is loss
of information. We present our method, experimental results, as well as a brief
description of the software tool we used.

2 Questionnaire adjustment

Each questionnaire consists of questions to which the respondents choose an
answer from a multiple choice. From the perspective of FCA the group of re-
spondents can be understood as a set of objects and individual questions as
attributes. The respondents answers then create binary relation between the

98 Jǐŕı Zacpal, Erik Sigmund, Josef Mitáš, Vladimı́r Sklenář



set of objects and the attributes. The answers do not have to be necessarily
bi-valent (yes-no). Multiple-value type of answers (age, number of steps,) can
appear here. Due to this, a suitable scale needs to be applied to transfer the
multiple-value type of answers into bivalent forms. The result of this process is
a context 〈X, Y, I〉, where X is the set of objects – respondents, Y is the set of
attributes – adjusted answers from the questionnaire and I is the binary relation
between X and Y , where (x, y) ∈ I means that respondent x answered yes to
question y.

Another adjustment of the questionnaire is based on the idea that some ques-
tions are closely related. For example question: ”The streets in my neighborhood
do not have many cul-de-sacs (dead-end streets)” is closely related with question:
”The distance between intersections in my neighborhood is usually short (100
yards or less; the length of a football field or less)”, because the questions are
related to conditions for walking. Was it not more useful than to group those at-
tributes which resulted from scaling of the questions into one attribute? Thus we
would obtain a more comprehensive view of the questionnaire. This idea made
us create so-called ”aggregate attributes”.

Firstly, an expert needs to decide which questions can be grouped into an
”aggregate attributes”. Then, we replace all the attributes which were formed
through scaling with ”aggregate attributes” using the following procedure. We
calculate the weighted mean of individual attributes and we scale this mean.

Formally: There is number n of questions in the questionnaire which we want
to cluster into the ”aggregate attributes”. Through scaling of these questions∑n

i=1 mi of attributes was created, where mi is the number of attributes which
was formed through scaling of i-question. The weighted mean for the object x,
is calculated according to the formula:

v(x) =
n∑

i=1

σi

mi∑
j=1

ωijI(x, aij)

where
σi is weight of question i

ωij is weight of attribute j which was formed through scaling of question i

aij is attribute which was formed through scaling of question i, j ∈ mi

I is binary relation between X and Y1, which is the original set of attributes
from which we remove all the attributes which we have grouped into aggregate
attributes and then we add the aggregate attributes into it.

Value v(x) ∈ 〈0, 1〉. We create 5 aggregate attributes according to these rules:
〈x,NAME-very low〉 ∈ I1 iff v(x) ∈ 〈0, 0.2〉
〈x,NAME-low〉 ∈ I1 iff v(x) ∈ (0.2, 0.4〉
〈x,NAME-moderate〉 ∈ I1 iff v(x) ∈ (0.4, 0.6〉
〈x,NAME-high〉 ∈ I1 iff v(x) ∈ (0.6, 0.8〉
〈x,NAME-very high〉 ∈ I1 iff v(x) ∈ (0.8, 1〉,
where NAME is the name of the group of attributes which we grouped. Using

these aggregate attributes, we replace all the grouped attributes. This way a

Application of the Formal Concept Analysis in Evaluation of Results of
ANEWS Questionnaire and Physical Activity of the Czech Regional Centers

99



formal context 〈X, Y1, I1〉 is created, where Y1 is the original set of attributes
from which we remove all the attributes which we have grouped into aggregate
attributes and then we add the aggregate attributes into it. 〈x, y〉 ∈ I1 if y is not
aggregate attribute and for aggregate attributes the above rules are applied.

Example 1. For better understanding we provide an example. There are ques-
tions (G1-G3) in the questionnaire which concern Streets in my neighborhood.
The expert states the values in individual weights: σG1 = 0.4, σG2 = 0.4 and
σG3 = 0.2 To all questions, the respondents could choose these answers: 1
- strongly disagree, 2 - somewhat disagree, 3 - somewhat agree, 4 - strongly
agree. The value of weights is stated in Tab. 1. They created 5 ”aggregate at-
tributes”: Street-very low, Street-low, Street-moderate, Street-high, Street-very
high (the classification of streets depending on their suitability for walking). If
respondent x answers the questions this way: G1 - 3, G2 - 1, G3 - 2, will be
v(x) = 0.4 · 0.75 + 0.4 · 0.5 + 0.2 · 0, 5 = 0.6 and then 〈x,Street-moderate〉 ∈ I1.

Table 1. Weights ωij from example 1.

questions answers
1 2 3 4

G1 - absence of cul-de-sac (dead-end streets) 0.25 0.5 0.75 1
G2 - short distance between intersections 0.25 0.5 0.75 1
G3 - alternative routes for getting from place to place 0.25 0.5 0.75 1

Typically, such a formal context contains many objects and a manageable
number of attributes. The corresponding concept lattice is too large for an expert
to comprehend. In addition, the expert might not be interested in the formal
concepts from this concept lattice. Rather, the expert might want to consider
aggregates of the individual respondents as objects in the formal context with the
aggregates defined by having the same attributes on a set S of attributes specified
by an expert, such as those regarding age, sex, etc., with S being a subset of the
set Y of all attributes. Attributes from S will be called characteristic attributes.

The aggregates we consider are equivalence classes of individual respondents.
For respondents x1, x2 ∈ X, put

x1 ≡S x2 if and only if {x1}↑ ∩ S = {x2}↑ ∩ S.

Clearly, ≡S is an equivalence relation on X and x1 ≡S x2 means that x1 and x2

have the same attributes from S, i.e. are indistinguishable by the attributes from
S. We call the classes [x]≡S

of ≡S aggregate objects and denote, furthermore,

– by X1 the set of all classes of ≡S , i.e. X1 = X/ ≡S , by Y2 the set of those
attributes from Y1 not included in S, i.e. Y2 = Y1 − S.

100 Jǐŕı Zacpal, Erik Sigmund, Josef Mitáš, Vladimı́r Sklenář



Now, for each class [x]≡S
from X1 and each attribute y ∈ Y2, we consider the

relative frequency of objects in having attribute y and denote it by I2([x]≡S
, y)

or simply by I2(x, y). That is, we put

I2(x, y) =
|{x1 ∈ [x]≡S

: x1 has y}|
|[x]≡S

|
We can consider I2 a fuzzy relation which will indeed be the case in this study.

Namely, we will consider a particular concept lattice associated to 〈X1, Y2, I2〉,
called a lattice of crisply generated fuzzy concepts. For technical reasons, we
round the degrees assigned by I1 to those from the scale {0, 0.01, . . . , 0.99, 1}.

More details on this method are described in the article [5].

3 Characteristic concept function

With Formal Concept Analysis we can find concepts whose intent include at-
tributes interesting for our way of evaluation. Extents of these concepts contain
some number of respondents. Often we are not interesting in attributes of indi-
vidual respondent. Only values that characterize all respondents in the concept
extent as a whole are interesting for concept evaluation. Arithmetic mean of the
value with more than two-valued attribute is possible example of such value. We
will use the term ”characteristic function” for function that returns such value
for given extent.

4 Questionnaire analysis

The ANEWS questionnaire (Neighborhood Environment Walkability Scale - Ab-
breviated) includes 54 questions in total. They were answered by 662 respon-
dents. Using the method described above, we created 8 aggregate attributes, from
which we created 40 attributes using scaling (8x5). Next to these attributes, the
context involves other attributes of demographic data: gender (2 attributes),
BMI (4), age (5), smoking (2), driver (2), orgPA (4), Steps5bigger2 (2) - at-
tribute indicated, whether the respondents shows more steps during week than
at weekend, Steps (4) - see Tab. 2.

Table 2. Scale for value Steps

attribute steps per week

Steps-low less then 5 999
Steps-moderate 6 000-9 999

Steps-high 10 000-13 999
Steps-very high more than 14 000

Thus we obtained a formal context which includes 662 objects and 65 at-
tributes. For another adjustment of formal context, aggregate objects are ap-

Application of the Formal Concept Analysis in Evaluation of Results of
ANEWS Questionnaire and Physical Activity of the Czech Regional Centers

101



plied. We used Sex-male, Sex-female and steps (Steps-low, Steps-moderate, Steps-
high a Steps-very high) as characteristic attributes. The obtained formal fuzzy
context includes 8 objects and 59 attributes. Using it, we created corresponding
fuzzy conceptual lattice. When studying the lattice, we tried to examine what
influence the environment (characterized by aggregate attributes) has on the
number of steps in respondents. We studied males and females separately. The
Tab. 3 shows the corresponding concepts for male and Tab. 4 for female. We
state only the aggregate attributes in the levels of very high (VH) and high (H).
It is possible to compare also the other levels (moderate, low a very low), but
we were interested mainly in the positive influence of the environment on steps.

Table 3. Degree of some attributes in concepts, which extents consist of aggregate
objects SexMale an Steps-low, Steps-moderate, Steps-high, Steps-very high. Aggregate
objects: L - Steps-low, M - Steps-moderate, H - Steps-high, VH - Steps-very high.

attribute extent
L,M,H,VH VH L

BuildingsFlat-very high 0 0.01 0
BuildingsFlat-high 0.18 0.18 0.23
BuildingsHouse-very high 0 0.06 0
BuildingsHouse-high 0.34 0.42 0.46
Distance-very high 0.01 0.01 0.08
Distance-high 0.15 0.26 0.15
Neighbourhood-very high 0.08 0.14 0.08
Neighbourhood-high 0.23 0.28 0.23
Safety-very high 0.38 0.53 0.53
Safety-high 0.39 0.39 0.46
Service-very high 0.38 0.53 0.38
Servie-high 0.35 0.39 0.46
Street-very high 0.38 0.57 0.38
Street-high 0.26 0.26 0.46
Walking-very high 0.15 0.24 0.15
Walking-high 0.43 0.45 0.76

The levels of correspondence express minimal number of respondents in per-
centage, which show the given attribute. Based on the comparison of the con-
cepts, we can see that great difference between respondents who show high num-
ber of steps (VH) and low number of steps (L) on a day, are apparent mainly
in the Street-very high attribute. It is apparent that the type of street is closely
associated with the number of steps. Due to this we focused on the aggregate
attribute Street. We formed a formal context of attributes which were parts
of the aggregate attribute Street. These attributes are formed from questions
ClosedStreet (The streets in my neighborhood do not have many cul-de-sacs
(dead-end streets)), ShortDistance (The distance between intersections in my
neighborhood is usually short (100 yards or less; the length of a football field or

102 Jǐŕı Zacpal, Erik Sigmund, Josef Mitáš, Vladimı́r Sklenář



Table 4. Degree of some attributes in concepts, which extents consist of aggregate ob-
jects SexFemale an Steps-low, Steps-moderate, Steps-high, Steps-very high. Aggregate
objects: L - Steps-low, M - Steps-moderate, H - Steps-high, VH - Steps-very high.

attribute extent
L,M,H,VH VH L

BuildingsFlat-very high 0 0 0
BuildingsFlat-high 0.10 0.19 0.10
BuildingsHouse-very high 0 0.05 0
BuildingsHouse-high 0.34 0.34 0.52
Distance-very high 0.03 0.03 0.10
Distance-high 0.21 0.26 0.21
Neighbourhood-very high 0.05 0.09 0.05
Neighbourhood-high 0.10 0.33 0.10
Safety-very high 0.44 0.47 0.52
Safety-high 0.34 0.45 0.36
Service-very high 0.47 0.57 0.47
Servie-high 0.30 0.30 0.42
Street-very high 0.34 0.48 0.36
Street-high 0.33 0.35 0.42
Walking-very high 0.21 0.21 0.26
Walking-high 0.41 0.56 0.57

less) and MoreWays (There are many alternative routes for getting to one place
in my neighborhood. (I don’t have to go the same way every time). Each ques-
tion can be answered in values 1 to 4. Using scaling we obtained a context which
was formed by 662 objects (respondents) and 36 (25 - demographic attributes,
12 - attributes of environment) attributes. We used the method of aggregate
objects. As characteristic attributes, we used gender (Sex-male, Sex-female) and
steps (Steps-low, Steps-moderate, Steps-high a Steps-very high). A formal fuzzy
context was thus created which included 6 objects and 33 attributes. We formed
a corresponding fuzzy conceptual lattice. Examining the lattice we were trying
to identify whether any question from the aggregate attribute Street has greater
influence on the number of steps in respondents. We studied males (Tab. 5) and
females (Tab. 6) separately.

The levels of correspondence express minimal number of respondents in per-
centage, which show the given attribute. Based on the comparison of the con-
cepts, we can see that great difference between respondents who show high num-
ber of steps (VH) and low number of steps (L) on a day, are apparent mainly in
the MoreWays attribute (here we are interested primarily in the value 4 of the
answer – strongly agree). It is apparent that the variety of walking routes, when
I do not have to take just a one way, are attractive and motivating for walking
and cycling.

Another possibility of the questionnaire analysis is using so-called charac-
teristic function of the concept. In this case, we define it as arithmetic mean of
number of steps for respondents – objects, for 7 days in the extent of the concept.

Application of the Formal Concept Analysis in Evaluation of Results of
ANEWS Questionnaire and Physical Activity of the Czech Regional Centers

103



Table 5. Degree of some attributes in concepts, which extents consist of aggregate
objects SexMale an Steps-low, Steps-moderate, Steps-high, Steps-very high. Aggregate
objects: L - Steps-low, M - Steps-moderate, H - Steps-high, VH - Steps-very high.

attribute extent
L,M,H,VH VH L

ClosedStreets-1 0.03 0.06 0.08
ClosedStreets-2 0.10 0.10 0.15
ClosedStreets-3 0.28 0.28 0.46
ClosedStreets-4 0.31 0.54 0.31
MoreWays-1 0 0.03 0
MoreWays-2 0.09 0.09 0.15
MoreWays-3 0.38 0.38 0.62
MoreWays-4 0.23 0.49 0.23
ShortCross-1 0.09 0.10 0.08
ShortCross-2 0.21 0.22 0.23
ShortCross-3 0.35 0.40 0.54
ShortCross-4 0.15 0.27 0.15

Table 6. Degree of some attributes in concepts, which extents consist of aggregate
objects SexMale an Steps-low, Steps-moderate, Steps-high, Steps-very high. Aggregate
objects: L - Steps-low, M - Steps-moderate, H - Steps-high, VH - Steps-very high

attribute extent
L,M,H,VH VH L

ClosedStreets-1 0.05 0.09 0.11
ClosedStreets-2 0.13 0.15 0.21
ClosedStreets-3 0.27 0.29 0.32
ClosedStreets-4 0.37 0.47 0.37
MoreWays-1 0.03 0.03 0.05
MoreWays-2 0.10 0.10 0.21
MoreWays-3 0.42 0.40 0.42
MoreWays-4 0.32 0.46 0.32
ShortCross-1 0.10 0.13 0.11
ShortCross-2 0.16 0.18 0.16
ShortCross-3 0.33 0.40 0.37
ShortCross-4 0.23 0.27 0.37

104 Jǐŕı Zacpal, Erik Sigmund, Josef Mitáš, Vladimı́r Sklenář



We used a formal context with aggregate attributes. We wanted to examine what
influence service availability has on the value of characteristic function (aggre-
gated attribute Service-very high, Service-high, Service-moderate, Service-low
and Service-very low). The values of the characteristic function for individual
concepts are shown in Tab. 7.

Table 7. Value of characteristic concept function

intent avarage of steps number of objects

Sex-male 12198 278
Sex-male, Distance-very high 8934 8
Sex-male, Distance-high 13226 60
Sex-male, Distance-moderate 12193 138
Sex-male, Distance-low 11707 69
Sex-male, Distance-very low 11871 3
Sex-female 11907 384
Sex-female, Distance-very high 10574 21
Sex-female, Distance-high 12019 110
Sex-female, Distance-moderate 12318 180
Sex-female, Distance-low 11095 69
Sex-female, Distance-very low 11408 4

Using this type of analysis, we can replace the classification of steps ac-
cording to clear limits set in advance (Tab. 2) with one more concrete value.
Along with the value of the arithmetic mean, we have to consider the number of
objects to which the arithmetic mean is related (Tab. 5). Tab. 5 shows that in
groups of men, it is apparent that longer distance to services (Distance-moderate,
Distance-high and Distance-very high) is closely associated with higher number
of steps per day. In women, the difference is not so apparent. Services (shops,
restaurants, offices, banks, etc.) are an important part of everyday life, therefore
further distance from the place of living does not impede women and men in
accessing them.

5 Software tool

We used a software tool which is developed in the Department of Computer
Science at Palacky University, Olomouc, to create the fuzzy contexts and to
browse the corresponding fuzzy concept lattice. This software tool supports the
whole process of the processing and evaluation of IPAQ questionnaire. The basic
overview of functions that are supported and their succession is shown in Fig.
1.

The processing of the questionnaire consists of the following steps.

– Reading data. IPAQ questionnaire is recorded in the form of an MS Ex-
cel file. The columns of this file contain respondents’ answers to individual

Application of the Formal Concept Analysis in Evaluation of Results of
ANEWS Questionnaire and Physical Activity of the Czech Regional Centers

105



Fig. 1. Base screen of application

questions. The software tool allows to specify which columns are included in
the processing.

– Scaling. The answers to some questions may be in the form of many-valued
attributes. For example, the values in the column Age may be in the interval
from 18 to 69. Due to this fact it is necessary to transform the original file
to the form in which each column contains only 0 or 1. This process is called
conceptual scaling [10]. Our software tool allows one to specify the bivalent
attributes and the scale for each column in data source file.

– Creation of aggregate objects. The tool allows to interactively specify the
set of characteristic attributes. The user also chooses parameters regarding
the structure of truth degrees.

A fuzzy context is created after these steps. A user can then explore the
associated fuzzy concept lattice and its concepts. Our software tool does not
create the whole concept lattice. Instead, it supports an interactive navigation
in the concept lattice. It shows the information related to the current concept
and its direct neighbors. A user selects next steps by choosing an ancestor or
successor of the current concept. He/she can move from a more general concept
to a more special concept and vice versa. He/she can also specify the content of
the extent or the intent and move to the appropriate concept. We can see the
user’s screen in Fig. 2.

The navigation in the concept lattice needs the calculation of the current
concept and its neighbors only. This calculation is relatively fast and does not
depend on the size of the whole concept lattice. Due to this fact the navigation
proceeds on-line and the user can modify the course of navigation interactively,
based on information gained. The user can also specify additional constraints to
be satisfied by formal concepts which are to be presented to him/her.

106 Jǐŕı Zacpal, Erik Sigmund, Josef Mitáš, Vladimı́r Sklenář



Fig. 2. Navigation in fuzzy concept lattice

6 Conclusions

Our paper described a method of analysis of a questionnaire which comprises
number of questions which can be grouped based on their relation in meaning.
Such an approach allows for a more global assessment of the data. We have
applied this method to the ANEWS questionnaire. We can conclude that envi-
ronment which is physical activity friendly and stimulating in Czech cities can be
on the basis of the data and number of steps per day characterized by availability
of services in short distances, walking friendly streets (walkability and cleanness
of streets, no cul-de-sacs) and by nice environment in residential areas.

References

1. Bauman, A., Chey, T., Bowles, H., Smith, B., Meron, D., Ainsworth, B., Jones,
D. A., Craig, C., Cameron, C., Sjostrom, M., Hagestromer, M., Frome,l K., Mitas,
J. et al.: International physical activity prevalence estimates: Results from the In-
ternational Prevalence Study in 20 Countries, Medicine and Science in Sports and
Excercise (in press).

2. Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer,
Academic/Plenum Publishers, New York, 2002.

Application of the Formal Concept Analysis in Evaluation of Results of
ANEWS Questionnaire and Physical Activity of the Czech Regional Centers

107



3. Belohlavek, R.: Concept lattices and order in fuzzy logic. Annals of Pure and
Applied Logic 128(1–3)(2004), 277–298.

4. Belohlavek, R., Sklenar, V., Zacpal, J.: Crisply generated fuzzy concepts. ICFCA
2005, Int. Conf. Formal Concept Analysis, LNAI 3403, pp. 268–283, Springer-
Verlag, Berlin/Heidelberg.

5. Belohlavek, R., Sklenar, V., Zacpal, J., Sigmund, E.: Evaluation of questionnaires
supported by formal concept analysis. CLA 2007, Strany: 96–108, University of
Montpellier II.

6. Belohlavek, R., Vychodil, V.: Reducing the size of fuzzy concept lattices by hedges.
In: FUZZ-IEEE 2005, The IEEE International Conference on Fuzzy Systems, May
22–25, Reno (Nevada, USA), pp. 663–668.

7. Belohlavek, R., Vychodil, V.: What is a fuzzy concept lattice? In: Proc. CLA 2005,
3rd Int. Conference on Concept Lattices and Their Applications, September 7–9,
Olomouc, Czech Republic, pp. 34–45.

8. Ben Yahia, S., Jaoua, A.: Discovering knowledge from fuzzy concept lattice. In:
Kandel A., Last M., Bunke H. (Ed.): Data Mining and Computational Intelligence,
pp. 167–190, Physica-Verlag.

9. Carpineto, C., Romano, G.: Concept Data Analysis. Theory and Applications.
J. Wiley, 2004.

10. Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations.
Springer, Berlin, 1999.

11. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.
12. Klir, G. J., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Theory and Applications.

Prentice-Hall, 1995.
13. Krajči, S.: A generalized concept lattice. Logic J. of IGPL 13, 543–550.
14. Pollandt, S.: Fuzzy Begriffe. Springer-Verlag, Berlin/Heidelberg, 1997.
15. Sklenář, V., Zacpal, J., Sigmund, E.: Evaluation of IPAQ questionnaire by FCA,

CLA 2005, pp. 60–69, ISBN: 80–248–0863–3, Palacky University, Olomouc, 2005.
16. Thomas, J. R., Nelson, J. K., Silverman, S. J.: Research Methods in Physical Ac-

tivity. Human Kinetic, Champaign, 2005.
17. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-

cepts. In: I. Rival (Ed.): Ordered Sets, 445–470, Reidel, Dordrecht-Boston, 1982.

108 Jǐŕı Zacpal, Erik Sigmund, Josef Mitáš, Vladimı́r Sklenář



A model-driven engineering based RCA process
for bi-level models elements / meta-elements

Application to description logics

X. Dolques1, J.-R. Falleri1, M. Huchard1, and C. Nebut1

LIRMM, CNRS and Université de Montpellier 2,
161, rue Ada, 34392 Montpellier cedex 5, France
{dolques, falleri, huchard, nebut}@lirmm.fr

Abstract. Relational Concept Analysis (RCA) facilitates the discovery
of new abstractions in data descriptions including relations. A model
driven approach for RCA implementation makes possible to deal with
most input data (models) simply by configuring the transformation for
the chosen input data type (metamodel). Until now, we only applied
this approach to one-level models (mainly class models). In this paper
we study RCA applied to bi-levels models, which mix elements and meta-
elements (class-instance models, e.g. OWL models). We propose a model
hybridisation approach to tackle the encoding problems and we provide
a case study showing the results obtained on OWL models.

1 Introduction

Programs and models are easier to understand and maintain when they are or-
ganised using abstractions. Relational Concept Analysis (RCA) is one of the
existing approaches to automatically detect such abstractions. RCA is an exten-
sion of Formal Concept Analysis (FCA) taking into account the relations linking
the analysed entities.

To apply RCA, the analysed entities have first to be encoded into contexts
containing information on the attributes of the entities and on the relations
linking the entities. Then RCA is applied and builds concept lattices containing
the discovered entities, that are then decoded towards the initial language for
the entities.

A model-driven engineering (MDE) based approach has been proposed [1,2]
to provide a generic mecanism for the encoding and decoding part of the process,
that has just to be configured to be adapted to a given language. In this approach,
to apply RCA to a given model m, two inputs are needed (in addition to m): the
metamodel for m (that can be seen as the structural definition of the language in
which m is written), and the configuration making precise which meta-elements
of this metamodel have to be taken into account during the RCA process (for
example: names of elements, roles of associations, etc).

Until now, such an RCA-MDE process has been successfully applied to class
models. The contribution of this paper is to study its application to bi-level

c© Radim Belohlavek, Sergei O. Kuznetsov (Eds.): CLA 2008, pp. 104–115,
ISBN 978-80-244-2111-7, Palacký University, Olomouc, 2008.

A Model-driven Engineering Based RCA Process
for Bi-level Models Elements / Meta-elements:

Application to Description Logics

No Author Given

No Institute Given

c© Radim Belohlavek, Sergei O. Kuznetsov (Eds.): CLA 2008, pp. 109–120,
ISBN 978–80–244–2111–7, Palacký University, Olomouc, 2008.



models where entities and meta-entities co-exist [3]. Such models are frequently
found in cases when we want to represent in the same model a concept and an
instance of it, for example in UML instance diagrams [4], RDFS resources [5] or
ODM ontologies [6]. We focus in this paper on applying RCA-MDE to individuals
in the sense of description logics. The idea is thus to look for abstractions among
individuals, each individual being typed by a class. The main issue is to deal with
two levels of abstraction: the level of individuals (classically named M0) and the
one of classes (M1). The presence of two levels complexifies the application of the
RCA-MDE process, as we will show in this paper. After providing background
on our approach, we detail two ways to apply RCA-MDE on bi-level models: a
naive one, directly inspired from mono-level models, and a more elaborated one
giving more relevant results, and that is based on an automated hybridation of
the input model and metamodel. We explain how this process is implemented in
our RCA-MDE platform, and provide results on two real-world ontologies.

2 Background : Relational Concept Analysis and
description logics

Relational Concept Analysis (RCA) Relational Concept Analysis [7] is one of the
extensions of Formal Concept Analysis [8] that considers links between objects
in the concept construction. Connections can be made with other FCA-based
proposals for dealing with relational descriptions or complex structures including
[9,10,11,12] to mention just a few. RCA uses a natural representation of data in
the form of tables that constitute a relational context family. Some of these tables
represent objects of several categories described by binary attributes (formal
contexts) while the other tables represent relations between objects from the
categories (relational contexts). We illustrate RCA with an example including a
single formal context (Knature, see Fig.1) and two relational contexts, Reat and
Rlive, shown in Figures 3 and 4.

Thing Plant Place Animal

berry X

mountain X

sheep X

lichen X

wolf X

rabbit X

bear X

herb X

Fig. 1. Formal context
Knature

Fig. 2. Concept Lattice Lnature

110 Xavier Dolques, Jean-Rémy Falleri, Marianne Huchard, Clémentine Nebut



berry sheep lichen rabbit herb

berry

mountain

sheep X

lichen

wolf X X

rabbit X

bear X X X

herb

Fig. 3. Relational context Reat

mountain

berry

mountain

sheep X

lichen

wolf X

rabbit X

bear X

herb

Fig. 4. Relational context Rlive

Definition 1 (Relational Context Family (RCF)). A Relational Context
Family R is a pair (K, R). K is a set of formal contexts Ki = (Oi, Ai, Ii), R is
a set of relational contexts Rj = (Ok, Ol, Ij) (Ok and Ol are the object sets of
the contexts Kk and Kl of K).

New abstractions emerge iterating the two following steps. The first step is
classical concept lattice construction. In second step, formal contexts are con-
catenated with relational contexts enhanced by concepts created in previous
lattice construction.

Initialisation step. Lattices are built at this step using FCA. For each formal
context Ki, a lattice L0

i is created (in our example, it is shown in Fig. 2).

Step n+1. For each relational context Rj = (Ok, Ol, Ij), an enhanced relational
context Rs

j = (Ok, A, I) is created. A is the concept set of the lattice Ln
l (created

at step n). In the case of Reat, we obtain Rs
eats = (Onature, Lnature, I). I con-

tains the set of pairs (o, a) s.t. S(R(o), Extent(a)) is true, where S is a scaling
operator. We consider here two scaling operators: S∃(R(o), Extent(a)), which is
true iff ∃x ∈ R(o), x ∈ Extent(a), and S∀∃(R(o), Extent(a)), which is true iff
∀x ∈ R(o), x ∈ Extent(a) ∧ ∃x ∈ R(o), x ∈ Extent(a).

We give a first example using S∃ to compute Rs
eat. Initialisation step allows

us to discover the abstraction represented by the concept C2 (plants). As we
have (berry) ∈ Reat(bear) with berry ∈ Extent(C2), (bear, C2) ∈ I. For similar
reasons, (rabbit, C2) ∈ I. This highlights the fact that bears and rabbits eat at
least one kind of plant.

Now we examine a computation based on the scaling operator S∀∃. As
(sheep) ∈ Reat(bear) and sheep %∈ Extent(C2), now (bear, C2) %∈ I. Reversely,
since Reat(rabbit) = {herb} ⊆ Extent(C2), we still have (rabbit, C2) ∈ I. This
indicates that rabbits only eat plants, while bears do not only eat plants: but
also sheep.

Applying FCA to Kk ∪ {Rs
j = (Ok, A, I)} creates new concepts that are

added to Ln
k to obtain Ln+1

k . For example, still using the scaling operator S∀∃
on the concatenation of Knature, Rs

eat and Rs
live (Fig. 5), we obtain the concept

A Model-driven Engineering Based RCA Process for Bi-level Models
Elements / Meta-elements: Application to Description Logics

111



({sheep, rabbit}, {Animal, eat : C1, eat : C2, live : C1, live : C3}). This concept
represents objects that are animals, eat only plants and live only in places (here
mountain due to the very restricted example). As the process goes on, more and
more complex information on relational structuring emerges. The process stops
when lattices at step n are equivalent to those at step n − 1 i.e. when no new
concept appear.

Knature Rs
eat Rs

live

Thing Plant Place Animal C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

berry X

mountain X

sheep X X X X X

lichen X

wolf X X X X X

rabbit X X X X X

bear X X X X

herb X

Fig. 5. Context Knature concatenated with enhanced relational contexts Rs
eat and

Rs
live.

Description logics Description logics [13] allow knowledge representation with
Concepts, Individuals and Roles. Concepts, included in the terminological box
(or TBox), are primitive ones (like Plant, Animal), constants (), ⊥) or defined
using several constructors, such as negation (¬), disjunction (+), or conjunc-
tion (,). Here we are especially interested in constructors composed with roles:
universal role quantification (∀R.C, where R is a role and C is a concept) and
existential quantification (∃R.C). FL−E is the description logic we will consider
in the paper. If eat is a role, the concept Herbivorous can be defined with ex-
pression Herbivorous := Animal , ∃eat.) , ∀eat.P lant, since an herbivorous
is an animal which eats at least one thing and which only eats plants. Asser-
tion box (or ABox) contains instanciations. An individual (for example herb) is
defined by its type (for example Plant(herb)), which is a concept of the TBox,
while a role is defined by a set of individual pairs like eat(rabbit, herb).

3 Adapting RCA-MDE to bi-level models

RCA in a model-driven engineering approach Lessons learned from previous
prototypes [14,15,16] highlighted the need to easily encode data from a large
range of models (UML class models in several UML versions, component models,
description logics, etc.) into relational context families as well as to parameterise
RCA application. The RCA-MDE approach proposes a generic solution to these
issues [1,2]. An overview is given in Figure 6.

112 Xavier Dolques, Jean-Rémy Falleri, Marianne Huchard, Clémentine Nebut



RCF
metamodel

input
metamodel mm(m)

input model m RCF model

! !

config model
config(mm(m))

encoding1

ref

!: conforms to
ref : refers to

CLF
metamodel

CLF model

input
metamodel mm(m)

output model m'

!!

  decoding3

config model
config(mm(m))

RCA
2

Fig. 6. RCA-MDE approach

To apply RCA to a model m, one just need to provide the corresponding meta-
model mm(m) and the RCA configuration config(mm(m)) for this metamodel.
config(mm(m)) defines the meta-elements of mm(m) which are considered for
analysis. Converting the model into a relational context family is done in two
steps. In the first step, a formal context is created for each meta-class indicated
in config(mm(m)). Binary attributes are the meta-class attributes mentioned in
config(mm(m)). A specialization/generalization link can be specified for a given
meta-class. This link allows to compute the inherited relational attributes. In
the second step, a relational context is created for every meta-relation indicated
in config(mm(m)).

Until now, RCA-MDE has been applied to models owning entities of a single
level, i.e. that do not mix entities and meta-entities. In this paper, we show how
to apply RCA-MDE on bi-levels models. Such models can be found in models
representing instances like ODM [6] that allows to represent ontologies, or UML
instance diagrams [4]. We illustrate the approach with description logics : we
aim at refactoring models owning individuals based on classes. Those models are
composed of a TBox and an ABox (TAB models). We show in this section why
a naive adaption based on the one applied for mono-level models is surprisingly
not well-suited, and propose an original way to correctly apply it.

Naive adaptation, based on the mono-level modeling To apply RCA to a TAB
model, the first (naive) adaptation consists in providing to RCA-MDE a meta-
model where coexist: classes, indivuals, relations, and instances of relations, as
illustrated at the right of Figure 7. Note that we work with a simplified meta-
model of description logics. The model of animals is thus an instance of this
metamodel, an excerpt is given at the left of Figure 7, where we only see the
animals that live in the moutain.

We also need to provide a configuration model for this metamodel. All the
entities of the metamodel (Class, Individual, Instance of Relation and Relation)
correspond to a formal context. The inter-entity links give rise to relational con-
texts, and for each relational context, the scaling operator is chosen and defined
in the configuration model. We take into account the following associations:

A Model-driven Engineering Based RCA Process for Bi-level Models
Elements / Meta-elements: Application to Description Logics

113



Input model

<<instance of>>

inputMM 

Class

Relation InstanceRelation

Individual

Relation
Type

type instance

source target

* *
**

11
*

is source of ! has for target "

Place:Class

Animal:Class

Bear:Individual

Rabbit:Individual

Wolf:Individual

Sheep:Individual

Mountain:Individual

Live:Relation type
type

type

type

type

WLM:RelationInstance

source

target

relationType

RLM:RelationInstance

target

source

relationType

SLM:RelationInstance

target

source

relationType

BLM:RelationInstance

target source

relationType
*

Fig. 7. Naive adaptation for the model of animals.

ir0 ir1 ir2 ir3 ir4 ir5 ir6 ir7 ir8 ir9 ir10
berry

mountain
sheep X X
lichen
wolf X X X

rabbit X X
bear X X X X
herb

berry mountain sheep lichen wolf rabbit bear herb
ir0 X
ir1 X
ir2 X
ir3 X
ir4 X
ir5 X
ir6 X
ir7 X
ir8 X
ir9 X
ir10 X

eat live
ir0 X
ir1 X
ir2 X
ir3 X
ir4 X
ir5 X
ir6 X
ir7 X
ir8 X
ir9 X
ir10 X

Fig. 8. Relational contexts of relations is source of (lhs), has for target (center) and
relation type (rhs).

– type1 linking Individual to Class. The associated scaling operator is S∃. The
relational context Rtype will thus be created, associated to the S∃ operator;

– is source of linking Individual to Relation Instance (it leads to generate the
Rissourceof context). We chose here the S∀∃ operator;

– has for target linking Relation Instance to Individual (it leads to generate
the Rhasfortarget context). We chose here the S∃ operator;

– relation type linking Relation Instance to Relation (it leads to generate the
Rtyperelation context). We chose here the S∃ operator.

We thus have a single formal context for all the instances of relations. The
relation context relation type represents the links between those instances of re-
lations and the relations (see Figure 8). Yet if abstractions can be found with this
configuration, others cannot, that could however be discovered applying RCA in
a classical way, i.e. filling the contexts without taking into account the way input
data are modeled. The problems arise when using a scaling operator different
from S∃. For example, let us refer to animals linked to their habitation and their
diet. Using RCA, we hope obvious abstractions to appear with operator S∀∃, e.g.
herbivorous (animals such that, whatever they eat, it is plant), carnivorous (an-
imals such that whatever they eat, it is animal) and omnivorous (animals eating
both vegetal and animal food). However, all the relation instances (links) are
1 type is in fact a role of this association.

114 Xavier Dolques, Jean-Rémy Falleri, Marianne Huchard, Clémentine Nebut



represented by the same metaclass in the metamodel and they belong to a single
formal context. As a first consequence we cannot apply different scaling opera-
tors to the relations (e.g. S∀∃ for eat and S∃ for live). As a second consequence,
some concepts built by original RCA (on relational context family like in Section
2) cannot be found. While original RCA builds a concept including sheep and
rabbit (because all eat links end at herb which is included in C2 extent), naive
modeling of RCA-MDE cannot (because all links ends are not included in a non
trivial concept extent : eat links go towards herb while live links go towards
mountain).

The source of the problem comes from the following causes. First, our ap-
proach, due to a genericity matter, creates the formal contexts from the elements
of a metamodel. Second, we use a model with two levels of abstraction, and the
instanciation relation allowing to go from one level to the other is defined in
the metamodel by a simple association. In our case, it clearly appears that an
instanciation relation exists between the relations and the instances of relations,
but the relations do not belong to the metamodel, thus it is not possible to create
a formal context for each relation. We thus propose in the next section a more
complex yet more adequate solution.

Adaptation for bi-levels models: hybridisation of the input metamodel with the
input model We propose to promote a part of the model, i.e. to move the relations
in the metamodel, in the form of relation of model, and to transform the relation
relation type into an instanciation relation. We thus hybridise a part of the input
model with a part of the input metamodel, as illustrated in Figure 9. The input
model is then also modified as shown in the right of Figure 9. The hybridisation
transformation aims at deleting the reification of the relations in a model (by the
concept Instance of relation) since it is not relevant to look for new abstractions.

The configuration model follows the same idea as the transformation: we only
take into account two entities of the metamodel: Class and Individual, and the
following relations:

– type linking Individual to Class. We associate it the scaling operator S∃. The
relational context Rtype will thus be created, associated to the operator S∃ ;

– live linking Individual to Individual, with a scaling operator (e.g. S∀∃).
– eat linking Individual to Individual, with a scaling operator (e.g. S∀∃).

This solution does not imply to modify the RCA-MDE process, we only
modify input models. Those modifications result in a relational context of each
relation of the input model (in our example: exactly the contexts of Figures
3 and 4). Reading the tables is easier, because the instances of relations are
represented by a table per relation, and this table owns the source and the
target of the instance of relation.

Hybridising the model has then for consequence to obtain back the model
elements leveling while still keeping the same information on the input model ;
and the relations of the input model that were semantically relations on instances
become actual relations on instances. The hybrid model with its metamodel is
then a mono-level model on which the RCA-MDE process can be applied in a

A Model-driven Engineering Based RCA Process for Bi-level Models
Elements / Meta-elements: Application to Description Logics

115



Modèle d'entréeInput model

Live:Relation

<<instance of>>

Eat:Relation

Hybridised input MM

Class Individual
type instance

*

live

eat

M2

M1

version 1 version 2

(excerpt)

inputMM 

Class

Relation InstanceRelation

Individual

Relation
Type

type instance

source target

* *
**

11
*

is source of ! has for target "

*

Input model
<<instance of>>

Place:Class
Animal:Class

Bear:Individual

Rabbit:Individual

Wolf:Individual

Sheep:Individual
Mountain:Individual

type
type

type
type

type

live
livelivelive

(excerpt)

*

Fig. 9. Hybridisation of the metamodel.

classical way. The new definitions of concepts in the context of the individuals
will depend on a single relation. In our example, we will be able to define a con-
cept to which sheep belongs and which gathers all the individuals that only eat
plants, independently from the other types of relations like live. This modeling
corresponds to what can be obtained with a classical application of RCA.

4 Platform and experimentations

Platform The platform implementing RCA-MDE uses the modeling framework
EMF [17]. It is based on the meta-modeling language Ecore to read models and
their metamodels.

To represent description logics models, we use the OWL language (Web On-
tology Language, [18]). OWL is intensively used in Web technologies as knowl-
edge representation language, and many modeling tools exist for OWL, as well
as many OWL models. Our metamodel is included, renaming the entities, in the
one proposed in the Eclipse plugin [19] that allows to handle OWL models with
EMF. In this way, a TAB model can easily be translated into an OWL model,
renaming Class into OWLClass, etc.

To adapt the RCA-MDE platform to TAB models, keeping in mind that we
want the process to remain generic (adaptable to other input data), we have to
define the hybridisation transformation of the OWL metamodel for a given TAB
model (see Figure 10), and a configuration making explicit which meta-elements
have to be taken into account by the RCA. The hybridisation transformation is
fully automated, it is written in Java and uses EMF to handle models. It takes
as input the OWL metamodel, a TAB model and the configuration model and
generates both the hybridised metamodel, the new TAB model conform to the

116 Xavier Dolques, Jean-Rémy Falleri, Marianne Huchard, Clémentine Nebut



RCF
metamodel

input
hybrid metamodel hmm(hm)

input hybrid model hm RCF model

! !

config model
config(hmm(hm))

encoding1

ref

!: conforms to
ref : refers to

CLF
metamodel

CLF model

input
metamodel hmm(hm)

output model m'

!!

  decoding3

config model
config(hmm(hm))

RCA
2

input
metamodel mm(m)

input model m

!

hybridisation

RCA-MDE

Fig. 10. Illustration of the metamodel hybridisation in RCA-MDE.

hybridised metamodel, and the corresponding configuration. As shown in Figure
9, the hybridisation transformation lists all the relations and puts them up a
level of abstraction higher, so that they appear in the hybridised metamodel.
This transformation only modifies the relations and the instances of relation.
The transformation also impacts the configuration model, since it refers to a
given metamodel. The metamodel being hybridised, the configuration must also
be hybridised. The obtained configuration can then be modified by the final user,
in particular for the choice of the scaling operators.

Concept_0

Concept_1

nom: Thing

Thing

Concept_2

Concept_3

nom: Vegetal

Vegetal

Concept_4

nom: Place

Place

Concept_5

nom: Animal

Animal

Concept_6

type: Concept_0

Concept_7

type: Concept_3

berry
lichen
herb

Concept_8

Concept_9

type: Concept_4

mountain

Concept_11

(forall)eat: Concept_7

sheep
rabbit

Concept_12

(forall)eat: Concept_10
(forall)eat: Concept_11

wolf

Concept_10

type: Concept_5
(forall)eat: Concept_6
(forall)live: Concept_6
(forall)live: Concept_9

bear

Concept_x !"#$%&#'(&))*+,-.-/&#-0+.&%-

1.#-.#

23#-.#

Fig. 11. Lattices obtained applying RCA-MDE on the example of animals. The class
lattice is on the lhs, the Individual lattice on the rhs.

Figure 11 shows, using Hasse diagrams, the lattices obtained applying RCA-
MDE on the example of animals. The lattice we focus on is the one obtained
from the context of the Individuals. We see that concepts have been created

A Model-driven Engineering Based RCA Process for Bi-level Models
Elements / Meta-elements: Application to Description Logics

117



to group the elements of same type: Concept_7 groups the elements of type
vegetal, Concept_9 groups those of type place and Concept_10 groups those of
type animal. Concept_11 groups animals that eat only vegetals. Concept_12
groups the animals that eat only animals, in particular animals of Concept_11.
From the intent of the new concepts, we can infer in an automatic way a logical
formula defining them.

The platform resulting from this work allows us to analyse bi-level models
in an automatic way: as well as for the analysis of mono-level models, we just
need to configure the RCA with a configuration model, so we kept the generic
approach. Our experiments showed us that the configuration for bi-level models
is slightly more complex since it frequently handles several scaling operators.

Table 1. Models studied. The Ontology Model is about surface water and water quality
model , the Ontology Autos is about Automobiles and their equipment. We take into
account the number of Individuals, Classes, Object Properties and their instances we
called Links in this table. We compare the number of Concepts obtained using FCA
and RCA in the lattice from Individual Context.

Ontology name Individuals Classes Object Properties Links FCA concepts RCA concepts
Model2 114 20 8 273 31 65
Autos3 321 91 13 375 82 175

We have tested our approach of hybridisation on some real ontologies in OWL
format (Tab.1). We compare the result4 obtained using Formal Concept Analysis
(we take the results obtained after the first iteration of the RCA process) to those
obtained using Relational Concept Analysis. In the following we will concentrate
on the lattice from Individual context, as the lattice from the Class lattice cannot
produce new concepts (there is no relation in the metamodel with Class elements
as source).

On the Model Ontology, FCA would generate 31 concepts. Nearly each class is
transformed in one concept, except for 3 classes which have the same extent. Our
approach generated 55 concepts using a S∃ operator of scaling and 65 concepts
using a S∃ and a S∀∃ operator of scaling. From the concepts obtained by FCA,
7 of them have a more precise intent with RCA.

We note that concept intents here describe the presence of relation between
individuals more than a value of the relation. This is caused by the fact that a
lot of classes do not have subclasses.

The use of S∀∃ scaling in addition with S∃ scaling gives us a way to know
the most specialized type for the target of a relation. To deduce the type of a
relation target, you need to know the target type of all the instances of this
relation.

2 http://loki.cae.drexel.edu/˜wbs/ontology/model.htm
3 http://gaia.isti.cnr.it/˜straccia/Teaching/IS/2007/Exercises/autos.owl
4 all the lattices can be found at http://www.lirmm.fr/˜dolques/publications/data/cla08

118 Xavier Dolques, Jean-Rémy Falleri, Marianne Huchard, Clémentine Nebut



The RCA approach applied on bi-level models produces a different type of
result from applied on mono-level. On bi-level models we take a set of elements,
and the process produces new subsets depending on the properties of the ele-
ments. On the examples we studied in OWL, the partitioning depends on the
type of the individuals, and the Object Property (name of relations in OWL
vocabulary) of which they are sources. For instance FCA can produce a con-
cept that groups the individuals of type ModelingSystem and that are linked by
the Object Property hasModel to another individual. RCA shows us that the
individual of this concept are all linked by the ObjectProperty hasModel to In-
dividuals of type Model which all have an Individual of type Organisation as a
developer (concept NMWithAv_Dev_Org_ModelDim).

This kind of result could help to complete under-specified ontologies in an
approach by-example, by showing which kind of data is missing in individual
description and by restricting the domain and range of an Object Property.

5 Conclusion

Until now, building abstractions using an RCA process and an MDE paradigm
has been applied to models with a single level of abstraction, i.e. models that
do not mix entities and meta-entities. In this paper, we have studied how to
use an RCA-MDE approach for bi-level models, where co-exist meta-entities
and their instances. We based our work on the example of description logics:
we focused on models mixing individuals and links between individuals with the
classes typing the individuals and the relations defining the links. We have shown
that a direct application of the approach does not give the expected results, and
proposed a more complex solution giving results similar to those obtained with
an application of RCA with a manual encoding of data. This solution is based
on the promotion of the instances of relations from the input model up to the
input metamodel.

In this paper, we worked with description logics with minimal expressivity;
in particular we do not take into account language elements existing in OWL
like the specialization relation that could be applied to classes, or the constraints
that could be added on the sources and targets of the relations. Future work will
consist in dealing with more complex description logics, as well as in integrating
the obtained results in the original model. We also plan to make the hybridisa-
tion generic instead of specific to our description logics metamodel, in order to
validate our approach with other kinds of bi-level models such as UML models
with classes and instances.

References

1. Arévalo, G., Falleri, J.R., Huchard, M., Nebut, C.: Building abstractions in class
models: Formal concept analysis in a model-driven approach. In: Proc. of the
MoDELS’06 conference. (2006) 513–527

2. Falleri, J.R., Huchard, M., Nebut, C., Arévalo, G.: Use of Model Driven Engi-
neering in Building Generic FCA/RCA Tools. In Diatta, J., Eklund, P., Liquière,

A Model-driven Engineering Based RCA Process for Bi-level Models
Elements / Meta-elements: Application to Description Logics

119



M., eds.: Proc. of CLA’07: Fifth International Conference on Concept Lattices and
Their Applications. (2007) 225–236

3. Dolques, X., Falleri, J.R., Huchard, M., Nebut, C.: Adaptation d’un processus de
construction d’abstractions basé idm à des modèles bi-niveaux éléments / méta-
éléments : Application aux logiques de description. In: LMO Conference. (2008)

4. OMG: UML 2.0 superstructure. Technical report, Object Management Group
(2004)

5. Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF
Schema. Technical report, W3C (2004)

6. OMG: Ontology definition metamodel. Technical report, Object Management
Group (2007)

7. Huchard, M., Hacene, M.R., Roume, C., Valtchev, P.: Relational concept discovery
in structured datasets. Ann. Math. Artif. Intell. 49(1-4) (2007) 39–76

8. Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations.
Springer, Berlin (1999)

9. Priss, U.: Classification of meronymy by methods of relational concept analysis. In:
Online Proceedings of the 1996 Midwest Artificial Intelligence Conf., Bloomington,
Indiana. (1996)

10. Prediger, S., Wille, R.: The lattice of concept graphs of a relationally scaled context.
In: Proc. of the 7th Intl. Conf. on Conceptual Structures (ICCS’99), Springer (1999)
401–414

11. Ganter, B., Kuznetsov, S.: Pattern structures and their projections. In Delugach,
H., Stumme, G., eds.: Conceptual Structures: Broadening the Base, Proc. of the
9th Intl. Conf. on Conceptual Structures (ICCS’01), Stanford, CA. Volume 2120
of LNCS., Springer (2001) 129–142

12. Ferré, S., Ridoux, O., Sigonneau, B.: Arbitrary relations in formal concept analysis
and logical information systems. In Dau, F., Mugnier, M.L., Stumme, G., eds.:
ICCS. Volume 3596 of Lecture Notes in Computer Science., Springer (2005) 166–
180

13. Baader, F., Nutt, W.: Basic description logics. In Baader, F., Calvanese, D.,
McGuinness, D., Nardi, D., Patel-Schneider, P.F., eds.: The Description Logic
Handbook: Theory, Implementation, and Applications. Cambridge University
Press (2003) 43–95

14. Valtchev, P., Grosser, D., Roume, C., Hacene, M.R.: Galicia: an open platform
for lattices. In B. Ganter, A.d.M., ed.: Using Conceptual Structures: Contributions
to ICCS’03, Aachen (DE), Shaker Verlag (2003) 241–254

15. Dao, M., Huchard, M., Hacene, M.R., Roume, C., Valtchev, P.: Towards Practical
Tools for Mining Abstractions in UML Models. In Manolopoulos, Y., Filipe, J.,
Constantopoulos, P., Cordeiro, J., eds.: ICEIS (3). (2006) 276–283

16. Seuring, P.: Design and implementation of a UML model refactoring tool. Mas-
ter’s thesis, Hasso-Plattner-Institute for Software Systems Engineering at the Uni-
versity of Postdam (2005) http://www.lirmm.fr/˜huchard/Documents/Papiers/
PhilippSeuringMasterThesis.pdf.

17. Budinsky, F., Grose, T., Steinberg, D., Ellersick, R., Merks, E., Brodsky, S.: Eclipse
Modeling Framework: a developer’s guide. Addison-Wesley Professional (2003)

18. McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview.
Technical report, W3C (2004)

19. EODM: site du projet EODM, http://www.eclipse.org/modeling/mdt/?project=eodm

120 Xavier Dolques, Jean-Rémy Falleri, Marianne Huchard, Clémentine Nebut



Extending Attribute Exploration by Means of
Boolean Derivatives

J. Antonio Alonso-Jiménez1, Gonzalo A. Aranda-Corral1, Joaqúın
Borrego-Dı́az1, and M. Magdalena Fernández-Lebrón2, M. José

Hidalgo-Doblado1

1Departamento de Ciencias de la Computación e Inteligencia Artificial
2Departamento de Matemática Aplicada I

E.T.S. Ingenieŕıa Informática, Universidad de Sevilla, Avda. Reina Mercedes s.n.
41012-Sevilla, Spain

Abstract. We present a translation of problems of Formal Context
Analysis into ideals problems in F2[x] through the Boolean derivatives.
The Boolean derivatives are introduced as a kind of operators on propo-
sitional formulas which provide a complete calculus. They are useful to
refine stem basis as well as for extending attribute exploration.

1 Introduction

Attribute exploration (cf. [3]) is a family of interactive procedures for Knowledge
Acquisition (KA) in Formal Concept Analysis (FCA), whose goal is to build a
knowledge base of the attributes we are working with. The procedures used in
FCA have nice computer implementations, existing even generalizations for the
management of the background information. Sometimes attribute exploration is
hard or tedious to apply. Thus, it may advisable to use automated tools. Many
Computer Algebra Systems (CAS) provide tools for working with discrete data,
for example, Gröbner basis. Since it is possible to translate entailment problems
into ideal problems in finite fields, Gröbner basis is a powerful tool for reasoning
in propositional logic [8, 9, 2].

Our aim is to extend the framework of attribute exploration through the
introduction of Boolean derivatives and the assistance of a CAS. The CAS that
we will use CoCoA (http://cocoa.dima.unige.it/), very well suited for our
pourposes because of its easy management of Gröbner basis and related tools.
The paper is organized as follows. The next section reviews the relationship
between propositional logic and the ring F2[x], as well as the basics of FCA. In
the third section the Boolean derivatives are introduced, as well as a complete
polynomial calculus based on them. An algebraic characterization of sensitivity
for implications in FCA is given in forth section. In fifth and sixth sections new
versions of attribute exploration are introduced, and in section 7 an application
to graph theory is given. We conclude with some remarks about future work.

2 Background

We assume that the reader is familiar with propositional logic and polynomial
algebra on positive characteristics. We setup a propositional language PV =

c© Radim Belohlavek, Sergei O. Kuznetsov (Eds.): CLA 2008, pp. 121–132,
ISBN 978–80–244–2111–7, Palacký University, Olomouc, 2008.



{p1, . . . , pn}, PForm will denote the set of propositional formulas, and var(F )
denotes the set of variables of the propositional formula F .

The ring in which we are working is F2[x] (where x = x1, . . . , xn). A key ideal
is I2 := (x1 +x2

1, . . . , xn +x2
n). To clarify our proposition, let fix an identification

pi 7→ xi (or p 7→ xp) between PV and the set of indeterminates.
Given α = (α1, . . . αn) ∈ Nn, let us define |α| := max{α1, . . . , αn}, and

sg(α) := (δ1, . . . , δn), where δi is 0 if αi = 0 and 1 otherwise. The degree of a(x) ∈
F2[x], is deg∞(a(x)) :=max{|α| : xα is a monomial of a}, and degi(a(x)) is the
degree w.r.t. xi. If deg∞(a(x)) ≤ 1, a(x) is called a polynomial formula.

Three maps represent the relationship between propositional logic and F2[x]:

– Φ : F2[x] → F2[x] is defined by Φ(
∑
α∈I

xα) :=
∑
α∈I

xsg(α).

– The map P : PForm → F2[x] is defined by the following equations
• P (⊥) = 0, P (pi) = xi, P (¬F ) = 1 + P (F )
• P (F1∧F2) = P (F1)·P (F2) and P (F1∨F2) = P (F1)+P (F2)+P (F1)P (F2)
• P (F1 → F2) = 1 + P (F1) + P (F1)P (F2), and
• P (F1 ↔ F2) = 1 + P (F1) + P (F2)

– Θ : F2[x] → PForm is defined by
• Θ(0) = ⊥, Θ(1) = >, Θ(xi) = pi,
• Θ(a · b) = Θ(a) ∧Θ(b), and Θ(a + b) = ¬(Θ(a) ↔ Θ(b)).

We have that Θ(P (F )) ≡ F and P (Θ(a)) = a. Since we shall frequently be
applying Φ ◦ P , we define the polynomial projection as π := Φ ◦ P .

Regarding valuations and polynomials, the key fact is that, if v : PV → {0, 1}
is a valutation with v(pi) = δi, then for every F ∈ PForm,

v(F ) = P (F )(δ1, . . . δn)

The behaviour of the ideals of F2[x] is well known: If A ⊆ (F2)n, then
V (I(A)) = A, and for every I ∈ Ideals(F2[x]), I(V (I)) = I + I2. Therefore
F ≡ F ′ if and only if P (F ) = P (F ′) (mod I2) which is also equivalent to
Φ ◦ P (F ) = Φ ◦ P (F ′). The following theorem states the main relationship be-
tween propositional logic and F2[x]:

Theorem 1. The following conditions are equivalent:
(1) {F1, . . . , Fm} |= G.
(2) 1 + P (G) ∈ (1 + P (F1), . . . , 1 + P (Fn)) + I2.
(3) NF(1 + P (G), GB [(1 + P (F1), . . . , 1 + P (Fm)) + I2]) = 0.
(where GB denotes Gröbner basis) and NF denotes normal form.

In the rest of this section we succintly present some elements of FCA we use,
although we assume that the reader knows the basic principles of this theory (the
fundamental reference is [3]). We represent a formal context as M = (O,A, I),
which consists of two sets, O (the objects) and A (the attributes) and a relation
I ⊆ O ×A. Finite contexts can be represented by a 1-0-table (representing I as
a Boolean function on O×A). The main goal in FCA is the computation of the
concept lattice associated to the context.

122 José Antonio Alonso-Jiménez, Gonzalo A. Aranda-Corral, Joaqúın Borrego-
Dı́az, M. Magdalena Fernández-Lebrón, M. José Hidalgo-Doblado



Basic logical expressions in FCA are implication between attributes, that is,
pair of sets of attributes written as Y1 → Y2. Truth with respect to M = (O,A, I)
is defined as follows. A subset T ⊆ A respects Y1 → Y2 if Y1 6⊆ T or Y2 ⊆ T .
We say that Y1 → Y2 holds in M (M |= Y1 → Y2) if for all o ∈ O, the set {o}′
respects Y1 → Y2. In that case we say that Y1 → Y2 is an implication of M .

From a propositional logic viewpoint, Y1 → Y2 is the formula
∧

Y1 →
∧

Y2,
so it is equivalent to a set of Horn clauses (implications with a singleton as
right-hand side). On the other hand, the definition of truth can be extended:
Given Y ⊆ A, define ¬Y := Y → ⊥, and it holds in the context if for all
o ∈ O, Y 6⊆ {o}′. Given a formula written with {→,⊥}, M |= F can be defined
in the natural way. Since this set of connectives is functionally complete, truth
definition can be extended to PForm.

Definition 1. Let L be a set of implications and L an implication of M .
• L follows from L (L |= L) if each subset of A respecting L also respects L.
• L is closed if every implication following from L is already in L.
• L is complete if every implication of the context follows from L.
• L is non-redundant if for each L ∈ L, L \ {L} 6|= L.
• L is a stem basis for M if it is complete and non-redundant.

For every context we can obtain a stem basis from the pseudo-intents:

Theorem 2. [7] The set L = {Y → Y ′′ : Y is a pseudointent} is a stem basis.

Actually one can choose Y → Y ′′ \ Y instead of Y → Y ′, so we will assume,
by default, that for every implication Y1 → Y2 belonging to a stem basis Y1

and Y2 are disjoint. Such a basis for the example of figure 5 (left) is L = {∅ →
N, {N,A} → {Mo}, {N,Le} → {Mo}}.

The called Amstrong rules facilitates implicational reasoning:

R1 :
X → X

R2 :
X → Y

X ∪ Z → Y
R3 :

X → Y, Y ∪ Z → W

X ∪ Z → W

It has that A set of implications L is closed if and only if the set is closed by
Amstrong rules [1]. A consequence of Amstrong result is that, if `A denotes the
proof notion associated to Amstrong rules, stem basis are `A-complete, that is:

Theorem 3. Let L be a stem basis for M , and L an implication. Then M |= L
if and only if L `A L

The computing of stem basis may be expensive if the set of objects is large.
Even it is possible we do not have the complete context M , or it has a potentially
infinite set of objects. Attribute exploration is an interactive procedure designed
to obtain a stem basis starting with a set H of good examples generating the
subcontext

M �H := (H,A, I ∩ (H ×A))

One expects that a stem basis associated to M �H is also a stem basis for the
complete context. To guarantee it, we proceed as follows. Assume that L =

Extending Attribute Exploration by Means of Boolean Derivatives 123



1. Compute pseudo-intent: Find X a pseudo-intent for M �H .

2. Soundness of the new implication: Ask to the user X
?→ X ′′ (the operators ′ are

w.r.t. the subcontext). The user must react:
– Confirming the suggested implication (adding it to L), or
– giving o (a counterexample) such that {o}′ does not respect the implication.

This is added to H, and the implication is discarded.

Fig. 1. Attribute exploration

{L1, . . . , Lk} is a partial set of implications accepted as true, built from pseudo-
intents of M �H

1. Attribute exploration consists in a loop of the two steps shown
in fig. 1, and it stops when no new pseudointent is found (see [4] for variants).

3 Boolean derivatives and non-clausal theorem proving

We introduce an operator on propositional formulas as a translation of the usual
derivation on F2[x]. In this section we review its basic properties (from [2]).

Recall that a derivation on a ring R is a map d : R → R verifying that
d(a + b) = d(a) + d(b) and d(a · b) = d(a) · b + a · d(b)

Definition 2. A map ∂ : PForm → PForm is a Boolean derivation if there
exists a derivation d on the ring F2[x] such that ∂ = Θ ◦ d ◦ π

If the derivation on F2[x] is d = ∂
∂xp

, we denote ∂ as ∂
∂p . It has that:

∂

∂p
F ≡ ¬(F{p/¬p} ↔ F )

Thus, the value of ∂
∂pF with respect to a valuation does not depend on p.

Therefore, we can apply valuations on PV \ {p} to this formula.

Definition 3. The independence rule (or ∂-rule) on polynomial formulas is

∂x(a1, a2) :
a1, a2

1 + Φ
[
(1 + a1 · a2)(1 + a1 · ∂

∂xa2 + a2 · ∂
∂xa1 + ∂

∂xa1 · ∂
∂xa2)

]
In order to simplify the notation, if ai = bi + xp · ci, with degxp

(bi) =
degxp

(ci) = 0 (i = 1, 2),. Then we can rewrite the values as:

∂xp(a1, a2) :
b1 + xp · c1, b2 + xp · c2

Φ [1 + (1 + b1 · b2)[1 + (b1 + c1)(b2 + c2)]]
The rule is symmetric and generalizes resolution of non-tautological polyno-

mial clauses (see lemma 1). For formulas the rule is translated as

∂p(F1, F2) := Θ(∂xp
(π(F1), π(F2))).

1 Pseudointents are generated in lexicographic order. This way previously computed
pseudointents are preserved by augmentations of H. See th. 27 in [3].

124 José Antonio Alonso-Jiménez, Gonzalo A. Aranda-Corral, Joaqúın Borrego-
Dı́az, M. Magdalena Fernández-Lebrón, M. José Hidalgo-Doblado



It naturally induces a concept of proof, `∂ . A `∂-refutation is a proof of ⊥. In
[2] the soundness and the refutational completeness of `partial has been proved

Theorem 4. [2] Let v : PV \ {p} → {0, 1}. The following conditions are equiv-
alent:

1. v |= ∂p(F1, F2).
2. There exists an extension of v to PV is a model of {F1, F2}.

For example, ∂x1(x1(1 + x2), x1(1 + x2)) = 1 + x2. So the valuation v s.t.
v(¬p2) = 1 is the only one that we can extend to a model of p1 ∧ ¬p2. When
∂p(π(F1), π(F2)) = 1, every partial valuation is extendable to a model of {F1, F2}.

Theorem 5. [2] If Γ is inconsistent then Γ `∂ ⊥.

Let be ∂p[Γ ] defined as ∂p[Γ ] := {∂p(F,G) : F,G ∈ Γ}.
Given Q = {q1, . . . , qk} ⊆ PV the operator ∂Q := ∂q1 ◦· · ·◦∂qk

is well defined
modulo logical equivalence (by corollary 4, for every p, q ∈ PV , ∂p ◦ ∂q[Γ ] ≡
∂q ◦ ∂p[Γ ]). A consequence of corollary 4 and theorem 5 is that entailment can
be located on variables of the goal;

Corollary 1. Γ |= F ⇐⇒ ∂PV \var(F )[Γ ] |= F

We can define an explicit equivalent expression for ∂p when it is applied
to implications. To simplify, suppose that the right-side of implications is a
singleton.

Lemma 1. Let Ci ≡
∧

Y i
1 →

∧
Y i

2 be a implications (i = 1, 2, Y i
1 ∩ Y j

2 = ∅),
and Γ be a set of implications. Let ∂c

p(C1, C2) be the symmetric operator

∂c
p(C1, C2) :=


{C1, C2} p /∈ var(C1) ∪ var(C2)
{C2} p ∈ Y 1

1 , p /∈ var(C2)
{
∧

Y 1
1 →

∧
(Y 1

2 \ {p}), C2} p ∈ Y 1
2 , p /∈ var(C2)

{>} p ∈ (Y 1
1 ∩ Y 2

1 ) ∪ (Y 1
2 ∩ Y 2

2 )
{Resolventp(C1, C2)} p ∈ Y 1

1 ∩ Y 2
2

If ∂c
p[Γ ] :=

⋃
{∂c

p(C1, C2) : C1, C2 ∈ Γ}, then ∂c
Q[Γ ] ≡ ∂Q[Γ ] (Q ⊆ PV ).

4 Algebraic characterization of sensitive implications

We shall provide an algebraic treatment for implications on a fixed M = (O,A, I).
It is well know that every set X ⊆ (F2)n is an algebraic set; that is, there exists
aX ∈ F2[x] such that V (aX) = X. If |A| = n, M is identified with a sub-
set X(M) of (F2)n (each object identified with the 1-0 expresion of its intent).
Let aM ∈ F2[x] denote a polynomial formula such that V (aM ) = X(M). Since
IV (aM ) = (aM ) + I2, the coordinate ring of M is

F2[x]/I(X(M))
∼= (F2[x]/(aM ))/I2

One might also use an ideal JX such that V (JX) = X, if it is better to work
with them (for example using CoCoA’s command IdealsofPoints). Thus we
can assume that I2 ⊆ JM . We choose aM only to simplify the proofs.

Also, each o ∈ O defines a valuation vo defined by: vo(pi) = 1 iff oIpi.

Extending Attribute Exploration by Means of Boolean Derivatives 125



Proposition 1. Let F ∈ PForm and let L be a stem basis. The following con-
ditions are equivalent:
(1) M |= F.
(2) 1 + π(F ) ∈ (aM ) + I2.

Moreover, if F is an implication, they are also equivalent to
(3) {P (L) : L ∈ L} ∪ {1 + π(F )} `∂ 0.
(4) ∂c

PV \var(F )[L] |= F

Proof
(1) ⇐⇒ (2): If M |= F , then V (aM ) ⊆ V (1 + π(F )). Thus, IV (1 + π(F )) ⊆

IV (aM ) hence 1 + π(F ) ∈ (aM ) + I2. The converse is similar.
If F is an implication and M |= F , then L |= F . Therefore L ∪ {¬F} is incon-
sistent so by completeness, L ∪ {¬F} `∂ ⊥ hence we have (3). The converse is
true by soundness. (4) is equivalent to L |= F by lemma 1.

We now deal with the problem of redundant arguments in implications. In
the worst case, the recognizing of redundancy requires a complete exploration of
intents. An argument is redundant if it is not sensitive:

Definition 4. A formula F is sensitive in p w.r.t. a formal context M if M 6|=
F{p/¬p} ↔ F . We say that F is sensitive w.r.t. M (or simply sensitive, if M
is fixed) if F is sensitive in all its variables.

Thus, F is not sensitive in p iff M |= ¬ ∂
∂pF . In this case, there exists G with

var(G) =var(F ) \ {p} such that M |= F ↔ G (e.g. F{p/⊥}).
Sensitive implications (also called proper implications) have several advan-

tages over implications obtained from pseudo-intents (see [10]). In attribute ex-
ploration, sensitivity analysis is justified: it is possible that implications are based
on a nonrepresentative set of examples, and thus they can be refined, basically
giving witnesses of the role of the arguments in the implication, or making them
more precise, removing redundant arguments:

Lemma 2. Let L = Y1 → Y2 be an implication. If M |= L and L is not sensitive
in p ∈ Y1, then M |= Y1 \ {p} → Y2. If p ∈ Y2, then M |= ¬Y1.

By default, sensitivity analysis for implications will be always restricted to at-
tributes in the left-hand side.

Proposition 2. Let p ∈var(F ). The following conditions are equivalent:
(1) F is sensitive in p w.r.t. M .
(2) ∂

∂xp
π(F ) 6= 0 in the coordinate ring of M .

Proof. (1) =⇒ (2): Assume vo 6|= F ↔ F{p/¬p} for some o ∈ O. Then vo |= ∂
∂pF ,

so V (aM ) 6⊆ V (π( ∂
∂pF )) = V ( ∂

∂xp
π(F )), hence ∂

∂xp
π(F ) /∈ (aM ) + I2.

(2) =⇒ (1): If ∂
∂xp

π(F ) /∈ (aM ) + I2, then O = V (aM ) 6⊆ V (π( ∂
∂pF )). Therefore

there exists o ∈ O such that vo |= ∂
∂pF . Thus F is sensitive in p.

126 José Antonio Alonso-Jiménez, Gonzalo A. Aranda-Corral, Joaqúın Borrego-
Dı́az, M. Magdalena Fernández-Lebrón, M. José Hidalgo-Doblado



(3) Sensitivity test: If the implication has not been discarded, test whether the implication is
sensitive in all its arguments w. r. t. the actual set H (using lemma 2 if necessary). If it is not
sensitive in some of them, the user must to react:

– Adding a new example o to H, witness of the sensitivity (that is, he/she thinks that it
is sensitive), or

– eliminating the attribute of the implication (it accepts it is not sensitive), changing the
accepted implication by the refined one.

Fig. 2. Sensitivity test to add to algorithm of fig. 1

One can recursively apply the above criteria (w.r.t. an order on PV ) to obtain
sensitive implications. If L is a stem basis and L′ is the refinement obtained, since
Amstrong’s rule R2 states Y1 \{Y } → Y2 |= Y1 → Y2, one has that L′ |= L. Thus
L′ is also a complete set of implications. The set L′ has an advantage over other
sets of proper implications (e.g. [10]) that it directly works on Duquenne-Guigues
basis so it does not need an specific algorithm to build it.

5 Variants of attribute exploration

We shall propose new steps for attribute exploration. All of them are investigated
with the translation into polynomials in mind. Although in the exposition we do
not explicitely use polynomials -the results and their proofs are more readable
in logical form- in practice they will be useful.

The attribute exploration can be extended by adding a sensitivity test w.r.t
H (shown in fig. 2). Note that addition of a new object follows the formula

aH∪{(δ1,...,δn)} = Φ(aH · (1 + Πn
i=1(xi + δi + 1)))

For the running example, the implication N ∧ A → Mo is obtained and
considered as sound. In this case, aM = x1x2x4 + x1x2 + x1x3 + x1x4 + x1 + 1.
A Gröbner basis for aM + I2 is

{x2
4 + x4, x

2
3 + x3, x

4
2 + x2, x3x4 + x3, x2x4 + x2 + x3 + x4, x2x3 + x2, x1 + 1}

It verifies (with CoCoA) that ∂
∂x1

π(N ∧A → Mo) = x2(1 + x3) ∈ (aM ) + I2
We think that is not really sensitive in N (every live being needs water), so

we accept A → Mo, which is now sensitive. Reasoning similarly with the other
one, it obtains {N, A → Mo,L → Mo}, a stem basis of sensitive implications.

Sensitivity test can be also added when background knowledge exists. In this
case, we deal with hard problems as consistency checking or entailment. It starts
with H and a background knowledge Γ for M �H , that is, M �H |= Γ . Or, in
algebraic terms, V (aH) ⊆ V ({1 + π(F ) : F ∈ Γ}). The step to add is in given
figure 3. Condition (∗) means

1 +
∂

∂xp
π(L) /∈ ({1 + π(F ) : F ∈ Γ}) + I2

Extending Attribute Exploration by Means of Boolean Derivatives 127



(3) Sensitivity test: Test whether the implication is sensitive in all its arguments with the actual
set H and the background knowledge Γ , that is, whether for each attribute p in the antecedent
of L

Γ 6|= L ↔ L{p/¬p} (∗)
If it is not sensitive in some of them, the user must to react:

– Giving o ∈ O, a witness of the sensitivity (which is added to H), that is

vo |= {
∂

∂p
L} ∪ Γ (∗∗)

– or else removing the attribute of the implication (he/she accepts it is not sensitive).

Fig. 3. Sensitivity test with background knowledge

Regarding to the existence of an object for (∗∗), if the user does not know one,
but believes that it really exists, a model search program may be used to give
an anonymous object. Test (∗∗) can be fairly translated into algebraic terms.

6 Attribute exploration with new attributes

Now we propose how to extend the context by adding new attributes. Formally,
one starts with M0, a subcontext with partial set of attributes,

M0 = (H,A0, I ∩ (H ×A0)), with A0 ( A

Assume that, at some stage, full extents for a set H ′ of objects are introduced,
with the aim of expanding the new attributes to initial objects of M0 (see fig.
5). The user only knows -about the new attributes- a background knowledge
Γ , relating old and new attributes. Since it seems not advisable to add many
arguments at once (to facilitate the answers of tests), Γ will be relatively small.

It is important to observe that ∆ = L ∪ Γ , where L is the partial set of
implications, may be inconsistent with ontological commitments implicitely or
unconsciously accepted for the old attributes; that is, it may be false for M0,
whenever the extents of H were expanded to the full attribute set. Thus one
needs an expandability test for objects of H (to simplify assume that the new
attributes are {pk+1, . . . , pn}):

For each o ≡ (δ1, . . . , δk) of H, is there (δk+1, . . . δn) ∈ {0, 1}n−k such that
{pj : δj = 1 ∧ j ∈ {1, . . . , n}} respects ∆?

Theorem 6. Let M be an expansion of M0 to the complete attribute set, with
the same set of objects. If Γ is a stem basis (respectively a background knowl-
edge) for M , then ∂c

{pk+1,...,pn}[Γ ] is a complete set of implications (respectively
∂{pk+1,...,pn}[Γ ] is a background knowledge) for M0.

Proof. Assume that Γ is a stem basis. Let L be an implication in the language
A \ {pk+1, . . . , pn}. If M |= L, then Γ |= L. By corollary 1, ∂p[Γ ] |= L so by
lemma 1, ∂c

p[Γ ] |= L holds. If Γ is a background knowledge, the result is a
straightforward consequence of corollary 1.

128 José Antonio Alonso-Jiménez, Gonzalo A. Aranda-Corral, Joaqúın Borrego-
Dı́az, M. Magdalena Fernández-Lebrón, M. José Hidalgo-Doblado



(3) Expansion test: If implication has not been discarded, test whether the set of implications
plus background knowledge is extendable to H.

– If it is extendable, the user shall proceed:
• Confirming the suggested implication, or
• giving o ∈ O such that {o}′ does not respect the implication. This is added to H′,

and the implication is discarded.
– Else, it must revise the background knowledge, or to discard the implication

Fig. 4. Aditional step for exploration with new attributes

Need
water

Aquatic Mobility Legs

Cat 1 0 1 1

Leech 1 1 1 0

Frog 1 1 1 1

Maize 1 0 0 0

Fish 1 1 1 0

Need water Aquatic Mobility Legs Land
Cat 1 0 1 1 ?

Leech 1 1 1 0 ?

Frog 1 1 1 1 ?

Maize 1 0 0 0 ?

Fish 1 1 1 0 0

Dog 1 0 1 1 1

Bean 1 0 0 0 1

Fig. 5. Extension of the context on live beings with new attributes

Corollary 2. Let ∆ ⊆ PForm. The following conditions are equivalent:
(1) Every extension of objects of H can be expanded to the full attribute set,
consistently with ∆.
(2) {1 + π(F ) : F ∈ ∂{pk+1,...,pn}[∆]} ⊆ (aH) + I2

Assume now that it has previously certified that ∆ is expandable to objects
of H, and let L be a new implication. If ∆ ∪ {L} can be consistently extended
to H, but the user thinks that it is not true, in a first stage the user is required
to give a counterexample for L by completing the extention of some object of
H (in this way it bounds the set of new examples), or, if he/she does not know
which, a new example. Summarizing, the new step is shown in figure 4.

For example, suppose that we decide to add a new attribute, to live in land
(La). Some complete extensions are given (figure 5). We only know as back-
ground knowledge that aquatic live beings do not live in land, and we consider
the implication every live being with legs and mobility lives in land, that is

∆ = {A → ¬La, Le ∧Mo → La}

In this case, π[∆] = {1 + xAxLa, 1 + xLexMo + xLexMoxLa}.
The set H can not be consistently expanded to a model of ∆, because

∂{xLa}[π[∆]] = {1 + xA + xAxLexM , 1} and xA + xAxLexM /∈ (aH) + I2.

6.1 A final remark: defining the new attributes
We now see how to extend the above procedure for learning the new attribute.
We suppose we have a stem basis consistent with old information; and, in a
second stage, we wish to find a definition of the new attribute w.r.t the old ones

Extending Attribute Exploration by Means of Boolean Derivatives 129



(if the user thinks it is possible). The next theorem states a solution, which is
an adaptation of predicate completion procedure (sect. 6.2 in [5]). That is, we
are considering the stem basis is a complete knowledge base for the attribute.

Theorem 7. Let M0 as in section 6 with A0 = A \ {p}. Assume that L is a
stem basis, built by attribute exploration with expansion test. Let

Ω = {Y1 ⊆ A0 : there exists Y ⊆ A0 s.t. Y1 → Y ∪ {p} ∈ L}

If Mc is the expansion of M0 to A by defining the intent w.r.t. {p} by

p ∈ {o}′ ⇐⇒ vo(
∨

Y ∈Ω

∧
Y ) = 1

then L is a stem basis for Mc.

Since Mc |= p ↔
∨

Y ∈Ω

∧
Y , Mc is model of completion formula for p. Thus,

the intent of each object o is expanded to pn by the polynomial

vo(pn) := π(
∨

Y ∈Ω

∧
Y )(vo(p1), . . . , vo(pn−1))

7 An application: discovering tree notion in graph theory

We shall investigate the relationship among several properties on graphs (with
three or more nodes), comparing stem basis produced by classical attribute ex-
ploration with the result of the new methods. The properties are: acyclic, con-
nected, 2-connected (if one edge of the graph is removed, the induced subgraph
is connected), geodetic (for every two nodes there exists only one shortest path),
bipartite (it can be partionated the set of nodes in two sets such that every edge
joins a node of each set), nonseparable (connected and, if one removes a node,
the resulting graph remains connected), and planar.

We begun (classical) attribute exploration with the two first objects of figure
6 (left). For this we used ConExp, and the result is the formal context of fig. 6
(left. K5 is the complete graph with five nodes, and K33 is the complete bipartite
graph with two sets of tree nodes each one as partition). The stem basis is:{

L1 : t → a, b, c, g, p L2 : n → c, d L3 : g → c L4 : d → c
L5 : b, c, g, p → a, t L6 : b, c, d, g → n L7 : a → b, p L8 : a, c, b, p → g, t

One might apply completion procedure on tree, obtaining a (messy) definition,
(Bipartite ∧ Connected ∧ Geodetic ∧ Planar) ∨ (Acyclic ∧ Connected ∧ Bipar-
tite ∧ Planar)

Even it is not evident that the first conjuction defines a tree; it is necessary
to know the fact that every geodetic and bipartite graph is acyclic. For this
context, the ideal generated is

JM = (g + b + t + 1, c + d + t, a + d + 1, t2 + t, pt + t, nt, bt + t, dt, p2 + p, np +
n + p + 1, dp + d + p + 1, n2 + n, dn + n, b2 + b, db + d + b + 1, d2 + d).

The first interesting sensitivity analysis is on L5 (π(L5) = 1 + bcgp(1 + at)):

130 José Antonio Alonso-Jiménez, Gonzalo A. Aranda-Corral, Joaqúın Borrego-
Dı́az, M. Magdalena Fernández-Lebrón, M. José Hidalgo-Doblado



K

K
33

5

A
cy

cl
ic

 (
a)

C
on

ne
ct

ed
 (

c)

2−
co

nn
ec

te
d 

(d
)

B
ip

ar
tit

e 
(b

)

N
on

se
pa

ra
bl

e 
(n

)

P
la

na
r 

(p
)

T
re

e 
(t

)

G
eo

de
tic

 (
g)

ra
d.

−
m

in
im

al
 (

r)

000

0 0 0 0

0 0 0 0 0

0 0 0

0 0 0 0

0 0 0

0000

0

1 0 01 1 1 1 1

1 1 1 1 1

1 1 1 1

1 1 1

1 1 1 1 1

1 1

1 1 1 1

1111

1 1 1

1

0

0

0

0

0

0

0

Fig. 6. Formal context on graphs, and the extension obtained for radius-minimal

– ∂
∂bπ(L5) /∈ JM , thus is sensitive in b, hence preserve the implication.

– ∂
∂cπ(L5) ∈ JM , hence is not sensitive (in this case, we see that g → c holds
in graphs), hence we redefine L5 := b, g → a, t.

– ∂
∂g π(L5) /∈ JM , thus it is sensitive in g, so preserve g finishing the analysis.

Other cases (L6 and L8) are similarly treated. The resultant is

L =
{

t → a, c, g, b, p n → c, d g → c d → c
b, g → a, t, p a → b, p a, c → g, t d, t → n

The completion of tree from this basis is
Tree ↔ (Bipartite ∧ Geodetic) ∨ (Acyclic ∧ Connected)

It easy to see that the first conjunction is equivalent to the second one, the
original definition of tree.

Our next aim is to expand our set of attributes with a new one, radius-
minimal (denoted as variable by r). The distance of two nodes of a graph is
the length of a shortest path between them. The eccentricity of a node v is
the distance to a node farthest from v. The radius of a graph G, r(G), is the
minimum eccentricity of the nodes. Finally, a graph is called radius-minimal if
r(G − e) > r(G) for every edge in G. We used the method shown in section 6;
the objects of fig. 6 suffices for it.

The exploration starts with the first two objects of figure 6, knowing that
the first one is radius-minimal and the second one is not. Also we have the
background knowledge {¬c → ¬r}. The procedure gives the basis

L =

L1 : r → a, c, g, b, p, t L2 : t → a, c, g, b, p, r L3 : n → c, d
L4 : g → c L5 : d → c L6 : c, g, b → a, p, t, r
L7 : a → b, p L8 : a, c, b, p → g, t, r L9 : a, c, d, g, b, p, t, r → n

After testing sensitivity, three implications are refined, producing:

L6 : g, b → a, p, t, r L8 : a, c → g, t, r L9 : d, r → n

Extending Attribute Exploration by Means of Boolean Derivatives 131



and the rest remains. Thus completion for r is
Radius-minimal ↔ Tree ∨ (Geodetic ∧ Bipartite) ∨ (Acyclic ∧ Connected)
The last two conjunctions are equivalent to Tree, so we conclude that Radius-

minimal and Tree are equivalent. Actually, this result is proved in [6]. Thus we
take vo(r) := t to extend the attribute r for objects.

8 Conclusions and Future work

We present a framework for solving problems of FCA with the assistance of a
CAS. We are confident that the tools described here may be useful to facilitate
knowledge processing. As mentioned in previous sections, the complexity of some
subproblems involved in the improvements of attribute exploration may restrict
the method to projects of modest size, if a CAS as CoCoA is not used.

Throughout the paper we remarked some works related with the tools used
here. The future work is the extension to many-valued logics and their applica-
tions [9].

References

1. Amstrong, W. W.. Dependency structures of data base relationships. Proc. of IFIP
Congress, Geneva, 580-583 (1974).

2. Borrego-Dı́az, J., Fernández-Lebrón, M.: Theoretical foundations of a specialised
polynomial-based calculus for computing conservative retractions in propositional
logic, to appear (2008).

3. Ganter, B., Wille, R.: Formal Concepts Analysis. Mathematical Foundations
Springer, Berlin (1999).

4. Ganter, B., Attribute exploration with background knowledge. Theoretical Com-
puter Science 217 215–233 (1999).

5. Genesereth, M., Nilsson N., Logical Foundations of Artificial Intelligence. Morgan
Kaufmann, Los Altos (1987).

6. Gliviak, F.: On radially critical graphs in Recents Advances in Graph Theory, Proc.
Sympos. Academia Praha, 207–221 (1975),

7. Guigues, J.-L., Duquenne, V.: Familles minimales d’ implications informatives re-
sultant d’un tableau de donnees binaires. Math. Sci. Humaines 95, 5–18 (1986).

8. Kapur, D., Narendran, P., An equational approach to theorem proving in first-order
predicate calculus, Proc. 9 Int. Joint Conf. on Artificial Intelligence (IJCAI’85),
1146-1153.

9. Laita, L. M., Roanes-Lozano, E., de Ledesma, L., Alonso-Jiménez, J. A.: A com-
puter algebra approach to verification and deduction in many-valued knowledge
systems. Soft Computing 3, 7–19 (1999).

10. Taouil, R., Bastide, Y.. Computing Proper Implications. Proc. of Workshop on
Concept Lattices-based Theory, Methods and Tools for Knowledge Discovery in
Databases (E. Mephu et al. eds.), 49-61 (2001).

132 José Antonio Alonso-Jiménez, Gonzalo A. Aranda-Corral, Joaqúın Borrego-
Dı́az, M. Magdalena Fernández-Lebrón, M. José Hidalgo-Doblado



FCA Software Interoperability

Uta Priss

Napier University, School of Computing,
u.priss@napier.ac.uk
www.upriss.org.uk

Abstract. This paper discusses FCA software interoperability from a variety of
angles: because the central FCA structures, formal contexts and concept lattices,
can be represented in non-FCA software, interoperability with such software is of
relevance. The non-FCA software in question is spreadsheet, relational database,
graph and vector graphics software. The simplest approach to interoperability
consists of providing file format conversion tools, such as FcaStone, which is
therefore also discussed in this paper. Interoperability can be hindered by social
factors, i.e. if the FCA researchers do not want to use non-FCA software. This
issue is investigated with respect to software-derived graph layouts of lattice di-
agrams. An experiment that compares different software-derived lattice diagram
layouts is conducted and leads to a surprising result.

1 Introduction

There appears to be some controversy among Formal Concept Analysis (FCA) re-
searchers in how far FCA software should interoperate with other software. Some re-
searchers complain about the lack of interoperability among FCA tools and the lack
of connections between FCA and non-FCA applications. For example, formal contexts
might be presentable in spreadsheet and relational database software whereas lattice
diagrams might be edited in graph and vector graphics software. Other researchers ex-
press the view that the quality of FCA will be diminished if non-FCA approaches are
applied, for example, with respect to non-FCA graph layout algorithms. This paper dis-
cusses different aspects of FCA interoperability and in particular investigates the use
of non-FCA algorithms for graph layouts. A small experiment is conducted by deriving
layouts of five well-known examples of formal contexts using FCA and non-FCA graph
software. The experiment has a surprising result.

Section 2 of this paper provides a brief overview of the interoperability discussions
in the FCA community. Section 3 discusses the relationship between some FCA and
non-FCA tools. Section 4 describes the FCA file format conversion software FcaStone.
Section 5 compares graph layouts derived with different FCA tools.

2 The FCA interoperability discussion

This section provides a brief overview of the discussion of interoperability in the FCA
community and in the slightly broader conceptual structures (CS) community. In past

c© Radim Belohlavek, Sergei O. Kuznetsov (Eds.): CLA 2008, pp. 133–144,
ISBN 978–80–244–2111–7, Palacký University, Olomouc, 2008.



years, several ICCS authors expressed disappointment with the lack of progress in CS
research with respect to applications and software (Chein & Genest (2000) and Keeler
& Pfeiffer (2006)). Members of the ICCS community tend to agree that CS ideas are in
principle extremely relevant to modern information representation tasks and, for exam-
ple, the Semantic Web, but for some reason CS research has not been able to influence
mainstream research communities (Rudolph, Krötzsch & Hitzler, 2007). In particular
the software that is currently available for conceptual graphs (CG) and FCA does not
reach the full potential of CS research and is not yet of commercial quality. Several
suggestions have been made by the CS community to improve the situation. Keeler &
Pfeiffer (2006) suggest to employ a pragmatic methodology for tool development using
a “game” metaphor. Rudolph et al. (2007) suggest to establish connections with larger
existing related communities (for instance, the Semantic Web community). Others have
organised CS tool interoperability workshops1 and challenges2.

Dobrev (2006) presents an overview of interoperability issues of CG tools. He ar-
gues that although limited data exchange between CG tools is possible at the syntactic
level using the standard exchange format, exchange at a semantic level, which incor-
porates contextual and background knowledge is not yet possible. In contrast to the
CG community which has an ISO approved standard for Common Logic3, there is no
similar standard for FCA. The rest of this paper is only concerned with FCA software,
not with the broader field of CS software. Tilley (2004) provides an overview of FCA
software as described in FCA research papers. Interoperability between FCA software
is low. Each software has different storage formats and different input/output options,
which are not necessarily compatible with other software. Most of the FCA software
appears to be at a somewhat “prototypical” stage and not of the same quality as com-
mercial software. Although there is an overlap of features between different FCA soft-
ware tools, certain features are only available in certain software. Thus in order to use
all features that are currently implemented, a user would need to download and install
several different tools and then try to figure out how to export data from one tool so
that it can be incorporated into other tools, which is not always possible. In theory, it
should be easy to convert between the different XML formats, but in practice, all of
the current FCA XML formats have a completely different semantics. Because of the
lack of interoperability among the tools, new developments, such as newly discovered
faster algorithms, have to be implemented separately by the developers of each tool.
There is no plug-in architecture that would allow algorithms to be easily incorporated
into different tools.

3 Interoperability with non-FCA software

This section argues that FCA software shares a number of features with non-FCA soft-
ware. More specifically, software for representing and operating on formal contexts
shares features with database and spreadsheet software. Software for displaying and

1 http://www.kde.cs.uni-kassel.de/ws/cs-tiw2008
2 https://skyhawk.cs.uah.edu/concept/index.php/ICCS_Challenge
3 http://cl.tamu.edu/

134 Uta Priss



editing concept lattices shares features with vector graphics and graph drawing soft-
ware. The difference between graph drawing and vector graphics software is that vector
graphics is more general. Graphs consist of nodes and edges. Graph editors normally
provide graph layout algorithms. The connection between a node and its edges is usually
fixed, so that clicking on a node and moving it around will move the connected edges
with that node. Vector graphics editors, on the other hand, can be used for any sort
of graphics (not just nodes and edges). Although vector graphics editors usually have
some grouping mechanism that allows to create complex objects which can be moved
around and edited as a whole, it is not always possible to connect edges to nodes in such
a manner. While vector graphics editors can represent graphs and provide many editing
features, they often do not provide the specific editing features that more specialised
graph editors have. Both graph and vector graphics software is of interest to FCA, but
because of the differences between them, not all FCA features can be represented with
such software.

It should be noted that the discussion in this section focuses on software, not math-
ematical modelling. Thus some of the mathematical aspects, such as the difference be-
tween abstract lattices, Hasse diagrams and general graphs are ignored if they are not
immediately relevant for what is implemented in software tools. Furthermore, the list
of FCA features that is discussed is not complete and depends on the current state of
the art of FCA research and software technology.

Fig. 1 lists FCA features which are currently provided by FCA software. The context-
related features are grouped into features that are shared with spreadsheet and database
software. Spreadsheet software allows to create cross tables in which data can be en-
tered, rows can be permuted and display parameters (font, colour, etc) can be changed.
Relational database software also allows to store and edit objects, attributes and their
relationships (crosses). But tables in relational databases need not be binary relations;
databases are more akin to power context families. Before lattices can be drawn, users
need to build binary contexts from the data in the database. FCA software should in-
teroperate with spreadsheet and database software. Of course, not all context features
are provided by spreadsheets and databases. Thus, although data can be imported from
spreadsheets and databases, such software is not suitable as a sole interface for formal
contexts.

With respect to displaying concept lattices, both vector graphics software and graph
editing software have many features that are commonly used to modify lattice diagrams.
Several FCA tools allow for lattice diagrams to be exported in SVG (scalable vector
graphics) format. If minor edits are required that are not supported by the FCA software,
it is possible to create a lattice using the FCA software and then to export the diagram
and use a vector graphics program for further editing. For example, the graph layout
algorithms, the manner in which the objects and attributes are displayed and so on
could be implemented as options that the user chooses when exporting a diagram. Graph
editing software has two important features that are not necessarily available in vector
graphics software: the availability of graph layout algorithms and the feature of clicking
on a node to move it in a manner that the attached edges stay attached. Modern vector
graphics editors, such as Inkscape4 and Dia support this to some degree. But because

4 The URLs for all tools mentioned in this paper can be found on the last page of this paper.

FCA Software Interoperability 135



there is no universally accepted graph representation format and Inkscape and Dia have
their own formats, it is difficult for FCA software to export the lattice diagrams in
formats that preserve sufficient information and can be read by graphics software. Older
vector graphics editors (such as xfig) tend not to have graph functionality and are thus
not as suitable for lattice editing.

reduce

other FCA features:
attribute exploration
calculate implication basis
association rules

spreadsheet:
add/delete object/attribute
add/delete cross
permute rows
change fonts, colours, etc
many−valued attributes

Context related:

move node
vector graphics:

Lattice related:

move label
edit label
change fonts, colours, etc
zoom
align to grid (?)

graph drawing software:
move node with edges attached
choose graph layout algorithm

FCA features (could be part of export):
choose node size calculation
transpose (dual lattice)
change labeling (count, list, percentage, etc)
clarify
reduce

FCA only, interactive features:
add/delete object/attribute
choose node movement algorithm
nested line diagram exploration

relational database:
add/delete object/attribute/cross
create contexts, subcontexts
power context families

show arrow relations
transpose (dual context)

FCA only features:

permute columns
clarify

Fig. 1. Tasks for FCA software

Although vector graphics and graph editors provide means for adding and deleting,
such features may not be consistent with the FCA features for adding or deleting ob-
jects, attributes and concepts. It can be a danger that inexperienced users might modify
a diagram using the editor’s add/delete features in such a manner that the diagram is no
longer a lattice. Experienced FCA users might miss the ability to choose “node move-
ment algorithms”, i.e. the ability to move a whole filter or ideal in a lattice by dragging
a node. It seems unlikely that current vector graphics and graph editors have such func-
tionality. But this would be an opportunity for FCA developers to communicate with
graphics editor developers. Maybe it would be possible to add such functionality to
the editors. The Dia software, for example, supports different application modes (e.g.
ER diagrams, flow charts). Maybe it would be possible to add an FCA mode to that
program. Maybe the developers in the vector graphics communities would also be in-
terested in layout algorithms that have been developed by FCA researchers. This might
be a good opportunity for collaboration.

Complex FCA features, such as the exploration of nested line diagrams will maybe
never be supported by traditional vector graphics editors. But Priss (2008a) discusses

136 Uta Priss



nested line diagrams as a means of “faceting”, as used in library and information sci-
ence. Several software tools for manipulating facets exists. Thus there could be some
overlap in technology between software for faceted classification and FCA software.
Other FCA features, such as association rules and implications are shared with data
mining approaches. There could be opportunities for interoperability for FCA software
in that area as well.

The simplest means of interoperability for FCA software with non-FCA software is
to allow the import and export in compatible formats. With respect to spreadsheets and
databases, FCA software should support comma-separated value files and with respect
to vector graphics, the SVG format should be supported as an export option. It would
be convenient to also allow input from graphics formats, but that is a difficult challenge
because a lattice graph can be encoded in many different ways.

The question of whether non-FCA graph layout algorithms are useful for FCA soft-
ware will be discussed in more detail further below. One obvious advantage for using
external graph layout algorithms is that it eases the burden on the FCA programmers.
The first popular non-FCA graph layout program that was used by FCA software was
probably Graphplace (Eijndhoven, 1994), which converts a binary relation into a coor-
dinate representation in a postscript format. A more modern program which implements
many different graph layout algorithms and all kinds of features is Graphviz. The “di-
rected graph” option in Graphviz provides layouts for lattices in a top-down manner.
Graphviz also converts into many other graph, raster and vector graphics formats. Thus
if FCA software exports lattices in a Graphviz format, then all these other formats are
automatically accessible as well. The FCA tools Colibri and FcaStone make use of
Graphviz.

4 FCAStone: FCA file format conversion software

A simple approach for allowing FCA software to interoperate with non-FCA software
is by providing means for converting between the file formats of the different tools.
FcaStone (named in analogy to “Rosetta Stone”) is a command-line utility that converts
between the file formats of commonly-used FCA tools (such as ToscanaJ, ConExp,
Galicia, Colibri5) and between FCA formats and other graph and vector graphics for-
mats. The main purpose of FcaStone is to improve the interoperability between FCA,
graph editing and vector graphics software. Because it is a command-line tool, FcaStone
can easily be incorporated into server-side web applications, which generate concept
lattices on demand. FcaStone is open-source software and available for download from
Sourceforge. FcaStone is written in an interpreted language (Perl) and thus platform-
independent. FcaStone does not intend to compete with or replace the Java-based tools
(ToscanaJ, ConExp, Galicia, etc) but instead to provide a different type of functionality,
which is aimed more at server-side applications and conversion. FcaStone does not have
a graphical user interface (GUI).

The emphasis of FcaStone is on converting file formats, but FcaStone can also con-
vert formal contexts into lattices. It uses the Graphviz software to calculate the graph

5 The URLs for all tools mentioned in this paper are listed at the end of the paper.

FCA Software Interoperability 137



layouts. Graphviz is open-source graph visualisation software, which contains several
graph layout algorithms. In this respect, FcaStone is similar to the Colibri software,
which also relies on Graphviz for lattice layouts. Because Graphviz provides a large
number of file conversion options, FcaStone only needs to produce a single format
(called “dot format”) which can then be further converted by Graphviz into a large
number of other formats.

It is somewhat difficult to produce concept lattice diagrams in a graph format, be-
cause the dual labelling of nodes with objects and attributes is not easily supported in
non-FCA graph formats. Priss (2008b) discusses how lattices can be represented us-
ing Graphviz’s format. Another problem is that Graphviz’s layout of lattices produces
curved lines, which is not usually accepted in the FCA community. Thus, some FCA
researchers may not approve of using FcaStone and Graphviz to produce lattice dia-
grams. We argue that FcaStone’s diagrams are produced without manual editing. There
are applications where manual editing of lattices is not feasible, for example, if the
lattice diagrams are produced on-line as a response to user queries. An advantage of
Graphviz’s layouts is that they can be generated in an overlapping-free manner. Out of
the three open-source FCA tools, ToscanaJ, ConExp, and Galicia, only Galicia produces
lattices which are overlapping-free (see the next section). If it was possible to export the
lattice layouts from Galicia, FcaStone could use such layouts instead of Graphviz lay-
outs. But as far as we know the graph coordinates cannot be exported in Galicia. More
details about FcaStone and the formats it supports can be found in Priss (2008b).

5 Graph layout for lattices

The previous sections have highlighted different aspects of FCA interoperability with
non-FCA software. This section concentrates on comparing graph layouts produced by
different tools. Five of Rudolf Wille’s (the founder of FCA) well known examples of
formal contexts have been selected. The five examples are fairly randomly chosen from
an overview lecture given by Wille at the 2007 KPP conference6. The first example,
“digits” was originally published in Stahl & Wille (1986). The “bodies of water” and
the “live in water” examples were published in Wille (1984) and the “tea ladies” and
the “lattice properties” examples were published in Wille (1992). The background of
these lattices shall not be discussed in this paper because we are only interested in the
representation of the line diagrams of these lattices. All five examples have reasonably
complex line diagrams.

It is not the aim of the experiment conducted here to rank FCA software with respect
to the “quality” of their diagrams. All FCA tools that were used here have different
purposes. For example, the diagrams produced by Siena (part of the ToscanaJ suite) are
intended for manual editing. Siena’s initial layout contains many overlapping nodes.
But because the initial layout contains many parallel edges, it only requires a few nodes
to be moved manually in order to obtain a diagram that preserves the parallel edges.
In general, there is some disagreement among researchers as to what diagrams should
look like, whether they should have parallel edges, symmetries or whether the nodes

6 http://www.fbi.h-da.de/kpp2007.html

138 Uta Priss



should be arranged on levels. This paper does not intend to provide any judgement on
these issues.

This paper is only interested in what we call “graphical similarity” of line diagrams.
First, we define the “position” of a node in a line diagram as follows: if the nodes are
arranged in levels starting from the top, then the position of a node refers to the level
it is on and the distance it has from the side. Position “0,0” is the top node. Position
“1,0” refers to the nodes that are the furthest to the left and right among all neighbours
of the top node, and so on. This could either be one node, if the top has only one lower
neighbour, or two nodes. Two line diagrams A and B are called “graphically similar”
if a) they contain the same number of edge crossings and b) a node that is in the same
“position” in A and B has the same number of upper and lower neighbours in A as in
B.

Wille uses a particular method for drawing line diagrams, called the “geometric
method” (Ganter & Wille, 1999). This paper intends to test whether any of the default
lattices produced by commonly used FCA tools produce lattices that are similar to the
lattice layouts that Wille derived with his geometric method. Again, it should be stressed
that this is not intended as a value judgement with respect to the quality of these dia-
grams. But since some users may want to produce layouts that are similar to Wille’s it
would be useful if software existed that produced such layouts on demand.

We conducted the following experiment. We derived the default layouts of the five
formal contexts in ConExp, Galicia, Siena (part of ToscanaJ) and using the Graphviz
layout of FcaStone. The three FCA tools were chosen because they are open-source
and freely available. Furthermore, we manually reproduced Wille’s layouts. For the
automatically derived layouts, we allowed ourselves only to change font sizes and node
sizes. None of the nodes were moved. The production of the pictures was helped by the
FcaStone software because with this software it took only seconds to convert the formal
contexts into formats that can be read by the different tools. We apologise that the fonts
in the pictures are too small to read. Only the layouts matter for this paper. We have
provided a website7 where researchers can find larger scale pictures and the contexts in
“cxt” format so that this experiment can be reproduced and be extended to other FCA
tools.

Fig. 2. The “digits” example: ConExp, Galicia, Siena

7 http://www.upriss.org.uk/fca/examples.html

FCA Software Interoperability 139



Fig. 3. The “digits” example: Wille’s layout, Graphviz

In our opinion, the result is surprising. The layouts that are produced by Graphviz
are from an FCA view very unconventional because the edges are not parallel and in
many cases even curved. Nevertheless, across all five examples, using our definition of
“graphical similarity”, the lattices produced by Graphviz are similar to Wille’s layouts.
It seems to us that if an algorithm was found that started with the Graphviz layouts
and then straightened the edges and looked for parallel edges, it might be possible
to automatically produce Wille-style layouts. In our opinion, this little experiment is
an argument for increased interoperability between FCA and non-FCA tools. Even if
non-FCA tools produce something that initially does not look appropriate (such as the
curved edges in the Graphviz diagrams), it may ultimately have a functionality that
is useful for FCA purposes. Only if FCA tools interoperate with non-FCA tools, it is
possible to explore such features.

In the “digits” example, Graphviz’s and Wille’s layout are graphically similar be-
cause they are almost mirror images of each other. In ConExp and Galicia, the nodes
are more permuted and not in the same positions. In all examples, Siena is difficult to
see because of the strong degree in overlap. In the “bodies of water” example, Con-
Exp’s, Wille’s and Graphviz’s layouts are similar and are different from Galicia and
Siena. In the “lattice properties” example, both Wille’s and Graphviz’s layout have 7
edge crossings, ConExp has 6, Galicia has more. In the “live in water” example, Wille’s,
Graphviz’s and ConExp’s layouts differ by a few switched nodes and by one edge cross-
ing. Galicia is very different and has more edge crossings. In the “tea ladies” example,
the nodes neighbouring the top node are roughly (but not exactly) in the same positions
in Graphviz’s and Wille’s layouts, but not in ConExp and Galicia.

6 Conclusion

This paper analyses FCA software interoperability from a variety of angles. It is argued
that interoperability with non-FCA software can be challenging because non-FCA ap-
plications have entirely different aims and purposes. But there can be benefits. For ex-
ample, it appears that the graph layouts provided by a non-FCA tool are in some sense

140 Uta Priss



Fig. 4. The “bodies of water” example: ConExp, Galicia, Siena

Fig. 5. The “bodies of water” example: Wille’s layout, Graphviz

Fig. 6. The “lattice properties” example: ConExp, Galicia, Siena

FCA Software Interoperability 141



Fig. 7. The “lattice properties” example: Wille’s layout, Graphviz

Fig. 8. The “live in water” example: ConExp, Galicia, Siena

142 Uta Priss



Fig. 9. The “live in water” example: Wille’s layout, Graphviz

Fig. 10. The “tea ladies” example: ConExp, Galicia, Siena

Fig. 11. The “tea ladies” example: Wille’s layout, Graphviz

FCA Software Interoperability 143



similar to manually derived layouts from researchers in the FCA community. Thus com-
bining FCA software with non-FCA software can provide new insights and inspirations.

URLs for the Tools mentioned in this paper

1. Colibri: http://www.st.cs.uni-sb.de/˜lindig/#colibri
2. ConExp: http://sourceforge.net/projects/conexp
3. Dia: http://live.gnome.org/Dia
4. FcaStone: http://fcastone.sourceforge.net
5. fca.sty: http://www.math.tu-dresden.de/ganter/fca
6. Galicia: http://www.iro.umontreal.ca/˜galicia
7. Graphviz: http://www.graphviz.org
8. Inkscape: http://www.inkscape.org
9. ToscanaJ: http://toscanaj.sourceforge.net

10. Tockit (related to ToscanaJ): http://tockit.sourceforge.net
11. Xfig: http://www.xfig.org

References
1. Chein, M.; Genest, D. (2000). CGs Applications: Where Are We 7 Years After the First ICCS?

In: Ganter; Mineau (eds.): Lecture Notes in Artificial Intelligence 1876, Springer, p. 127-139.
2. Dobrev, P. (2006). CG Tools Interoperability and the Semantic Web Challenges. Contributions

to ICCS 2006, 14th International Conference on Conceptual Structures, Aalborg University
Press.

3. Eijndhoven, Jos van (1994). Graphplace - a graph layouter. Software, Eindhoven University
of Technology, The Netherlands. Available via anonymous ftp from several sites.

4. Ganter, Bernhard; Wille, Rudolf (1999). Formal Concept Analysis. Mathematical Founda-
tions. Springer Verlag.

5. Keeler, M.; Pfeiffer, H. (2006). Building a Pragmatic Methodology for KR Tool Research
and Development. In: Schaerfe, Hitzler, Ohrstrom (eds.), Conceptual Structures: Inspiration
and Application, Proceedings of the 14th International Conference on Conceptual Structures,
ICCS’06, Springer Verlag, LNAI 4068, p. 314-330.

6. Priss, Uta (2008a). Facet-like Structures in Computer Science. Axiomathes, Vol 14, Springer-
Verlag.

7. Priss, Uta (2008b). FcaStone - FCA file format conversion and interoperability software. Con-
ceptual Structures Tool Interoperability Workshop (CS-TIW).

8. Rudolph, S.; Krötzsch, M.; Hitzler, P. (2007) Quo Vadis, CS? On the (non)-impact of Concep-
tual Structures on the Semantic Web. In: Priss, Polovina, Hill (eds.), Proceedings of the 15th
International Conference on Conceptual Structures, ICCS’07, Springer Verlag, LNAI 4604, p.
464-467.

9. Stahl, J.; Wille, R. (1986). Preconcepts and set representation of contexts. In: Gaul & Schader
(eds): Classification as a tool of research.

10. Tilley, Thomas (2004). Tool Support for FCA. In: Eklund (ed.), Concept Lattices: Second
International Conference on Formal Concept Analysis, Springer Verlag, LNCS 2961, p. 104-
111.

11. Wille, Rudolf (1984). Liniendiagramme hierarchischer Begriffssysteme. Studien zur Klassi-
fikation. Indeks Verlag.

12. Wille, Rudolf (1992). Concept Lattices and Conceptual Knowledge Systems. Computers
Math. Applic., 23, 6-9, p 493-515.

144 Uta Priss



GARM: Generalized Association Rule Mining

T. Hamrouni1,2, S. Ben Yahia1 and E. Mephu Nguifo2

1 Department of Computer Science, Faculty of Sciences of Tunis, Tunis, Tunisia.
{tarek.hamrouni, sadok.benyahia}@fst.rnu.tn

2 CRIL-CNRS, IUT de Lens, Lens, France.
{hamrouni, mephu}@cril.univ-artois.fr

Abstract. A thorough scrutiny of the literature dedicated to association rule min-
ing highlights that a determined effort focused so far on mining the co-occurrence
relations between items, i.e., conjunctive patterns. In this respect, disjunctive pat-
terns presenting knowledge about complementary occurring items were neglected
in the literature. Nevertheless, recently a growing number of works is shedding
light on their importance for the sake of providing a richer knowledge for users.
For this purpose, we propose in this paper a new tool, called GARM, aiming at
building a partially ordered structure amongst some particular disjunctive pat-
terns, namely the disjunctive closed ones. Starting from this structure, deriv-
ing generalized association rules, i.e., those offering conjunctive, disjunctive and
negative connectors between items, becomes straightforward. Our experimental
study put the focus on the mining performances as well as the quantitative aspect
and proved the utility of the proposed approach.
Keywords: Data mining, disjunctive closed pattern, frequent essential pattern,
disjunctive support, equivalence class, partially ordered structure, generalized as-
sociation rules.

1 Introduction and Motivations

Association rule mining is a fundamental topic in Data mining [1]. It has been exten-
sively investigated since its inception. Its key idea consists in looking for causal rela-
tionships between sets of items, commonly called itemsets, where the presence of some
items suggests that others follow from them. A typical example of a successful appli-
cation of association rules is the market basket analysis, where the discovered rules can
lead to important marketing and management strategic decisions. Recently, mining as-
sociation rules was extended to various pattern classes like sequential patterns, graphs,
etc. Nevertheless, the main moan that can be addressed to the contributions related to
association rules is their focus on co-occurrences between items [2], probably as a her-
itage of the market basket analysis framework. Indeed, almost all related works neglect
the other kinds of relations, like mutually exclusive occurrences [3], that can also bring
information of worth interest for users.

In this paper, we propose a new tool, called GARM 1, covering the whole process
allowing the extraction of generalized association rules. These latter generalize classical
rules – positive rules – to offer disjunctive and negative connectors between items,

1 GARM is the acronym of generalized association rule miner.

c© Radim Belohlavek, Sergei O. Kuznetsov (Eds.): CLA 2008, pp. 145–156,
ISBN 978–80–244–2111–7, Palacký University, Olomouc, 2008.



in addition to the conjunctive one [4]. Our tool includes a first component making it
possible extracting a concise representation of frequent patterns based on disjunctive
patterns. Thanks to a second component, these latter will be partially structured w.r.t. set
inclusion. Once the partially ordered structure obtained, generalized association rules
can be easily derived thanks to the last component of our tool.

Noteworthily, extracting an exact concise representation of frequent patterns in the
first component of the process makes it possible to exactly derive the different supports
of each frequent pattern. This will make us able to compute the exact values of qual-
ity measures. Indeed, it was shown in [5] that almost all interestingness measures for
association rules are expressed depending on the support of the rule and those of its
associated premise and conclusion. In addition, using disjunctive patterns – in particu-
lar closed and essential patterns [6] – will provide an interesting starting point towards
mining association rules conveying complementary occurrences between items, rather
than co-occurrences. Indeed, these latter relationships – co-occurrences within literals 2

– were explored in-depth in the literature through association rules having conjunction
of literals, called literalsets, in premise and conclusion. This leads to what is commonly
known as positive and negative association rules. While disjunctive association rules
only have recently begin to grasp the interest of researchers.

In general, generalized association rules are useful in many applications. In partic-
ular, disjunctive association rules – having disjunction of items either in premise or in
conclusion – were considered for two main purposes: On the one hand, they were used
as an intermediate step for defining some concise representations for frequent patterns
[1]. On the other hand, they were exploited to provide users with new forms of asso-
ciation rules [7, 8]. For example, the added-value of such association rules has been
recently highlighted in [2]. It is however important to note that generalized association
rules can be considered as particular GUHA rules [9].

Note that we restrict ourselves in this work to disjunctive closed patterns whose
smallest seeds, i.e. essential patterns, are frequent with respect to a minimum conjunc-
tive support threshold. This is argued by the fact that we aim at retaining the spirit of
association rule mining where this threshold, as well as the confidence-based one, is
used to dramatically limit the number of extracted association rules. In addition, the use
of a partially ordered structure will make it possible to select representative subsets of
rules to be extracted. This nucleus of rules will be of paramount help for avoiding to
overwhelm users by highly-sized rule lists.

The remainder of the paper is organized as follows. The next section discusses the
related work. Section 3 recalls the key notions used throughout this paper. The struc-
tural properties of the disjunctive search space are explored in Section 4, followed by a
detailed description of the GARM tool having for purpose to offer a complete process
for the extraction of generalized association rules in Section 5. Experimental results fo-
cusing on the mining time as well as the quantitative aspect are reported and discussed
in Section 6. Section 7 concludes the paper and points out future works.

2 A literal is an item or the negation of an item.

146 Tarek Hamrouni, Sadok Ben Yahia, Engelbert Mephu Nguifo



2 Related Work

Contributions related to association rule mining mainly concentrated on the classical
rule form, namely that presenting conjunction of items in both premise and conclusion
parts. In this respect, many concise representations for such rules were proposed in the
literature [10]. Recently, some works focused on introducing negative items. Never-
theless, the majority of items are not present in each transaction leading to explosive
amounts of association rules with negation. Thus, existing approaches have tried to
address this problem through the use of additional background information about the
data, incorporating attribute correlations, and additional rule interestingness measures,
etc. Here we will mainly detail the reduced number of related works on association
rules relying on the disjunctive connector within items.

Some works [7, 8] were interested in using the disjunction connector within the
association rule mining issue to define what is called generalized association rules.
These rules grasped the interest of many researchers since they offer wealthier types of
knowledge in many applications. In addition to the inclusive disjunction operator, i.e.,
the operator ∨, Nanavati et al. in [8] were also interested in the exclusive disjunction
operator, denoted ⊕. The authors hence proposed two kinds of rules which are the
simple disjunctive rules and the generalized disjunctive ones. Simple disjunctive rules
are those having either the premise or the conclusion (i.e., not simultaneously both)
composed by a disjunction of items. This disjunction can be inclusive (the simultaneous
occurrence of items is possible) or exclusive (two distinct items cannot occur together).
On the other hand, generalized disjunctive rules are disjunctive rules whose premises
or conclusions contain a conjunction of disjunctions. These disjunctions can either be
inclusive or exclusive. In [7], the author mainly focuses on getting out association rules
having conclusions containing mutually exclusive items, i.e., the presence of one of
them leads to the absence of the others, what is expressed in [8] using the operator ⊕.
Other forms of generalized association rules were also described in [11]. In [12], Shima
et al. extract what they called disjunctive closed rules. In their work, a disjunctive closed
rule simply stands for a clause under the disjunctive normal form (DNF) such that its
disjuncts are constituted by frequent closed patterns. Elble et al. used disjunctive rules
to handle numerical attributes by considering disjunctions between intervals [13]. This
latter work extends other ones taking also into account categorical attributes (see [13]
for references). Finally, it is worth noting that the disjunction connector has also been
used to define some concise representations of frequent patterns through the so-called
disjunctive rule (see for example [1] for references).

3 Basic Concepts

In this section, we briefly sketch the key notions that will be of use throughout the paper.

Definition 1. An extraction context is a triplet K = (O, I,R) where O and I are,
respectively, a finite set of objects (or transactions) and items (or attributes), andR ⊆
O × I is a binary relation between the objects and items. A couple (o, i) ∈ R denotes
that the object o ∈ O contains the item i ∈ I.

GARM: Generalized Association Rule Mining 147



Example 1. We will consider in the remainder a context that consists of transactions
(1, AB ), (2, ACD ), (3, CDE ), (4, DEF ), (5, ABCDE ), and (6, ABC ) 3.

Definition 2. (SUPPORTS OF A PATTERN) Let K = (O, I,R) be a context and I be a
pattern. We mainly distinguish three kinds of supports related to I:

Supp( ∧ I ) = | {o ∈ O | (∀ i ∈ I, (o, i) ∈ R)} |
Supp( ∨ I ) = | {o ∈ O | (∃ i ∈ I, (o, i) ∈ R)} |

Supp(I ) = | {o ∈ O | (∀ i ∈ I, (o, i) /∈ R)} |

Roughly speaking, the semantics of the aforementioned supports is as follows:
• Supp(∧ I ) is the number of objects containing all items of I .
• Supp(∨ I ) is the number of objects containing at least one item of I .
• Supp(I ) is the number of objects that do not contain any item of I .
Note also that Supp(∨ I ) and Supp(I ) are two complementary quantities w.r.t. |O| in
the sense that: Supp(∨ I ) + Supp(I ) = |O|.
Example 2. Consider our running context. We have Supp(∧ CDE) = | {3, 5} | = 2,
Supp(∨ CDE) = | {2, 3, 4, 5, 6} | = 5 and Supp(CDE) = | {1} | = 1.

Hereafter, Supp(∧ I ) will simply be denoted Supp(I ). In addition, if there is no risk of
confusion, the conjunctive support will simply be called support. A pattern I is said to
be frequent if Supp(I ) is greater than or equal to a minimum support threshold, denoted
minsupp. Since the set of frequent patterns is an order ideal, the set of items I will be
considered as only containing frequent items. Lemma 1 states that conjunctive supports
can be derived starting from disjunctive ones.

Lemma 1. [14] Let I ⊆ I. The following equalities hold:

Supp(I ) =
∑
∅⊂I′⊆I

( − 1)|I
′|−1Supp( ∨ I ′)

4 Structural Properties of the Disjunctive Search Space

In this section, we will characterize disjunctive patterns through the associated equiva-
lence classes induced by the following closure operator:

Definition 3. Let K = (O, I, R) be an extraction context. The disjunctive closure op-
erator h is defined as follows [6]:
h : P(I) → P(I)

I 7→ h(I ) = {i ∈ I | (∀ o ∈ O) ((o, i) ∈ R) ⇒ (∃ i1 ∈ I )((o, i1) ∈ R)}.

The disjunctive closure h(I ) of a pattern I is equal to the maximal set of items which
only appear in the transactions that contain at least an item of I . The closure operator h
induces an equivalence relation on the power-set of I, which partitions it into so-called
disjunctive equivalence classes. In each class, all the elements have the same disjunc-
tive support. The smallest incomparable elements, w.r.t. set inclusion, of a disjunctive
equivalence class are called essential patterns, while the disjunctive closed pattern is the
largest one [6]. These particular patterns are defined as follows.

3 We use a separator-free form for the sets, e.g., ABC stands for the set of items {A, B, C}.

148 Tarek Hamrouni, Sadok Ben Yahia, Engelbert Mephu Nguifo



Definition 4.
• A pattern I ⊆ I is a disjunctive closed pattern if I = h(I ) or, equivalently, Supp(∨I )
< min{Supp(∨I ′) | I ′ ⊆ I s.t. I ⊂ I ′}.
• A pattern I ⊆ I is an essential pattern if ∀ I ′ ⊂ I , I * h(I ′) or, equivalently, Supp(∨
I ) > max{Supp(∨I ′) | I ′ ⊆ I s.t. I ′ ⊂ I}.

Example 3. Consider our running context. The pattern CDEF is disjunctively closed,
while BE is not, since Supp(∨ BE ) = Supp(∨ BEF ). On the other hand, the pattern AC
is essential, while DE is not, since Supp(∨ DE ) = Supp(∨ D ).

In the remainder, FEPK 4 denotes the set of frequent essential patterns associated
to a given contextK and a fixed minsupp value. The associated set of disjunctive closure
will further be denoted EDCPK 5. This latter set is hence equal to {h(I ) | I ∈ FEPK}.

To establish the link with conjunctive equivalence class – gathering patterns having
the same Galois closure [15] – we notice that essential patterns (resp. disjunctive closed
patterns) are equivalent to minimal generators aka free-sets (resp. closed patterns) (see
[1] for references). These latter patterns were at the basis of the main concise repre-
sentations of association rules that were proposed in the literature [10]. This clearly
motivates the use of their correspondences within the disjunctive search space.

5 Detailed Description of the GARM Tool

As mentioned in the first section, the GARM tool is composed of three complemen-
tary components which are as follows: (i) Extracting an exact concise representation
of frequent patterns based on disjunctive closed patterns and frequent essential ones.
(ii) Building a partially ordered structure w.r.t. set inclusion within disjunctive closed
patterns. Each one of these latter will be accompanied by its set of frequent essential
patterns. (iii) Deriving generalized association rules from the built structure.

5.1 Extracting a New Concise Representation based on Disjunctive Patterns

Our representation is based on the sets FEPK and EDCPK, as stated by Theorem 1.

Theorem 1. The set EDCPK ∪ FEPK is an exact concise representation of the set of
frequent patterns FPK [16].

Example 4. Figure 1 (Left) lists the set of disjunctive closed patterns associated to
the running context. For each closed pattern, its associated disjunctive support and
frequent essential patterns, for minsupp = 1, are also given.

This representation will be denoted DSSRK 6. It is extracted thanks to an adapta-
tion of our DCPR MINER 7 algorithm [17], what constitutes the first component of the

4 Stands for frequent essential patterns.
5 Stands for essential disjunctive closed patterns.
6 Stands for disjunctive search space-based representation.
7 DCPR MINER is the acronym of disjunctive closed pattern-based representation miner.

GARM: Generalized Association Rule Mining 149



EDCPK Disj. Supp. FEPK
B 3 B
C 4 C
F 1 F
AB 4 A
EF 3 E
ABC 5 AC, BC
BEF 5 BE
DEF 4 D
CDEF 5 CD, CE

ABCDEF 6 AD, AE, BD, BCE

 
 
 
 
 

  
 

∅ 
 

({F}: F, 1) 
 

({C}: C, 4) 
 

({B}: B, 3) 

({AD, AE, BD, BCE}: ABCDEF, 6) 
 

({A}: AB, 4) 

({AB, BC}: ABC, 5) 
 

({E}: EF, 3) 

({D}: DEF, 4) 

({BE}: BEF, 5) ({CD, CE}: CDEF, 5) 
 

Fig. 1. (Left) The set EDCPK and the associated disjunctive support and frequent essential pat-
terns for minsupp = 1. (Right) The equivalence classes partially ordered w.r.t. set inclusion.

GARM tool. Starting fromDSSRK, the conjunctive and negative supports of frequent
patterns can thus be deduced using disjunctive supports. This representation also allows
the derivation of the support of each literalset whose positive variation is based on a
frequent pattern. This is carried out using the following formula [4]: Supp(x1 ∧ x2 ∧
. . .∧xn∧y1∧y2∧ . . .∧ym) =

∑
S⊆{y1,...,ym}

(−1)|S|Supp(x1∧x2∧ . . .∧xn∧S), such

that its positive variation, namely {x1, x2, . . ., xn, y1, y2, . . ., ym}, belongs to FPK.

5.2 Building the Partially Ordered Structure

In this section, we will propose a new algorithm, called POSB 8, for partially sorting
disjunctive closed patterns w.r.t. set inclusion. The POSB algorithm hence takes as
input the representation DSSRK s.t. to each disjunctive closed pattern is associated
its set of frequent essential patterns and disjunctive support. A node in the partially
ordered structure will be associated to each disjunctive closed pattern. The pseudo-
code of POSB is shown by Algorithm 1. Our algorithm inherits two main optimizations
used in the algorithm proposed by Valtchev et al. [18], namely the sorting of disjunctive
closed patterns, and the use of a border. Indeed, the set of disjunctive closed patterns
EDCPK is sorted w.r.t. the increasing pattern size. Since closures of equal size cannot be
comparable, this sorting avoids unnecessary comparisons. In addition, it makes possible
that the closure f under treatment be of the largest size w.r.t. already treated ones. Thus,
it suffices to find its lower cover among the nodes inserted in the structure. This lower
cover is composed by those closures which are immediately covered by f .

On the other hand, the border B is an anti-chain w.r.t. set inclusion containing max-
imal closures among those already treated. In fact, the Valtchev et al. algorithm con-
structs the Hasse diagram representing the subset-superset relationship among concepts
in the Galois lattice. It begins at the top of the lattice and then recursively identifies the
lower neighbors of each concept. Nevertheless, it is not directly adapted to our situa-
tion. Indeed, although the intersection of two disjunctive closed patterns is obviously

8 POSB is the acronym of partially ordered structure builder.

150 Tarek Hamrouni, Sadok Ben Yahia, Engelbert Mephu Nguifo



Algorithm 1: POSB
Input: The set EDCPK of disjunctive closed patterns.
Output: The disjunctive closed patterns ordered by set inclusion.
Begin

B := ∅ ;
Foreach (f ∈ EDCPK) do

Prohibited List = ∅;
Foreach (b ∈ B) do

inter := b ∩ f ;
If (inter = b) then

LOWER COVER INSERTION(f , b);
B := B\ b;

Else If (inter 6= ∅) then
LOWER COVER MANAGEMENT(f , b);

B := B ∪ f ;
End

a disjunctive closed pattern, this latter does not necessarily belong to EDCPK. This is
due to the fact that it could have all its essential patterns infrequent and, hence, has been
already pruned. On its side, the proposed algorithm in [18] relies on the fact that the in-
tersection of two concepts was already treated and it suffices to locate the corresponding
node within the Hasse diagram.

In Algorithm 1, disjunctive closed patterns are inserted one at a time to a structure
which is only partially finished to obtain at the end the entire one. Let f be the current
disjunctive closed pattern to be inserted in the partially ordered structure. f will be com-
pared to the elements of the border B. If an element b ∈ B is included in f , then it is an
element of its lower cover. A link between the node representing b and that representing
f will be constructed thanks to the LOWER COVER INSERTION procedure (cf. Algo-
rithm 2). The element b will then be deleted from the border. If b is not included in f but
their intersection is not empty, then the LOWER COVER MANAGEMENT procedure will
identify the common immediate predecessors of b and f (cf. Algorithm 3). Finally, f
will be added to the border. It is important to note that in the LOWER COVER MANAGE-
MENT procedure, a prohibited list is associated to each disjunctive closed pattern to be
inserted in the partially ordered structure. Indeed, when updating the precedence link
between disjunctive closed patterns, a node can be visited more than once since it can
be an immediate predecessor of many other nodes. This list will avoid such useless
treatments by only allowing the visit of nodes that do not belong to it.

Example 5. The associated structure to our running context is given by Figure 1 (Right).

5.3 Deriving Generalized Association Rules

Once the partially ordered structure built, deriving (subsets) generalized association
rules can be easily done. An association rule R: X ⇒ Y based on a pattern Z, denoted
Z-based rule, is such that X = {x1, x2, . . . , xn} ⊆ I and Y = {y1, y2, . . . , ym} ⊆ I be
two patterns, X ∩ Y = ∅, and X ∪ Y = Z. An association rule is usually considered as
interesting w.r.t. two statistical measures, namely the support and the confidence. The
formulae of these measures for an arbitrary rule are as follows:

GARM: Generalized Association Rule Mining 151



Algorithm 2: LOWER COVER INSERTION

Input: A disjunctive closure f , and an element pred to be inserted in its lower cover.
Output: The updated lower cover of f .
Begin

Foreach (l ∈ Lower Cover(f )) do
inter := l ∩ pred;
If (inter = pred) then

return;
Else If (inter = l) then

Lower Cover(f ) := Lower Cover(f ) \ l;

Lower Cover(f ) := Lower Cover(f ) ∪ pred;
End

Algorithm 3: LOWER COVER MANAGEMENT

Input: A disjunctive closed pattern f , and an element b of the border B.
Output: The updated lower cover of f .
Begin

Foreach (pred b ∈ Lower Cover(b)) do
If (pred b /∈ Prohibited List) then

inter := pred b ∩ f ;
If (inter = pred b) then

LOWER COVER INSERTION(f , pred b);
Else If (inter 6= ∅) then

LOWER COVER MANAGEMENT(f , pred b);
Prohibited List := Prohibited List ∪ pred b;

End

Supp(X ⇒ Y ) = Supp(X ∧ Y ), and, Conf(X ⇒ Y ) = Supp(X ∧ Y )
Supp(X )

A rule is said to be exact if its confidence is equal to 1. Otherwise, it is said to be
approximate. In addition, it is said to be interesting or valid if its support and confidence
values are greater than or equal to their respective minimum thresholds minsupp and
minconf. It is clear that whenever we are able to evaluate Supp(X ⇒ Y ), the derivation
of the confidence value will be straightforward.

Let us now adapt the association rule framework to our context. As shown in Sub-
section 5.1, theDSSRK representation allows deriving the disjunctive, conjunctive and
negative supports of each set of positive and negative items whose positive variation is
based on a frequent pattern. In the sequel, we present an overview of the process by
which we retrieve generalized association rules and evaluate their associated supports
through traversing the partially ordered structure. Rules can be classified according to
the number of nodes required for their extraction. We then distinguish two cases:

1. An intra-node rule: it requires a unique node and highlight relationships between
a frequent essential pattern and its disjunctive closure f (here Z = f ).

2. An inter-nodes rule: it is extracted using two nodes N1 and N2 s.t. the associated
disjunctive closure of N1, denoted f1, is one of the immediate predecessors of that
of N2, denoted f2. Let e1 be a frequent essential pattern of f1. An inter-nodes rule
describes relationships between either f1 and f2 or e1 and f2 (here Z = f2).

152 Tarek Hamrouni, Sadok Ben Yahia, Engelbert Mephu Nguifo



Both kinds of rules – intra-node and inter-nodes – can be either exact or approximate.
Different forms of generalized association rules can be extracted starting from our

representation (cf. [16] for a detailed description). To limit the number of possible ex-
tracted rule forms, we mainly focus here on the following ones:

1. Form 1: disjunction of items in premise and conclusion ∨ X ⇒ ∨ Y : Supp(∨ X
⇒ ∨ Y ) = Supp(∨ X ∧ ∨ Y ) = Supp(∨ X ) + Supp(∨ Y ) - Supp((∨ X ) ∨ (∨ Y ))
= Supp(∨ X ) + Supp(∨ Y ) - Supp(∨ Z),

2. Form 2: negation of items in premise and conclusion X ⇒ Y : Supp(X ⇒ Y ) =
Supp(X ∧ Y ) = Supp((( ∨X ) ∨ ( ∨ Y ))) = Supp(Z) = |O| - Supp(∨ Z),

3. Form 3: disjunction of items in premise and negation of items in conclusion ∨ X
⇒ Y : Supp(∨X ⇒ Y ) = Supp(∨X ∧ Y ) = Supp((∨X ) ∨ (∨ Y )) - Supp(∨ Y ) =
Supp(∨ Z) - Supp(∨ Y ), and,

4. Form 4: negation of items in premise and disjunction of items in conclusion X ⇒
∨ Y : Supp(X ⇒∨ Y ) = Supp(X ∧ ∨ Y ) = Supp((∨X ) ∨ (∨ Y )) - Supp(∨X ) =
Supp(∨ Z) - Supp(∨ X ),

where either X or Y is a frequent essential pattern or a disjunctive closed one, and Z =
X ∪ Y is a disjunctive closed pattern (as described above). For each rule, the support
of Z is known. It is the same for either X or Y since one of them is assumed to be a
frequent essential pattern or a disjunctive closed pattern. For the sake of simplicity, we
assume in the remainder that X is a frequent essential pattern or a disjunctive closed
pattern. Since Y = Z\X , then Y does not necessarily belong toDSSRK and, may even
not be a frequent pattern. Nevertheless, its disjunctive support is required to evaluate
that of the associated rule. To this end, we bound the support of Y using a lower bound,
denoted lb Supp, and an upper bound, denoted ub Supp, computed as follows:

• lb Supp(∨ Y ) = max{Supp(∨ e) | e ∈ FEPK and e ⊆ Y },
• ub Supp(∨ Y ) = min{Supp(∨ f ) | f ∈ EDCPK and Y ⊆ f}.

In this respect, if Y is encompassed between a frequent essential pattern and its
disjunctive closure, then lb Supp(∨ Y ) = ub Supp(∨ Y ). Hence, the support and confi-
dence of the associated rule will be exactly computed. Otherwise, these latter measures
will be bounded by a minimal and a maximal possible value using the bounds associated
to Y . Such rules, further denoted approximated rules, are defined as follows:

Definition 5. An association rule is said to be approximated if it has either its support
or its confidence not exactly determined.

Then, only valid rules having minimum possible values of support and confidence
greater than or equal to minsupp and minconf, respectively, will be retained. Note that
an approximated rule is different from an approximate rule in the sense that the latter
has its support and confidence exactly computed (with a confidence not equal to 1),
what is not the case of the former. In this respect, approximated rules were shown to
convey interesting knowledge in the case of positive rules (see for example [19]).

Noteworthily, the bounds lb Supp(∨ Y ) and ub Supp(∨ Y ) always exist. Indeed, on
the one hand, since the set of items I is pruned w.r.t. minsupp, then Y will be composed
of frequent items even if it is infrequent. These items obviously belong to FEPK, what
ensures the existence of the lower bound. On the other hand, Y is covered by at least a
disjunctive closed pattern, namely Z, what ensures the existence of the upper bound.

GARM: Generalized Association Rule Mining 153



Example 6. Let minsupp = 1 and let minconf = 0.7. Consider the intra-node rule R1

of Form 1 based on the disjunctive closed pattern ABCDEF and its frequent essential
pattern BCE: ∨ BCE⇒∨ ADF. Supp(R1) = Supp(∨ BCE) + Supp(∨ ADF) - Supp(∨
ABCDEF) = Supp(∨ ADF) (since h(BCE ) = ABCDEF ). Since ADF /∈ DSSRK, we
need to evaluate its support. Since AD ⊆ ADF ⊆ h(AD ) = ABCDEF (cf. Figure 1
(Left)), then lb Supp(∨ ADF) = ub Supp(∨ ADF) = 6. Hence, Supp(R1) = 6 and
Conf (R1) = 1. R1 is hence a valid rule. Now, consider the inter-nodes rule R2 of Form
1 based on ABCDEF and one of its immediate predecessors, namely ABC (cf. Figure 1
(Right)): ∨ ABC⇒∨ DEF. In this case, DEF ∈ EDCPK. Hence, Supp(R2) = Supp(∨
ABC) + Supp(∨ DEF) - Supp(∨ ABCDEF) = 5 + 4 - 6 = 3, and Conf (R2) = 0.6.
Here, we took X = ABC. If we set Y = ABC, then the associated rule R3 = ∨ DEF
⇒ ∨ ABC will have the same support than R2. Nevertheless, its confidence is equal to
0.75. Hence, R3 is a valid rule while R2 is not.

6 Experimental Results

Our experiments 9 focused on the mining time as well as the number of extracted valid
rules w.r.t. their associated type, i.e., exact, approximate or approximated. They were
carried out on a PC equipped with a Pentium (R) having 3GHz as clock frequency and
1.75GB of main memory, running the GNU/Linux distribution Fedora Core 7 (with
2GB of swap memory). The compiler gcc 4.1.2 is used to generate the executable code
starting from our C++ implementation.

Table 1. Mining time of generalized association rules on benchmark contexts.

Context minsupp (%) Component 1 Component 2 Component 3 Total time
CONNECT 80.00 2.1530 0.0068 0.0380 2.1978

60.00 2.2807 0.0402 0.1618 2.4827
40.00 2.5571 1.0443 0.9813 4.5827

PUMSB 90.00 3.1875 0.0403 0.1015 3.3293
80.00 3.1581 2.9364 1.9693 8.0638
70.00 3.6630 19.5460 8.7276 31.9366

KOSARAK 0.90 12.4551 0.1645 0.2239 12.8435
0.70 16.2936 0.6825 0.3794 17.3555
0.50 26.4491 5.6164 0.8738 32.9393

RETAIL 2.00 0.8471 0.0039 0.0135 0.8645
1.00 1.0803 0.0113 0.0334 1.1250
0.50 2.3909 0.1127 0.1331 2.6367

In the proposed experiments, the minconf value is set to the relative minimum sup-
port value, i.e., minsupp

|O| . Table 1 presents the mining time in seconds of the three
components of GARM. This table shows the efficiency of our tool towards extract-
ing generalized associated rules. Indeed, even for low minsupp values, GARM remains
very fast. In this respect, the time consumed by each component, w.r.t. the total time,

9 Test contexts are available at: http://fimi.cs.helsinki.fi/data.

154 Tarek Hamrouni, Sadok Ben Yahia, Engelbert Mephu Nguifo



Table 2. Number of extracted generalized association rules on benchmark contexts.

Context minsupp (%) Exact Approximate Approximated Total number
CONNECT 80.00 620 316 152 1, 088

60.00 1, 533 1, 337 354 3, 224
40.00 3, 319 5, 813 3, 130 12, 262

PUMSB 90.00 566 1, 322 730 2, 618
80.00 4, 376 13, 426 5, 002 22, 804
70.00 9, 409 26, 747 14, 870 51, 026

KOSARAK 0.90 0 7, 586 0 7, 586
0.70 0 13, 046 0 13, 046
0.50 0 29, 648 0 29, 648

RETAIL 2.00 0 464 0 464
1.00 0 1, 160 0 1, 160
0.50 0 4, 622 0 4, 622

closely depends on the context characteristics. Nevertheless, the second and third com-
ponents are in general faster than the first one. On the other hand, Table 2 highlights that
the number of extracted rules closely depends on the context density. Indeed, the higher
the value of this latter, the larger the associated equivalence classes are, and the greater
the number of frequent essential patterns and closed ones is. This fact augments the
number of rules even for high minsupp values for dense contexts. Interestingly enough,
the number of exact and approximated rules for RETAIL and KOSARAK is equal to 0

for the tested minsupp values. This is due to the fact that for both contexts, each essen-
tial pattern is equal to its disjunctive closure what is not the case for the CONNECT and
PUMSB contexts. Please note that the mining time and the number of extracted rules
when minconf varies is omitted here, due to space limitations.

7 Conclusion and Perspectives

In this paper, we presented a complete tool, called GARM, allowing the extraction
of generalized association rules. Our tool is composed of three components. The first
consists in extracting a concise representation of frequent patterns based on disjunctive
closed ones. The second component aimed at partially ordering these closure w.r.t. set
inclusion. Once the structure built, extracting subsets of generalized association rules
becomes a straightforward task thanks to the last component. Carried out experiments
proved the effectiveness of the proposed tool. It is also important to mention that our
GARM tool is easily adaptable to the case where the input is composed by conjunctive
(closed) patterns instead of disjunctive ones.

Other avenues for future work mainly address the following points: First, a detailed
comparison of our approach to the general GUHA approach [9] will be carried out.
Second, the relationships between the various rule forms will be studied. The purpose
is to only retain a lossless subset of rules while being able to derive the remaining re-
dundant ones. Adequate axiomatic systems need thus to be set up.
Acknowledgments: We would like to thank anonymous reviewers for their helpful
comments and suggestions. We are also grateful to Mrs. Nassima Ben Younes for fruit-
ful discussions and help in the implementation of the tool. This work is supported by
the French-Tunisian project CMCU-Utique 05G1412.

GARM: Generalized Association Rule Mining 155



References

1. Ceglar, A., Roddick, J.F.: Association mining. ACM Computing Surveys, volume 38(2)
(2006)

2. Steinbach, M., Kumar, V.: Generalizing the notion of confidence. Knowledge and Informa-
tion Systems, volume 12(3) (2007) 279–299

3. Tzanis, G., Berberidis, C.: Mining for mutually exclusive items in transaction databases.
International Journal of Data Warehousing and Mining, volume 3(3) (2007) 45–59

4. Toivonen, H.: Discovering of frequent patterns in large data collections. PhD thesis, Univer-
sity of Helsinki, Helsinki, Finland (1996)

5. Hébert, C., Crémilleux, B.: A unified view of objective interestingness measures. In: Pro-
ceedings of the 5th International Conference Machine Learning and Data Mining in Pattern
Recognition, Springer-Verlag, LNCS, volume 4571. (2007) 533–547

6. Hamrouni, T., Denden, I., Ben Yahia, S., Mephu Nguifo, E.: A new concise representation of
frequent patterns through disjunctive search space. In: Proceedings of the 5th International
Conference on Concept Lattices and their Applications. (2007) 50–61

7. Kim, H.D.: Complementary occurrence and disjunctive rules for market basket analysis in
data mining. In: Proceedings of the 2nd IASTED International Conference Information and
Knowledge Sharing. (2003) 155–157

8. Nanavati, A.A., Chitrapura, K.P., Joshi, S., Krishnapuram, R.: Mining generalised disjunc-
tive association rules. In: Proceedings of the 10th International Conference on Information
and Knowledge Management. (2001) 482–489

9. Hájek, P., Havránek, T.: Mechanizing Hypothesis Formation: Mathematical Foundations for
a General Theory. Springer-Verlag (1978)

10. Kryszkiewicz, M.: Concise representations of association rules. In: Proceedings of the ESF
Exploratory Workshop on Pattern Detection and Discovery in Data Mining, Springer-Verlag,
LNCS, volume 2447. (2002) 92–109

11. Grün, G.A.: New forms of association rules. Technical Report TR 1998-15, School of
Computing Science, Simon Fraser University, Burnaby, BC, Canada (1998)

12. Shima, Y., Hirata, K., Harao, M., Yokoyama, S., Matsuoka, K., Izumi, T.: Extracting dis-
junctive closed rules from MRSA data. In: Proceedings of the 1st International Conference
on Complex Medical Engineering. (2005) 321–325

13. Elble, J., Heeren, C., Pitt, L.: Optimized disjunctive association rules via sampling. In:
Proceedings of the 3rd IEEE International Conference on Data Mining. (2003) 43–50

14. Galambos, J., Simonelli, I.: Bonferroni-type inequalities with applications. Springer (2000)
15. Ganter, B., Wille, R.: Formal Concept Analysis. Springer (1999)
16. Hamrouni, T., Denden, I., Ben Yahia, S., Mephu Nguifo, E.: Exploring the disjunctive search

space towards discovering new exact concise representations for frequent patterns. Technical
report, CRIL-CNRS of Lens, Lens, France (2007)

17. Denden, I., Hamrouni, T., Ben Yahia, S.: Efficient exploration of the disjunctive lattice
towards extracting concise representations of frequent patterns. To appear in the Proceedings
of the 9th African Conference on Research in Computer Science and Applied Mathematics
(in French). (2008)

18. Valtchev, P., Missaoui, R., Lebrun, P.: A fast algorithm for building the Hasse diagram of a
Galois lattice. In: Proceedings of the Conference on Combinatorics, Computer Science and
Applications. (2000) 293–306

19. Boulicaut, J.F., Bykowski, A., Rigotti, C.: Free-sets: A condensed representation of Boolean
data for the approximation of frequency queries. Data Mining and Knowledge Discovery
volume 7(1) (2003) 5–22

156 Tarek Hamrouni, Sadok Ben Yahia, Engelbert Mephu Nguifo



Concept-based Recommendations for Internet
Advertisement

Dmitry I. Ignatov and Sergei O. Kuznetsov

Higher School of Economics, Department of Applied Mathematics
Kirpichnaya 33/5, Moscow 105679, Russia
{dignatov, skuznetsov}@hse.ru

Abstract. The problem of detecting terms that can be interesting to
the advertiser is considered. If a company has already bought some ad-
vertising terms which describe certain services, it is reasonable to find
out the terms bought by competing companies. A part of them can be
recommended as future advertising terms to the company. The goal of
this work is to propose better interpretable recommendations based on
FCA and association rules.

1 Introduction

Contextual Internet advertising is a form of e-commerce. The largest revenues
of the major players at this market, like search systems, are obtained from the
so-called search sensitive advertisement, i.e, advertisement in a sense close to
user queries. Here we consider the problem of detecting terms that can be in-
teresting to an advertiser. Assume that a company F has already bought some
advertising terms which describe certain services. As a rule, there are already
competing companies at the market, therefore it is reasonable to find terms
bought by them. These terms can be compared to those bought by F and part
of them can be recommended as future advertising terms to F . The goal of this
work is to propose well-interpretable recommendations based on FCA. The rest
of the paper is organized as follows: First we recall main definitions from FCA
and rule mining. Then we consider experimental data and the problem state-
ment. Afterwards, we propose morphology-based and ontology-based metarules
that can be derived without experimental data. We conclude the paper with
experiments and their discussion.

2 Main definitions

First, we recall some basic notions from Formal Concept Analysis (FCA) [1].
Let G and M be sets, called the set of objects and attributes, respectively, and
let I be a relation I ⊆ G ×M : for g ∈ G, m ∈ M , gIm holds iff the object
g has the attribute m. The triple K = (G, M, I) is called a (formal) context. If
A ⊆ G, B ⊆M are arbitrary subsets, then the Galois connection is given by the
following derivation operators:

c© Radim Belohlavek, Sergei O. Kuznetsov (Eds.): CLA 2008, pp. 157–166,
ISBN 978–80–244–2111–7, Palacký University, Olomouc, 2008.



A′ def= {m ∈M | gIm for all g ∈ A},
B′ def= {g ∈ G | gIm for all m ∈ B}.

If we have several contexts derivative operator of a context (G, M, I) denoted
by (.)I .

The pair (A, B), where A ⊆ G, B ⊆ M , A′ = B, and B′ = A is called a
(formal) concept (of the context K) with extent A and intent B (in this case we
have also A′′ = A and B′′ = B). For B, D ⊆M the implication B → D holds if
B′ ⊆ D′.

In data mining applications, an element of M is called an item and a subset
of M is called an itemset.

The support of a subset of attributes (an itemset) P ⊆ M is defined as
supp(P ) = |P ′|. An itemset is frequent if its support is not less than a given
minimum support (denoted by min supp). An itemset P is closed if there exists
no proper superset with the same support. The closure of an itemset P (denoted
by P ′′) is the largest superset of P with the same support. The task of frequent
itemset mining consists of generating all (closed) itemsets (with their supports)
with supports greater than or equal to a specified min supp. An association rule
is an expression of the form I1 → I2, where I1 and I2 are arbitrary itemsets
(I1, I2 ⊆ A), I1 ∩ I2 = ∅ and I2 6= ∅. The left side, I1 is called antecedent, the
right side, I2 is called consequent. The support of an association rule r : I1 → I2
1 is defined as: supp(r) = supp(I1 ∪ I2). The confidence of an association rule r:
I1 → I2 is defined as the conditional probability that an object has itemset I2,
given that it has itemset I1: conf(r) = supp(I1 ∪ I2)/supp(I1). An association
rule r with conf(r) = 100% is an exact association rule (or implication [1]),
otherwise it is an approximate association rule. An association rule is valid if
supp(r) ≥ min supp and conf(r) ≥ min conf . An itemset P is a generator if
it has no proper subset Q(Q ⊂ P ) with the same support. Let FCI be the set
of frequent closed itemsets and let FG be the set of frequent generators. The
informative basis for approximate association rules: IB = {r : g → (f \ g)|f ∈
FCI ∧ g ∈ FG ∧ g′′ ⊂ f}.

3 Initial Data and Problem Statement

For experimentation we used data of US Overture [2], which were first trans-
formed in the standard context form. In the resulting context K = (G, M, I)
objects from G stay for advertising companies (advertisers) and attributes from
M stay for advertising terms (bids), gIm means that advertiser g bought term
m. In the context |G| = 2000, |M | = 3000, |I| = 92345.

In our context, the number of attributes per object is bounded as follows:
13 ≤ |g′| ≤ 947. For objects per attribute we have 18 ≤ |m′| ≤ 159. From
1 In this paper we use absolute values, but the support of an association rule r is also

often defined as supp(r) = supp(I1 ∪ I2)/|O|.

158 Dmitry I. Ignatov, Sergei O. Kuznetsov



this context one had to compute formal concepts of the form (advertisers, bids)
that represent market sectors. Formal concepts of this form can be further used
for recommendation to the companies on the market, which did not buy bids
contained in the intent of the concept. In other words, empty cell (g, m) of the
context can be considered as a recommendation to advertiser g to buy bid m,
if this advertiser bought other bids contained in the intent of any concept. This
can also be represented as association rules of the form “If an advertiser bought
bid a, then one can recommend this advertiser to buy term b” See [3] for the use
of association rules in recommendation systems.

We consider the following context: KFT = (F, T, IFT ), where F is the set
of advertising firms (companies), T is the set of advertising terms, or phrases,
fIFT t means that firm f ∈ F bought advertising term t ∈ T .

For constructing recommendations we used the following approaches and
tools:

1. D-miner algorithm for detecting large market sectors as concepts;
2. Coron system for constructing association rules;
3. Construction of association metarules using morphological analysis;
4. Construction of association metarules using ontologies (thematic catalogs).

4 Standard approach to rule mining

4.1 Detecting large market sectors with D-miner.

D-miner is a freely available tool [4], [5] which constructs the set of concepts
satisfying given constraints on sizes of extents and intents (icebergs and dual
icebergs). D-miner takes as input a context and two parameters: minimal ad-
missible extent and intent sizes and outputs a “band” of the concept lattice:
all concepts satisfying constraints given by parameter values (|intent| ≥ m and
|extent| ≥ n, where m, n ∈ N, see table 1).

Table 1. D-miner results.

Minimal extent Minimal intent Number of
size size concepts

0 0 8 950 740
10 10 3 030 335
15 10 759 963
15 15 150 983
15 20 14 226
20 15 661
20 16 53
20 20 0

Concept-based Recommendations for Internet Advertisement 159



Глава 4. Проведение экспериментов 
Основные эксперименты проводились на наборе данных компании Overture (ныне часть 
Yahoo Inc.). Подготовленные для анализа данные представляют собой объектно-
признаковую таблицу. Объекты соответствуют фирмам, а признаки рекламным словам и 
словосочетаниям, которые такие компании приобретают для продвижения своих товаров 
через Интернет. Число фирм – 2000, слов – 3000. Целью экспериментов являлось выявле-
ние методов, которые способны обнаружить соответствующие бикластеры в исходных 
данных за разумное время. Сами бикластеры предполагается использовать для формиро-
вания рекомендаций фирмам, принадлежащим одному рынку. А именно, после проведе-
ния такого анализа можно указать для конкретной фирмы на то, какие слова приобретают 
их конкуренты.  
Нами был использован подход, основанный на ФАП. Ввиду большой вычислительной 
сложности (при построении всей решетки понятий) мы использовали алгоритм D-miner 
(Besson et. al., 2004), который порождает формальные понятия, учитывая ограничения на 
размер объема и содержания (см. таблицу 1). 

 
Таблица 1 

 
Минимальный размер объе-
ма понятия 

Минимальный размер со-
держания 

Число формальных 
понятий 

0 0 8 950 740 
10 10 3 030 335 
15 10 759 963 
15 15 150 983 
15 20 14 226 
20 15 661 

 
В полученном слое решетки мы можем выбрать понятия верхней границы слоя и понятия 
из нижней, «склеить» их определенным образом и получить кластеры с некоторым числом 
нулей внутри. При этом понятия нижней границы должны быть потомками выбранного 
понятия верхнего слоя. Такие кластеры вполне пригодны для формирования рекоменда-
ций. Данную идею поясняет рисунок 12. 
 

 
 

Рисунок 12 

(G,G’) 

(M’,M) 

(C,D) 

(A,B) 

(G,G’)B

AC

D

Fig. 1. A concept lattice and its band output by D-miner.

We give examples of intents of formal concepts for the case |L| = 53, where
L is a concept lattice.

Hosting market.
{ affordable hosting web, business hosting web, cheap hosting, cheap hosting site

web, cheap hosting web, company hosting web, cost hosting low web, discount host-

ing web, domain hosting, hosting internet, hosting page web, hosting service, hosting

services web, hosting site web, hosting web }.
Hotel market.
{ angeles hotel los, atlanta hotel, baltimore hotel, dallas hotel, denver hotel, hotel

chicago, diego hotel san, francisco hotel san, hotel houston, hotel miami, hotel new or-

leans, hotel new york, hotel orlando, hotel philadelphia, hotel seattle, hotel vancouver}
Distance communication market.
{ call distance long, calling distance long, calling distance long plan, carrier

distance long, cheap distance long, company distance long, company distance
long phone, discount distance long, distance long, cheap calling distance long,
distance long phone, distance long phone rate, distance long plan, distance long
provider, distance long rate, distance long service }

Weight loss drug market.
{ adipex buy, adipex online, adipex order, adipex prescription, buy didrex,

buy ionamin, ionamin purchase, buy phentermine, didrex online, ionamin on-
line, ionamin order, online order phentermine, online phentermine, order phen-
termine, phentermine prescription, phentermine purchase }

4.2 Recommendations based on association rules.

Using the Coron system (see [6]) we construct the informative basis of association
rules [7]. We have chosen the informative basis, since it proposes a compact and

160 Dmitry I. Ignatov, Sergei O. Kuznetsov



effective way of representing the whole set of association rules. The results are
given in table 2.

Table 2. Properties of informative basis.

min supp max supp min conf max conf number of rules

30 86 0,9 1 101 391
30 109 0,8 1 144 043

Here are some examples of association rules.

– {evitamin} → {cvitamin} supp=31 [1.55%]; conf=0.861 [86.11%]
– {gift graduation} → {anniversary gift}, supp=41 [2.05%]; conf=0.820

[82.00%];

The value supp = 31 of the first rule means that 31 companies bought phrases
“e vitamin” and “c vitamin”. The value conf = 0.861 means that 86,1% com-
panies that bought the phrase “e vitamin” also bought the phrase “c vitamin”.

To make recommendations for each particular company one may use an ap-
proach proposed in [3]. For company f we find all association rules, the an-
tecedent of which contain all the phrases bought by the company, then we con-
struct the set Tu of unique advertising phrases not bought by the company f
before. Then we order these phrases by decreasing of confidence of the rules
where the phrases occur in the consequences. If buying a phrase is predicted by
several rules (i.e., the phrase is in the consequences of several rules), we take the
largest confidence.

5 Mining metarules

5.1 Morphology-based Metarules

Each attribute of our context is either a word or a phrase. Obviously, synonymous
phrases are related to same market sectors. The advertisers companies have
usually thematic catalogs composed by experts, however due to the huge number
of advertising terms manual composition of catalogs is a difficult task. Here we
propose a morphological approach for detecting similar bids.

Let t be an advertising phrase consisting of several words (here we disregard
the word sequence): t = {w1, w2, . . . , wn}. A stem is the root or roots of a word,
together with any derivational affixes, to which inflectional affixes are added [8].
The stem of word wi is denoted by si = stem(wi) and the set of stems of words
of the phrase t is denoted by stem(t) =

⋃
i

stem(wi), where wi ∈ t. Consider the

formal context KTS = (T, S, ITS), where T is the set of all phrases and S is the

Concept-based Recommendations for Internet Advertisement 161



set of all stems of phrases from T , i.e. S =
⋃
i

stem(ti). Then tIs denotes that

the set of stems of phrase t contains s.
In this context we construct rules of the form t → sIT S

i for all t ∈ T , where
(.)Its denotes the prime operator in the context KTS . Then the a of the context
KTS (we call it a metarule, because it is not based on experimental data, but
on implicit knowledge resided in natural language constructions) corresponds to
t

FT−−→ sIT S
i , an association rule of the context KFT = (F, T, IFT ). If the values

of support and confidence of this rule in context KFT do not exceed certain
thresholds, then the association rules constructed from the context KFT are
considered not very interesting.

Table 3. A toy example of context KFT for “long distance calling” market.

firm \ phrase call calling calling carrier cheap
distance distance distance distance distance

long long long plan long long

f1 x x x
f2 x x x
f3 x x
f4 x x x
f5 x x x x

Table 4. A toy example of context KTS for “long distance calling” market.

phrase \ stem call carrier cheap distanc long plan

call distance long x x x
calling distance long x x x

calling distance long plan x x x x
carrier distance long x x x
cheap distance long x x x

Metarules of the following forms seem also to be reasonable. First, one can
look for rules of the form t

FT−−→
⋃
i

sIT S
i , i.e., rules, the consequent of which con-

tain all terms containing at least one word with the stem common to a word in
the antecedent term. Obviously, constructing rules of this type may result in the
fusion of phrases related to different market sectors, e.g. “black jack” and “black
coat”. Second, we considered rules of the form t

FT−−→ (
⋃
i

si)IT S , i.e., rules with

162 Dmitry I. Ignatov, Sergei O. Kuznetsov



the consequent with the set of stems being the same as the set of stems of the
antecedent. Third, we also propose to consider metarules of the form t1

FT−−→ t2,
where tIT S

2 ⊆ tIT S
1 . These are rules with the consequent being sets of stems that

contain the set of stems of the antecedent.

Example of metarules.

– t
FT−−→ sIT S

i
{last minute vacation} → {last minute travel}
Supp= 19 Conf= 0,90

– t
FT−−→

⋃
i

sIT S
i

{mail order phentermine} → {adipex online order, adipex order, . . . ,
phentermine prescription, phentermine purchase, phentermine sale}
Supp= 19 Conf= 0,95

– t
FT−−→ (

⋃
i

si)IT S

{distance long phone} → {call distance long phone, . . . ,
carrier distance long phone, distance long phone rate, distance long phone
service}
Supp= 37 Conf= 0,88

– t1
FT−−→ t2, tIT S

2 ⊆ tIT S
1

{ink jet} → {ink}, Supp= 14 Conf= 0,7

5.2 Constructing ontologies and ontology-based metarules.

Here we use simple tree-like ontologies, where the closeness to the root of a tree
defines generality of ontology concepts, which are advertisement phrases. For
example, we use a manually constructed WordNet-like ontologies of market sec-
tors. In our ontology of the pharmaceutical market the concept “pharmaceutical
product” is more general than that of “vitamin.” We introduce two operators
acting on the set of advertising words T . Generalization operator gi(.) : T → T
takes a concept to a more general concept i levels higher in the generality or-
der. Neighborhood operator n(.) : T → T takes a concept to the set of sibling
concepts.

Now we define two types of metarules for ontology: a generalization rule
t → gi(t) and a neighborhood rule t → n(t). These rules can also be consid-
ered as association rules of the context KFT = (F, T, IFT ), which allows one to
understand which of them are good supported by data.
Examples of metarules for pharmaceutical market.
Rule of the form t→ n(t), where t = “B V ITAMIN ′′.

{B V ITAMIN} → {B COMPLEX V ITAMIN, B12 V ITAMIN, C V ITAMIN, . . .

D V ITAMIN, DISCOUNT V ITAMIN, E V ITAMIN, MINERAL V ITAMIN, . . .

MULTI V ITAMIN, SUPPLEMENT V ITAMIN, V ITAMIN}
Rules of the form t→ g1(t), where t = “B V ITAMIN ′′, g1(t) = “V ITAMINS′′.
{B V ITAMIN} → {V ITAMINS}.

Concept-based Recommendations for Internet Advertisement 163



6 Experimental Validation

For validation of association rules we used an adapted version of cross-validation.
The training set was randomly divided into 10 parts, 9 of which were taken as
the training set and the remaining part was used as a test set. By A

tr−→ B we
denote an association rule generated on a training context. The confidence of
this association rule measured on the test set, i.e.,

conf(A test−−→ B) =
|AItest ∩BItest |
|AItest |

shows the relative amount of companies that bought phrase B having bought
phrase A.

We constructed 10 sets of association rules for 10 different training sets 1800
companies each (with min supp = 1, 5% and min conf = 90%. The aggregated
quality measure of the obtained rules is the average confidence:

average conf(Rulesi) =

∑
A−→B∈Rules

conf(A test−−→ B)

|Rulesi|
,

where Rulesi is the set of association rules obtained on the i-th training set. We
also considered rules with min conf ≥ 0.5 and computed averaged confidence,

which was again averaged over 10 cases, average conf =

nP
i=1

average conf(Rulesi)

n .

Table 5. Results of cross-validation for association rules.

Number of Number of average conf Number of average conf
rules rules with rules with (min conf=0.5)

sup > 0 min conf=0.5

1 147170 73025 0,77 65556 0,84
2 69028 68709 0,93 68495 0,93
3 89332 89245 0,95 88952 0,95
4 107036 93078 0,84 86144 0,90
5 152455 126275 0,82 113008 0,90
6 117174 114314 0,89 111739 0,91
7 131590 129826 0,95 128951 0,96
8 134728 120987 0,96 106155 0,97
9 101346 67873 0,72 52715 0,92
10 108994 107790 0,93 106155 0,94

means 115885 99112 0,87 92787 0,92

The confidence of rules averaged over the test set is almost the same as the
min conf for the training set, i.e., (0, 9− 0, 87)/0, 9 ≈ 0, 03.

164 Dmitry I. Ignatov, Sergei O. Kuznetsov



We used confidence measure also for validation of metarules. Support does
not have much importance here, since we do not look for large markets or
mostly sellable phrases, but stable dependencies of purchases. So, we consid-
ered only rules with confidence larger than 0.8 (or 0.9). Confidence and support
for metarules are computed for the context KFT = (F, T, IFT ). We present the
values of confidence and support in the tables for morphology-based metarules.

Table 6. Average support and average confidence for morphology-based metarules.

Rule type Average supp Average conf Number of
rules

t
FT−−→ sIT S

i 6 0,26 2389

t
FT−−→

S
i

sIT S
i 6 0,24 456

t
FT−−→ (

S
i

si)
IT S 12 0,40 1095

t
FT−−→ ti, such that tIT S

i ⊆ tIT S 15 0,49 7409

t
FT−−→

S
i

ti, such that tIT S
i ⊆ tIT S 11 0,36 2006

We set the minimal support 0,5 and compute the number of rules of each
group for which this threshold is exceeded. Table 5 shows that average conf of
these metarules is actually much higher (about 0,9).

Table 7. Average supp and conf for morphological metarules for min conf = 0, 5.

Rule types Average supp Average value of Number of
conf rules

t
FT−−→ sIT S

i 15 0,64 454

t
FT−−→

S
i

sIT S
i 15 0,63 75

t
FT−−→ (

S
i

si)
IT S 18 0,67 393

t
FT−−→ ti such that tIT S

i ⊆ tIT S 21 0,70 3922

t
FT−−→

S
i

ti such that tIT S
i ⊆ tIT S 20 0,69 673

From tables 6 and 7one can easily see that most confident and supported
rules are of the form t

FT−−→
⋃
i

ti. Note that the use of morphology is completely

automated and allows one to find highly plausible metarules without data on

Concept-based Recommendations for Internet Advertisement 165



purchases. The rules with low support and confidence may be tested against
recommendation systems such as Google AdWords, which uses the frequency
of queries for synonyms. For validation of ontological rules we used Google ser-
vice AdWords. 90% of recommendations (words) were contained in the list of
synonyms output by AdWords.

7 Conclusion and further work

The obtained results show that a part of dependencies in databases for purchases
of advertisement phrases may be detected automatically, with the use of stan-
dard means of computer linguistics. Along with methods of data mining, these
approaches allows one to improve recommendations and propose good means
of ranking, which is very important for making Top-N recommendations. An-
other advantage of the approach consists in the possibility of detecting related
advertisement phrases not given directly in data. Results of FCA-based bicluster-
ization show the possibility of detecting relatively large advertisement markets
(with more than 20 participants) given by companies and advertising phrases.
To improve the proposed approach we plan to use well-developed ontologies like
WordNet for constructing ontology-based metarules.

8 Acknowledgements

This work was supported by the Scientific Foundation of Russian State Univer-
sity Higher School of Economics as a part of project 08-04-0022.

References

1. Ganter, B., Wille, R.: Formal concept analysis: mathematical foundations. Springer,
Berlin/Heidelberg (1999)

2. Zhukov, L.E.: Spectral clustering of large advertiser datasets. Technical report,
Overture R&D (2004)

3. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Analysis of recommendation
algorithms for e-commerce. In: ACM Conference on Electronic Commerce. (2000)
158–167

4. Besson, J., Robardet, C., Boulicaut, J.F., Rome, S.: Constraint-based bi-set min-
ing for biologically relevant pattern discovery in microarray data. Intelligent Data
Analysis journal 9(1) (2005) 59–82

5. Besson, J., Robardet, C., Boulicaut, J.F.: Constraint-based mining of formal con-
cepts in transactional data. In Dai, H., Srikant, R., Zhang, C., eds.: PAKDD. Volume
3056 of Lecture Notes in Computer Science., Springer (2004) 615–624

6. Szathmary, L., Napoli, A.: CORON: A Framework for Levelwise Itemset Mining
Algorithms. In: Suppl. Proc. of ICFCA ’05, Lens, France. (2005) 110–113

7. Szathmary, L., Napoli, A., Kuznetsov, S.O.: ZART : A Multifunctional Itemset
Mining Algorithm. Research Report 00001271, LORIA (2005)

8. David, C.: A dictionary of linguistics and phonetics. third edn. Oxford: Blackwell
Publishers (1991)

166 Dmitry I. Ignatov, Sergei O. Kuznetsov



The Mathematical in Music Thinking

Rudolf Wille and Renate Wille-Henning

Technische Universität Darmstadt, Fachbereich Mathematik,
wille@mathematik.tu-darmstadt.de

Abstract. “The Mathematical in music thinking” is based on Heideg-
ger’s understanding of “the Mathematical” as the basic assumption of
the knowledge of the things. Heidegger’s ideas are combined with Peirce’s
classification of sciences, in particular, to distinguish between the Math-
ematical from the less abstract logical thinking and the more abstract
mathematical thinking. The aim of this paper is to make understandable
the role of the Mathematical in music. The paper concentrates on three
domains: the rhythmic of music, the doctrine of music forms, and the
theory of tonal systems. The theoretical argumentations are assisted by
musical examples: the Adagio of Mozart’s string quartet C major (KV
465), the second movement of Webern’s Symphony op.21, and a cadence
illustrating the problem of the harmony of second degree.

1 Music Thinking and The Mathematical

”Musica est exercitium arithmeticae occultum animi” (”Music is a hidden arith-
metical exercise of the soul”) - this statement was written by the philosopher,
mathematician, and scientist Gottfried Wilhelm Leibniz on April 17, 1712, in a
letter to the mathematician and diplomat Christian von Goldbach. Leibniz re-
ferred with his statement to the astonishing phenomenon of the correspondence
between musical tones and numbers which has been already demonstrated by
the pythagoreans on their monochord. This phenomenon has been extensively
described by the German musicologist Martin Vogel in his book “Die Lehre von
den Tonbeziehungen”; there he writes: “Each interval used in music corresponds
to a certain numerical proportion and, since each melody and each harmonic
connection can be composed by numerically described intervals, each composi-
tion can finally be understood and analytically recognized as an arrangement of
uniquely determined relations of numbers” ([18], p.9).

If one wants to comprehensively understand the role of mathematics in mu-
sic thinking, then the numerical relations in music compositions pointed out by
Vogel do not suffice. In particular, the numerical relations cannot suitably grasp
the more extended set semantics basic for modern mathematics. For our theme
we use the understanding of “the Mathematical” which Martin Heidegger worked
out in his 1935/36 lecture on “Basic Questions of Metaphysics” (published in
[11]). For Heidegger “the Mathematical” is not derivable out of mathematics,
but mathematics itself is at the time a historically, socially, and culturally de-
termined formation abstracted from the Mathematical. Heidegger deduced his

c© Radim Belohlavek, Sergei O. Kuznetsov (Eds.): CLA 2008, pp. 167–180,
ISBN 978–80–244–2111–7, Palacký University, Olomouc, 2008.



understanding of “the Mathematical” from the ancient Greeks: τὰ µαϑήµατα
means “the learnable”. Learning the learnable is a kind of “taking”, by which
the taker takes only such things which, strictly speaking, he already has. Ac-
cording to Heidegger it follows: “τὰ µαϑήµατα, the Mathematical, is what of
the things we actually already know, which we therefore do not first take out of
the things, but which we already bring with us in a certain way” ([11], p.57); or
phrased in another way: “The Mathematical is that basic position to the things
by which we take on the things according to that which the things have already
been given to us. The Mathematical is therefore the basic assumption of the
knowledge of the things” ([11], p.58). For Heidegger this makes clear the central
significance of the Mathematical for modern thinking, because “a will of refor-
mation and self-foundation of the knowledge form as such” lies in the character
of the Mathematical as distinctive conception ([11], p.75).

But how can we recognize the Mathematical? A promising approach is to
abstract logical forms of thinking to mathematical forms of thinking which gives
rise to rich mathematical theory developments retroacting, in particular, the
logical forms and in this way enriching also the logical thinking (cf. [23]). To
capture the Mathematical in music thinking, it suggests itself to identify first
of all the logical in music, for instance in a manner as articulated by the musi-
cologist Hans-Peter Reineke in referring to musical hearing; he writes: “Certain
regulatives in musical hearing constitute and preserve music as a logical being
that must sound plausibly out of itself if it shall be accepted” [17]. During the
ending 18th century the term “musical logic” was linked to the idea “that mu-
sic is an art which is autonomous, resting in itself, and submitted only to its
own law of form; in particular, its right to exist needs not to be justified extra-
musically” ([3], p.66). But, inspite of numerous efforts (here, first of all, the
musicologist Hugo Riemann has to be named), a musical logic has never been
really established in musicology. Nevertheless, to identify the Mathematical in
music thinking, the connection between logical and mathematical thinking shall
be discussed more extensively.

The philosopher and scientist Charles Sanders Peirce has convincingly de-
scribed the connection between logical and mathematical thinking in the frame
of his philosophy of science. In his classification of sciences from 1903 ([16],
258ff.), in which he ordered the sciences by the degree of their abstractness,
mathematics as the most abstract science of all sciences is positioned at the
most abstract level. As the only hypothetical science, mathematics has the task
to develop a cosmos of forms of potential realities. All other sciences, under which
philosophy is the most abstract, relate to actual realities. According to Peirce’s
classification, philosophy partitions into phenomenology, normative science, and
metaphysics while normative science divides further into esthetics, ethics, and
logic. Musicology has to be classified - such as history - under the descriptive
science. In Peirce’s classification the sciences are ordered in a manner that each
science

– refers, according to its general principles, exclusively to the sciences which
are more abstract than itself, and

168 Rudolf Wille, Renate Wille-Henning



– makes use of examples and specific facts elaborated by sciences which are
less abstract than then the considered science.

For instance, logic as the third part of normative science is supposed to refer to
ethics, esthetics, phenomenology, and mathematics concerning its general prin-
ciples, and gains its actually real contents from metaphysics and the special
sciences, particularly also from musicology. On the other hand, musicology can
benefit from the manifoldness of the forms of logical and mathematical thinking.

As already pointed out, Heidegger does not view “the Mathematical” as part
of mathematics, but views mathematics as an abstraction of the Mathematical,
respectively. Thus, it seems very likely to locate the Mathematical within the
phenomenology which is the initial part of philosophy in Peirce’s classification of
sciences ([16], p.258ff.). According to Peirce, the general task of phenomenology
is to investigate the universal qualities of the phenomenons in their immedi-
ate character. Heidegger’s conceptions of thingness can be understood as such
universal qualities of phenomenons. This becomes more clear by the following
determination of the nature of the Mathematical which has been summarized
by Heidegger in his book [11] on p.71f:

1. The Mathematical is a conception of thingness leaping virtually over its
things.

2. This conception determines what the things are considered for, as what they
and how they should be acknowledged in advance.

3. The conception of the Mathematical is an axiomatic anticipation in the na-
ture of the things tracing out how each thing and each relationship between
those things are formed.

4. This formation offers the scale for delimiting the domain which embraces in
future all things of such nature.

5. The axiomatically determined domain now demands for the things belong-
ing to it an accessibility suitable alone for the axiomatically predetermined
things.

For getting a better understanding of Heidegger’s conception of the Mathe-
matical, it might be helpful to discuss Heidegger’s summary with respect to an
example. Let us choose the space in which we live. Our understanding of the
space is quite supported by our experiences with the bodies in the space so that
we can rephrase Heidegger’s five statements concerning the space of bodies as
follows:

1. The conception of space leaping over its bodies is a model of the Mathemat-
ical (which has been abstracted mathematically to the real vector space).

2. This conception determines what the bodies are considered for, as what they
and how they should be acknowledged in advance (which can be supported
by representing the bodies mathematically using bounded connected subsets
of the real vector space).

3. The conception of the Mathematical is an axiomatic anticipation in the na-
ture of the bodies tracing out how each body and each relationship between

The Mathematical in Music Thinking 169



those bodies are formed (which become mathematically descriptive by alge-
braic terms).

4. This formation offers the scale for delimiting the domain which embraces in
future all bodies of such nature (in particular, this allows to measure bodies
mathematically).

5. The axiomatically determined spacial domain now demands for the bodies
belonging to it an accessibility suitable alone for the axiomatically predeter-
mined bodies (which can be mathematically abstracted within the axiomat-
ically defined real vector space).

Let us record for this paper that the Mathematical as part of phenomenology
is less abstract than mathematics, but is more abstract than logic, the third sub-
part of normative science. For investigating the Mathematical in music thinking,
it is important to understand the relationships between Mathematical and log-
ical thinking. Peirce convincingly explains the close connection between logical
and mathematical thinking in his Cambridge Conferences Lectures from 1898,
which have only completely be published, with 100 pages introduction and com-
mentary, in 1992 under the title “Reasoning and the Logics of Things” [15].
Without pointing in details to Peirce’s explanations, it shall be attempted in the
following to demonstrate an analogous connection between the forms of music
thinking and the forms of the Mathematical with its abstractions in mathemat-
ics thinking. The manifoldness of music thinking, in which we would have to
investigate the Mathematical, cannot exhaustively be discussed in this contribu-
tion. Therefore we shall concentrate on forms of thinking about the rhythmic of
music, the doctrine of music forms, and the theory of tone systems.

2 The Mathematical in the Rhythmic of Music

By Riemann’s Music Encyclopaedia, rhythm has to be understood as an au-
tonomous principle of form and order which is characterized on the one hand
by regularity and relationship to a fixed tempo, on the other hand by grouping,
subdivision, and alternation. In this conceptual characterization, first of all

– the “uniformity of parts” ,
– the “succession of parts”, and
– the “distinctness of parts”

have entered in music thinking as basic forms of thinking of the Mathematical.
In the case of rhythmic, these forms of thought become forms of mathematics if
uniformity, succession, and distinctness of rhythm-parts are defined in the sense
of an established semantics of mathematics. The metric fixation of rhythmic in
musical notation may definitely be understood as such a semantically abstracting
mathematization. However the musical interpretations usually liberate from the
rigid mathematical structure by their agogics and accentuations. Therefore the
Mathematical does not disappear by mathematizing the rhythmic, but keeps
preserved in its autonomous independence.

170 Rudolf Wille, Renate Wille-Henning



Fig. 1. The Adagio of Mozart’s string quartet C major (KV 465)

The Mathematical in Music Thinking 171



−18

−12

−6

0

6

12

18

24

Violoncello

Viola

Violino II

Violino I

E

G

c

e

g

c’

e’

g’

c”

e”

g”

c’”

0 1 2 3 4 5 6 7 8
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Fig. 2. A mathematical representation of the first eight bars of the Adagio of Mozart’s
string quartet C major (KV 465)

The interplay between the Mathematical in music and the mathematization
of music shall be demonstrated here by the Adagio of Mozart’s string quartet C
major (KV 465). The score of the Adagio - presented in Fig. 1 - shows that the
Adagio consists only of 22 bars in which astonishingly many dissonances occur,
but which finally leads to the light C major clearness of the following Allegro.

The result of a mathematization of the first eight bars of the Adagio is
shown in Fig. 2. The presented mathematical structure shall be considered
as embedded into a two-dimensional real vector space. The part of its vertical
axis from -20 to 25 is visible on the left of the diagram (the numbers -18, -12,
-6, 0, 6, 12, 18, 24 shall help to identify the integer locations on the vertical
axis). There is a one-to-one correspondence between the integers of the vertical
axis from -20 to 25 and the tones of the chromatic scale from E to c′′′#. Fig. 2
indicates the part of this correspondence which horizontally links the numbers
−20 < −17 < −12 < −8 < −5 < 0 < 4 < 7 < 12 < 16 < 19 < 24 to the tones of
the C major triad E < G < c < e < g < c′ < e′ < g′ < c′′ < e′′ < g′′ < c′′′#

The location of the integers 0, 1, ... , 8 on the (imaginary) horizontal axis are
indicated by the numbers on the bottom of the diagram (the smallest unit for
the horizontal numbers is one sixth, in numerals: 1/6). The horizontal straight
line segments on the right of the vertical axis, closed on the left end and open on
the right end, represent the sounds of the four instruments with their pitches,
respectively (the pitch of such a line segment is determined by the height of the

172 Rudolf Wille, Renate Wille-Henning



line segment measured by the vertical axis). The small vertical line segments on
the right of the vertical axis and the line segment between the points (0,-12)
and (0,-11) indicate the beginning of the sound belonging to the horizontal line
segment connected at the bottom of that small vertical line segment. The union
of all those line segments can be divided into four disjoint subsets corresponding
exactly to the four instruments Violino I, Violino II, Viola, and Violoncello
(notice that the representations of the sounds beginning at the points (18/6,2),
(19/6,8), (20/6,10) and (42/6,0), (43/6,6), (44/6,8) belong to the Viola subset,
but not to the Violino II subset). Thus, the structure of those four subsets
determines the mathematical representation of the first eight bars of the Adagio.
It is not difficult to extend this representation to a mathematical representation
of the whole Adagio.

Although the discussed mathematical description of the tones of the Adagio
by their pitch, length, location, and instrument are in one-to-one correspon-
dence to the notes of the score presented in Fig. 1, there are more signatures
in the score concerning tempo, loudness, crescendo, and bows which are not
mathematized. Above all the expressive interpretations of a score by rhythm,
agogics, accentuations etc. are far away from a meaningful mathematization.
That, in particular, the rhythm evades any mathematical description becomes
clear by the following quotation: “The rhythm comprises the order, division,
and meaningful arrangement of the time development of sound events. In spite
of the tendency, created by the rhythm, to return to the same or the similar,
the rhythm should not be confused with the metre and beat because just the
vivid differences of the courses of time make possible the musical manifoldness
of the rhythms which first of all appear through graded durations of sounds and
accents, but also through melodic movements, changing sounds and tone colours,
changes of tempo and loudness, phrasing and articulation” ([2], p.656).

3 The Mathematical in the Doctrine of Music Forms

According to the Composer György Ligeti: “The combination of association, ab-
straction, remembrance, and prevision let only actually achieve the suggestive-
ness which makes possible the conception of a musical form” ([1], p.9). Without
the principle of order, the musical forms would be neither communicable nor
apperceivable. Clear orders and relationships are a criterion of its conceivabil-
ity and indispensible assumption for its understanding. The smallest units of
musical sense are the so-called “motives” which are understood as the smallest
meaningful elements of musical compositions. Motives join up with their own
transformations and other motives to larger parts which might be again only
parts of a larger whole (cf. [1], p.16f).

For understanding the Mathematical in music forms, it might be helpful to
analyse the multitude of music forms in the Adagio presented in Fig. 1 (cf. ([14],
p.446). As a whole the music form is an introduction to the Allegro, the first
movement of the C major string quartet (KV 465). The introduction divides
into two parts each of which has 11 bars; the first part is polyphonic, the second

The Mathematical in Music Thinking 173



part is homophonic. The violoncello starts the Adagio with eighth notes repeated
through all the eleven bars of the first part, interrupted only by a four notes
motive chromatically ascending at the end of the fourth bar and the eighth
bar, respectively. After the first four eigth notes of the violoncello the other
three instruments present a theme which divides into two motives each of which
consisting of four notes, where the viola starts at the end of the first bar, the
violino II one quarter note later, and the violino I again one quarter note later.
The first chord of the four instruments combining the notes c - g - e’[ - a” contains
the two surprising dissonances g - a” and e’[ - a” and allowed in the following
further dissonances until the second motive occurs in combing consonant chords.
Starting from the fifth bar, the first four bars are repeated always a major note
downwards. The last three bars of the first part of the Adagio function as a bridge
to the second part in which the four instruments play the same role between each
other in diminishing the motives.

The example shows that the mathematization of music forms can use in
addition to the descriptive dimensions pitch, length, location, and instrument
also the dimension “music form”. In our example Fig. 1 we can consider as
music forms the whole Adagio, the disjunctive two parts of the Adagio which
cover the Adagio, smaller meaningful parts such as periods, themes, phrases,
motives, scales, harmonies, chords, tones etc. Many of those music forms of the
Adagio can be mathematically represented by a subset of the two-dimensional
vector space sketched in Fig. 2; for instance:

– the first motive of the theme presented first for the viola,
– the first theme presented first for the viola,
– the first motive of the theme presented first for the violino II,
– the first theme presented first for the violino II,
– the first motive of the theme presented first for the violino I,
– the first theme presented first for the violino I,
– the first motive of the theme presented secondly for the viola,
– the first theme presented first for the viola,
– the first motive of the theme presented secondly for the violino II,
– the first theme presented first for the violino II,
– the first motive of the theme presented secondly for the violino I,
– the first theme presented first for the violino I,
– the first four tone motive ending with B presented for the violoncello,
– the second four tone motive ending with B presented for the violoncello.

The mathematical description of music forms may extend the mathemati-
zation of structures determined by the dimensions of pitch, length, location,
and instrument as, for example, presented in Fig. 2. Nevertheless, the expressive
interpretations of musical scores are still not in reach to be completely math-
ematized. Thus, there is still quite a distance between the Mathematical and
the more abstract mathematization, but further attempts of diminishing the
distance can be elaborated of which two approaches shall be briefly mentioned.

In the doctrine of music forms, symmetries play a special role for which the
form of thinking “equality of parts as expression of a whole” (cf. [19]) can be as-
sumed to belong to the Mathematical. This phenomenological form of thinking

174 Rudolf Wille, Renate Wille-Henning



finds its abstraction in mathematics by the mathematical concepts of symmetry
transformation” and “symmetry group”, respectively. A direct correspondence
between the phenomenological and the mathematical form of thinking regarding
compositions is almost only given by strong canons. But if one weakens the math-
ematical concept of symmetry transformation to a concept of partial symmetry
transformation, then considerably more correspondencies could be identified.

Fig. 3. The symmetry structure of the second movement of Anton Webern’s Symphony
op. 21

As another generalization of the mathematical form of symmetry, the twelve-
tone music used more general symmetries which view octave tones to be struc-
turally identified. The example shown in Fig. 3 represents twelve tone rows by
a sequence of eleven straight sections on a circle. Each circle presents at least
one symmetry and all circles together are arranged in such a way that a 180◦

rotation maps the total picture onto itself. Musically this indicates that the total
symphony is a transposition of its retrogression.

The composer Fred Lerdahl and the linguist Ray Jackendoff have elaborated
a much more far-reaching approach to formally grasping forms of music which
was published in their book “A generative theory of tonal music” [13]. For this,
they developed a generative grammar of music, which was inspired by Chomsky’s
linguistic transformation grammar, but developed purely within music thinking.

The Mathematical in Music Thinking 175



As fundamental components of the musical understanding of a composition they
considered grouping structures of subunits of the composition. For these group-
ing structures the form of thinking “division of a whole into subunits” can be
assumed to belong to the Mathematical and abstracted to a mathematical struc-
ture of a weighted ordered set. Lerdahl and Jackendoff impressively demonstrate
their theory by many examples, as fore instance by the beginning of Mozart’s
Symphony G minor, KV 550.

4 The Mathematical in the Theory of Tonal Systems

Tonal systems, which serve as foundation of music thinking, rest thoroughly on
different forms of thinking of the Mathematical:

– Behind the tonal system of the equal-tempered keyboard, there is the form of
thinking of a musical scale consisting of 7 white keys with the steps whole-
whole-half-whole-whole-whole-half which are completed by 5 black keys to a
musical scale with 12 half steps.

– The tonal systems of musical instruments with finger-board suggest a form of
thinking which relates to finger positions; for example, the player of a violin
thinks especially which finger has to be placed on which string in which
position .

– The tonal system of the names of tones obtains its form by the names of the
12 octave tones c - c# - d - e[ - e - f - f# - g - a[ - a - b[ - b which are rising
by half-tone steps; adding # or [ to a tone name yields the name of a tone
which is a half-tone higher or lower, respectively.

– The tonal system of the standard notation is founded on the form of the 5+5-
line system with additional ledger lines, in which the tones are represented
by note-heads with and without accidentals on and between the lines; the
tone distances describable in this way are multiples of half-tone steps.

– The harmonic tone system extends the form of the tone system of tone names
by adding integer exponents to the tone names; a tone name tz represents
a tone which is z-many syntonic commas higher or lower than the tone
t0, respectively (syntonic comma := 4 fifth – 2 octaves – 1 major third;
multiplicatively, the syntonic comma is the frequency ratio 81 : 80 obtained
by computing ((3 : 2)4 : (2 : 1)2) : (5 : 4)) where the frequency ratio 3 : 2
represents the fifth, the ratio 2 : 1 the octave and the ratio 5 : 4 the major
third).

Here only the harmonic tone system shall be further discussed. In Fig. 4,
this system is represented by a tone net in just intonation which is freely gen-
erated by the perfect fifth 3 : 2 and the perfect major third 5 : 4 (modulo
the octave 2 : 1). Leonhard Euler was the first who published such a tone net
which he named speculum musicum [6]. Following Euler’s idea, realizations of
the harmonic tone system on musical instruments have been approached again
and again (for an overview about those attempts see [18]). In particular, the

176 Rudolf Wille, Renate Wille-Henning



e−2 b−2 f#−2 c#−2 g#−2 d#−2 a#−2 e#−2 b#−2

c−1 g−1
d−1 a−1 e−1 b−1 f#−1 c#−1 g#−1

a[0 e[0 b[0 f0
c0 g0

d0 a0 e0

f[+1
c[+1 g[+1

d[+1 a[+1 e[+1 b[+1 f+1
c+1

d[[+2 a[[+2 e[[+2 b[[+2 f[+2
c[+2 g[+2

d[+2 a[+2

Fig. 4. The tone net of the harmonic tone system

instrument MUTABOR should be mentioned which even allows to realize arbi-
trary mutating pitches of tones in just intonation, but also in any other form of
intonation (see [7], [22]).

Although performing music pieces in just intonation is an ideal for many
music ensembles (for instance for a string quartet), there are problems of being
consistent with the intonation. This shall be briefly explained by the so-called
Problem of the Harmony of Second Degree illustrated in the harmonic tone sys-
tem shown in Fig. 5 (cf. [21], p.197f). The figure represents a musical cadence
formed by five perfect triads starting with the major triad c0 and ending with
the major triad c−1. More precisely,

– the major triad c0 meets the major triad f0 in the note c,
– the major triad f0 meets the minor triad d−1 in the notes f0 and a−1,
– the minor triad d−1 meets the major triad g−1 in the note d−1, and
– the major triad g−1 meets the major triad c−1 in the note g−1.

Playing a cadence as described above, musicians usually have the tendency to
end with the same chord as they started with, i.e. with the major triad c0. Then,
of course, they have to modify the pitches in between, but still to produce perfect
triads. Cadences with such intonations defy convincing mathematization so that
it would be interesting to find out how much the Mathematical could contribute
to overcome those vaguenesses.

The Mathematical in Music Thinking 177



A
A

A
A

A
A

A
A

A
A

e−2 b−2 f#−2 c#−2 g#−2 d#−2 a#−2 e#−2 b#−2

c−1 g−1
d−1

a−1 e−1 b−1 f#−1 c#−1 g#−1

a[0 e[0 b[0 f0
c0 g0

d0 a0 e0

f[+1
c[+1 g[+1

d[+1 a[+1 e[+1 b[+1 f+1
c+1

d[[+2 a[[+2 e[[+2 b[[+2 f[+2
c[+2 g[+2

d[+2 a[+2

Fig. 5. A musical cadence leading from the major triad c0 in four steps via the major
triad f0, minor triad d−1, and the major triad g−1 to the major triad c−1

5 Semantic Logic in Music Thinking and Its Semantology

A basic question is how to support our understanding of the Mathematical in
music. Since the Mathematical is more abstract than logic which itself is more
abstract than music, the study of logic in music may particularly contribute to
a better understanding of the Mathematical in music thinking.

It is common sense that humans may be affected by music so that it reaches
human feelings, emotions, and thought. Humans can even be deeply moved by
music, particularly by its musical senses and meanings which may be repre-
sented by semantic structures in music (cf. [25]). Now, such structures could be
abstracted to semantic structures in logic. For instance, the chords of a well-
tempered piano can be abstracted to a logic structure which represents the pos-
sible interactions and relationships between those chords.

The result of all such abstractions has been named by the musicologist
C. Dahlhaus “musical logic” which he characterized by the compositional, tech-
nical and esthetic moments which made the automation of instruments possible.
Dahlhaus saw the musical logic closely related to the idea of the “language char-
acter” of music. That music is presented as sounding discourse, as development
of musical thought, is the justification of its esthetic claim, that music is there to
be heard for the sake of itself (see [3], p.105f). The richness of this understanding
of musical logic is an important assumption for a better understanding of the
Mathematical in music thinking.

178 Rudolf Wille, Renate Wille-Henning



To obtain even more insights into the Mathematical in music thinking, a
further development of the recently introduced “semantology of music” could
be helpful (cf. [25]). In particular, its philosophic-logical level is basic for the
analysis of the Mathematical because philosophical concepts with their objects,
their attributes, and their relationships” are highly abstract, but still deduced
from actual realities (cf. [10], [5]). The supportive mathematical level is already
elaborated to a great extent by methods of Formal Concept Analysis (see [8],
[9], [24]).

References

1. Altmann,G.: Musikalische Formenlehre. Schott Musik International, Mainz 2001.
2. Der Brockhaus Musik - Personen, Epochen, Sachbegriffe. 2. Auflage. Brock-

haus,F.A., Mannheim-Leipzig 2001.
3. Dahlhaus,C.: Die Idee der absoluten Musik. Bärenreiter Verlag, Kassel 1978.
4. Eggebrecht, H. H.: Musikverstehen. Piper, München 1995.
5. Eklund, P., Wille, R.: Semantology as basis for Conceptual Knowledge Processing.

In: Kuznetsov, S. O., Schmidt, St. (eds.): Formal Concept Analysis. ICFCA 2007.
LNAI 4390. Springer, Heidelberg 2007, 18–38.

6. Euler, L.: De harmoniae veris principiis per speculum musicum repraesentatis. In:
Leonhardi Euleri Opera Omnia. Serie III, Band 1. Leipzig, Berlin 1926, 568–586.

7. Ganter, B., Henkel, H., Wille, R.: MUTABOR - Ein rechnergesteuertes Musikin-
strument zur Untersuchung von Stimmungen. Acustica 57 (1985), 284–289.

8. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg 1999.

9. Ganter, B., Stumme, G., Wille, R. (Eds.): Formal Concept Analysis: foundations
and applications. State-of-the-Art Survey. LNAI 3626. Springer, Heidelberg 2005.

10. Gehring, P., Wille, R.: Semantology: basic methods for knowledge representations.
In: H. Schärfe, Pascal Hitzler, Peter Øhrstrøm (eds.): Conceptual structures: in-
spiration and application. LNAI 4068. Springer, Heidelberg 2006, 215–228.

11. Heidegger, M.: Die Frage nach dem Ding. 3. Aufl. Max Niemeyer Verlag, Tübingen
1987.

12. Kant, I.: Logic. Dover, Mineola 1988.
13. Lerdahl, F., Jackendoff, R.: A generative theory of tonal music. The MIT Press,

Cambridge Mass. 1983.
14. Leopold, S. (Hrsg.): Mozart Handbuch. Bärenreiter, Kassel 2005.
15. Peirce, Ch. S.: Reasoning and the logic of things. Edited by K.L. Ketner, with an

introduction by K. L. Ketner and H. Putnam. Havard Univ. Press, Cambridge
1992.

16. Peirce, Ch. S.: The three normative sciences. In: The Essential Peirce. Selected
philosophical writings. Vol.2, edited by the Peirce Edition Project. Indiana Uni-
versity Press, Bloomington 1998.

17. Reinecke, H.-P.: Über die Eigengesetzlichkeit des musikalischen Hörens und
die Grenzen der naturwissenschaftlichen Akustik. In: B. Dopheide (Hrsg.):
Musikhören. Wissenschaftliche Buchgesellschaft, Darmstadt 1975, 223–241.

18. Vogel, M.: Die Lehre von den Tonbeziehungen. Verlag systematische Musikwis-
senschaft, Bonn 1975.

19. Wille, R.: Symmetrien in der Musik - für ein Zusammenspiel von Musik und
Mathematik. Neue Zeitschrift für Musik 143 (1982), 12–19.

The Mathematical in Music Thinking 179



20. Wille, R.: Musiktheorie und Mathematik. In: H. Götze, R. Wille (Hrsg.): Musik
und Mathematik - Salzburger Musikgespräch 1984 unter Vorsitz von Herbert von
Karajan. Springer-Verlag, Heidelberg 1985, 4–31.

21. Wille, R.: Triadic concept graphs. In: M.-L. Mugnier, M. Chein (eds.): Concep-
tual structures: theory, tools and applications. ICCS 1998. LNAI 1433. Springer,
Heidelberg 1998, 195–208.

22. Wille, R.: Eulers Speculum Musicum und das Instrument MUTABOR. DMV-
Mitteilungen, Heft 4/2000, 9–12.

23. Wille, R.: Mensch und Mathematik: Logisches und mathematisches Denken.
In: Lengnink, K., Prediger, S., Siebel, F. (Hrsg.): Mathematik und Men-
sch: Sichtweisen der Allgemeinen Mathematik. Verlag Allgemeine Wissenschaft,
Mühltal 2001, 141–160.

24. Wille, R.: Methods of Conceptual Knowledge Processing. In: R. Missaoui,
J. Schmid (eds.): Formal Concept Analysis. ICFCA 2006. LNAI 4068. Springer,
Heidelberg 2006, 1–29.

25. Wille, R., Wille-Henning, R.: Towards a semantology of music. In: Priss, U.,
Polovina, S., Hill, R. (eds.): Formal Concept Analysis. ICFCA 2007. LNAI 4604.
Springer, Heidelberg 2007, 303–312.

180 Rudolf Wille, Renate Wille-Henning



An Application of Formal Concept Analysis
to Neural Decoding

Dominik Endres1, Peter Földiák1, and Uta Priss2

1School of Psychology, University of St. Andrews, {dme2,pf2}@st-andrews.ac.uk
2School of Computing, Napier University, u.priss@napier.ac.uk

Abstract. This paper proposes a novel application of Formal Concept
Analysis (FCA) to neural decoding: the semantic relationships between
the neural representations of large sets of stimuli are explored using
concept lattices. In particular, the effects of neural code sparsity are
modelled using the lattices. An exact Bayesian approach is employed to
construct the formal context needed by FCA. This method is explained
using an example of neurophysiological data from the high-level visual
cortical area STSa. Prominent features of the resulting concept lattices
are discussed, including indications for a product-of-experts code in real
neurons.

1 Introduction

Mammalian brains consist of billions of neurons, each capable of independent
electrical activity. From an information-theoretic perspective, the patterns of
activation of these neurons can be understood as the codewords comprising the
neural code. The neural code describes which pattern of activity corresponds
to what information item. We are interested in the (high-level) visual system,
where such items may indicate the presence of a stimulus object or the value of
some stimulus attribute, assuming that each time this item is represented the
neural activity pattern will be the same or at least similar. Neural decoding is
the attempt to reconstruct the stimulus from the observed pattern of activation
in a given population of neurons [1,2,3,4]. Popular decoding quality measures,
such as Fisher’s linear discriminant [5] or mutual information [6] capture how
accurately a stimulus can be determined from a neural activity pattern (e.g.,
[4]). While these measures are certainly useful, they provide little information
about the structure of the neural code, which is what we are concerned with
here. Furthermore, we would also like to elucidate how this structure relates to
the represented information items, i.e. we are interested in the semantic aspects
of the neural code.

To explore the relationship between the representations of related items,
Földiák [7] demonstrated that a sparse neural code can be interpreted as a graph
(a kind of ”semantic net”). Each codeword can then be represented as a set of
active units (a subset of all units). The codewords can now be partially ordered
under set inclusion: codeword A ≤ codeword B iff the set of active neurons

c© Radim Belohlavek, Sergei O. Kuznetsov (Eds.): CLA 2008, pp. 181–192,
ISBN 978–80–244–2111–7, Palacký University, Olomouc, 2008.



of A is a subset of the active neurons of B. This ordering relation is capable
of capturing semantic relationships between the represented information items.
There is a duality between the information items and the sets representing them:
a more general class corresponds to a smaller subset of active neurons, and more
specific items are represented by larger sets [7]. Additionally, storing codewords
as sets is especially efficient for sparse codes, i.e. codes with a low activity ratio
(i.e. few active units in each codeword). These findings by Foldiak [7] did not
employ the terminology and tools of Formal Concept Analysis (FCA) [8,9]. But
because this duality is a Galois connection, it is of interest to apply FCA to
such data. The resulting concept lattices are an interesting representation of the
relationships implicit in the code.

We would also like to be able to represent how the relationship between
sets of active neurons translates into the corresponding relationship between
the encoded stimuli. In our application, the stimuli are the formal objects, and
the neurons are the formal attributes. The FCA approach exploits the duality
of extensional and intensional descriptions and allows to visually explore the
data in lattice diagrams. FCA has shown to be useful for data exploration and
knowledge discovery in numerous applications in a variety of fields [10,11].

This paper does not include an introduction to FCA because FCA is well
described in the literature (e.g., [9]). We use the phrase reduced labelling to refer
to line diagrams of concept lattices which have labels only attached to object
concepts and attribute concepts. As a reminder, an object concept is the smallest
(w.r.t. the conceptual ordering in a concept lattice) concept of whose extent the
object is a member. Analogously, an attribute concept is the largest concept of
whose intent the attribute is a member. Full labelling refers to line diagrams of
concept lattices where concepts are depicted with their full extent and intent.

We provide more details on sparse coding in section 2 and demonstrate how
the sparseness (or denseness) of the neural code affects the structure of the
concept lattice in section 3. Section 4 describes the generative classifier model
which we use to build the formal context from the responses of neurons in the
high-level visual cortex of monkeys. Finally, we discuss the concept lattices so
obtained in section 5.

2 Sparse coding

One feature of neural codes which has attracted a considerable amount of interest
is its sparseness. As detailed in [12], sparse coding is to be distinguished from
local and dense distributed coding. At one extreme of low average activity ratio
are local codes, in which each item is represented by a separate neuron or a small
set of neurons. This way there is no overlap between the representations of any
two items in the sense that no neuron takes part in the representation of more
than one item. An analogy might be the coding of characters on a computer
keyboard (without the Shift and Control keys), where each key encodes a single
character. It should be noted that locality of coding does not necessarily imply
that only one neuron encodes an item, it only says that the neurons are highly

182 Dominik Endres, Peter Földiák, Uta Priss



selective, corresponding to single significant items of the environment (e.g. a
“grandmother cell” - a hypothetical neuron that has the exact and only purpose
to be activated when someone sees, hears or thinks about their grandmother).

The other extreme (approximate average activity ratio of 0.5) corresponds
to dense, or holographic coding. Here, an information item is represented by the
combination of activities of all neurons. For N binary neurons this implies a
representational capacity of 2N . Given the billions of neurons in a human brain,
2N is beyond astronomical. As the number of neurons in the brain (or even just in
a single cortical area, such as primary visual cortex) is substantially higher than
the number of receptor cells (e.g. in the retina), the representational capacity
of a dense code in the brain is much greater than what we can experience in a
lifetime (the factor of the number of moments in a lifetime adds the requirement
of only about 40 extra neurons). Therefore the greatest part of this capacity is
redundant.

Sparse codes (small average activity ratio) are a favourable compromise be-
tween dense and local codes ([13]). The small representational capacity of local
codes can be remedied with a modest fraction of active units per pattern be-
cause representational capacity grows exponentially with average activity ratio
(for small average activity ratios). Thus, distinct items are much less likely to
interfere when represented simultaneously. Furthermore, it is much more likely
that a single layer network can learn to generate a target output if the input
has a sparse representation. This is due to the higher proportion of mappings
being implementable by a linear discriminant function. Learning in single layer
networks is therefore simpler, faster and substantially more plausible in terms of
biological implementation. By controlling sparseness, the amount of redundancy
necessary for fault tolerance can be chosen. With the right choice of code, a rel-
atively small amount of redundancy can lead to highly fault-tolerant decoding.
For instance, the failure of a small number of units may not make the represen-
tation undecodable. Moreover, a sparse distributed code can represent values at
higher accuracy than a local code. Such distributed coding is often referred to
as coarse coding.

3 Concept lattices of local, sparse and dense codes

In the case of a binary neural code, the sparseness of a codeword is inversely
related to the fraction of active neurons. The average sparseness across all code-
words is the sparseness of the code [13,12]. Sparse codes, i.e. codes where this
fraction is low, are found interesting for a variety of reasons: they offer a good
compromise between encoding capacity, ease of decoding and robustness [14];
they seem to be employed in the mammalian visual processing system [15]; and
they are well suited to representing the visual environment we live in [16,17]. It is
also possible to define sparseness for graded or even continuous-valued responses
(see e.g. [18,4,12]). To study what structural effects different levels of sparse-
ness would have on a neural code, we generated random codes, i.e. each of 10
stimuli was associated with randomly drawn responses of 10 neurons, subject to

An Application of Formal Concept Analysis to Neural Decoding 183



the constraints that the code be perfectly decodable and that the sparseness of
each codeword was equal to the sparseness of the code. Fig.1 shows the contexts
(represented as cross-tables) and the concept lattices of a local code (activity
ratio 0.1), a sparse code (activity ratio 0.2) and a dense code (activity ratio 0.5).
In a local code, the response patters to different stimuli have no overlapping ac-
tivations, hence the lattice representing this code is an anti-chain with top and
bottom element added. Each concept in the anti-chain introduces (at least) one
stimulus and (at least) one neuron. In contrast, a dense code results in a larger
number of concepts which introduce neither a stimulus nor a neuron. The lattice
of the dense code also contains substantially longer chains between the top and
bottom nodes than in the case of sparse and local codes.

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

s1 ×
s2 ×
s3 ×
s4 ×
s5 ×
s6 ×
s7 ×
s8 ×
s9 ×
s10 ×

n10

s10

n8

s9

n7

s8

n4

s7

n5

s6

n9

s5

n6

s4

n2

s3

n3

s2

n1

s1

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

s1 × ×
s2 × ×
s3 × ×
s4 × ×
s5 × ×
s6 × ×
s7 × ×
s8 × ×
s9 × ×
s10 × ×

n8

s10s9 s8s7 s6s5

n1

n10

s4

n4

n7

s3

n2

s2

n6 n3

s1

n5n9

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

s1 × × × × ×
s2 × × × × ×
s3 × × × × ×
s4 × × × × ×
s5 × × × × ×
s6 × × × × ×
s7 × × × × ×
s8 × × × × ×
s9 × × × × ×
s10 × × × × ×

s10

s9

s8s7

s6s5

n5

s4

n6

s3

n8

s2

n9

n2

s1

n3 n10 n7n1 n4

Fig. 1. Contexts (represented as cross-tables) and concept lattices for a local,
sparse and dense random neural code. Each context was built out of the responses
of 10 (hypothetical) neurons (n1, ..., n10) to 10 stimuli (s1, ..., s10). Each node
represents a concept.

The most obvious differences between the lattices is the total number of con-
cepts. A dense code, even for a small number of stimuli, will give rise to a large
number of concepts, because the neuron sets representing the stimuli are very

184 Dominik Endres, Peter Földiák, Uta Priss



probably going to have non-empty intersections. These intersections are poten-
tially the intents of concepts which are larger than those concepts that introduce
the stimuli. Hence, the latter are found towards the bottom of the lattice. This
implies that they have large intents, which is of course a consequence of the
density of the code. Determining these intents thus requires the observation of a
large number of neurons, which is unappealing from a decoding perspective. The
local code does not have this drawback, but is hampered by a small encoding
capacity (maximal number of concepts with non-empty extents): the concept
lattice in fig.1 is the largest one which can be constructed for a local code com-
prised of 10 binary neurons. Which of the above structures is most appropriate
depends on the conceptual structure of the environment to be encoded and the
appropriate sparseness that can be selected.

4 Building a formal context from responses of high-level
visual neurons

To explore whether FCA is a suitable tool for interpreting real neural codes,
we constructed formal contexts from the responses of high-level visual cortical
cells in area STSa (part of the temporal lobe) of monkeys. Characterising the
responses of these cells is a difficult task. They exhibit complex nonlinearities and
invariances which make it impossible to apply linear techniques, such as reverse
correlation [19], that were shown to be useful in understanding the responses
of neurons in early visual areas [20,21]. The concept lattices obtained by FCA
might enable us to display and browse these invariances: if the response of a
subset of cells indicates the presence of an invariant feature in a stimulus, then
all stimuli having this feature should form the extent of a concept whose intent
is given by the responding cells.

4.1 Physiological data

The data were obtained through [22], where the experimental details can be
found. Briefly, spike trains were obtained from single neurons within the upper
and lower banks of the superior temporal sulcus (STSa) of an awake and behav-
ing monkey (Macaca mulatta) via standard extracellular recording techniques
[23]. During the recordings, the monkey had to perform a fixation task. This
area contains cells which are responsive to faces. Extracellular voltage fluctua-
tions were measured, and the stereotypical action potentials (i.e. ’spikes’) of the
neuron were detected and their temporal sequence was recorded resulting in a
’spike train’. These spike trains were turned into distinct samples, each of which
contained the spikes from −300 ms before to 600 ms after the stimulus onset
with a temporal resolution of 1 ms. The stimulus set consisted of 1704 images,
containing colour and black and white views of human and monkey head and
body, animals, fruits, natural outdoor scenes, abstract drawings and cartoons.
Stimuli were presented for 55 ms each without inter-stimulus gaps in random

An Application of Formal Concept Analysis to Neural Decoding 185



sequences. While this rapid serial visual presentation (RSVP) paradigm compli-
cates the task of extracting stimulus-related information from the spike trains,
it has the advantage of allowing for the testing of a large number of stimuli. A
given cell was tested on a subset of 600 or 1200 of these stimuli, each stimulus
was presented between 1-15 times.

The data were previously analysed with respect to the stimulus selectivity of
individual cells only. Previous neural population decoding studies were aimed at
identifying stimulus lables (e.g. [2,3]) only. This paper presents the first analysis
of the semantic structure of neural data with FCA.

4.2 Bayesian thresholding

In order to apply FCA, we extracted a binary attribute from the raw spike
trains. We could use many-valued attributes to describe the neural response,
but we will employ a simple binary thresholding as a starting point. This binary
attribute should be as informative about the stimulus as possible, to allow for
the construction of meaningful concepts. We do this by Bayesian thresholding,
as detailed below. This procedure also avails us of a null hypothesis H0 =”the
responses contain no information about the stimuli”.

A standard way of obtaining binary responses from neurons is thresholding
the spike count within a certain time window. This is a relatively straightforward
task, if the stimuli are presented well separated in time and a large number of
trials per stimulus are available. Then latencies and response offsets are often
clearly discernible and thus choosing the time window is not too difficult. How-
ever, under RSVP conditions with few trial per stimulus, response separation
becomes more tricky, as the responses to subsequent stimuli will tend to follow
each other without an intermediate return to baseline activity. Moreover, neural
responses tend to be rather noisy. We will therefore employ a simplified version
of the generative Bayesian Bin classification algorithm (BBCa) [24], which was
shown to perform well on RSVP data [25].

BBCa was designed for the purpose of inferring stimulus labels g from a
continuous-valued, scalar measure z of a neural response. The range of z is
divided into a number of contiguous bins. Within each bin, the observation model
for the g is a Bernoulli scheme with G types and with a Dirichlet prior over its
parameters. It is shown in [24] that one can iterate/integrate over all possible
bin boundary configurations efficiently, thus making exact Bayesian inference
feasible. Moreover, the marginal likelihood (or model evidence) becomes thus
available, which can be used to infer the posterior distribution over all spike
counting windows. We make two simplifications to BBCa: 1) z is discrete, because
we are counting spikes and 2) we use models with only 1 bin boundary Z0 in the
range r of z, i.e.

P (g = li|z = zi) =
{

pli if zi ≤ Z0

qli otherwise (1)

186 Dominik Endres, Peter Földiák, Uta Priss



∑
g

pg = 1 ,
∑

g

qg = 1 (2)

p(p0, . . . , pG) =
Γ

(∑
g αg

)
∏

g Γ (αg)

∏
g

pαg−1
g (3)

p(q0, . . . , qG) =
Γ

(∑
g βg

)
∏

g Γ (βg)

∏
g

qβg−1
g (4)

p(Z0) =
1
|r|

. (5)

We have no a priori preferences for any stimulus label, thus we choose ∀g : αg =
βg = 1. Since the Dirichlet priors on the pg and qg are conjugate to the likelihood
of the data (eqn.(1)), the posteriors can be computed in closed form. Further
details of the posterior computation after observing a set of stimulus-response
pairs (li, zi) are analogous to [24].

The bin membership (higher bin = stimulus has attribute) of a given neural
response can then serve as the binary attribute required for FCA, since BBCa
weighs bin configurations by their classification (i.e. stimulus label decoding)
performance. We proceed in a straight Bayesian fashion: since the bin member-
ship is the only variable we are interested in, all other parameters (counting
window size and position, class membership probabilities, bin boundaries) are
marginalised. This minimises the risk of spurious results due to ”contrived” infor-
mation (i.e. choices of parameters) made at some stage of the inference process.
Afterwards, the probability that the response belongs to the upper bin is thresh-
olded at a probability of 0.5, i.e. if the probability is larger than 0.5, then there
will be a cross in the context. Instead of this simple binarisation, other methods
of conceptual scaling could be used.

Since BBCa yields exact model evidences, it can also be used for model
comparison. Running the algorithm with no bin boundaries in the range of z
effectively yields the probability of the data given the ”null hypothesis” H0: z
does not contain any information about g. We can then compare it against the
alternative hypothesis described above (i.e. the information which bin z is in
tells us something about g) to determine whether the cell has responded at all.

4.3 Cell selection

The experimental data consisted of recordings from 26 cells. To minimise the
risk that the computed neural responses were a result of random fluctuations,
we excluded a cell if 1) H0 was more probable than 10−6 or 2) the posterior
standard deviations of the counting window parameters were larger than 20 ms,
indicating large uncertainties about the response timing. Cells which did not
respond above the threshold included all cells excluded by the above criteria
(except one). Furthermore, since not all cells were tested on all stimuli, we also
had to select tuples of subsets of cells and stimuli such that all cells in a tuple

An Application of Formal Concept Analysis to Neural Decoding 187



were tested on all stimuli. Incidentally, this selection can also be accomplished
with FCA, by determining the concepts of a context with gIm =”stimulus g was
tested on cell m” and selecting those with a large number of stimuli × number
of cells. One of these cell and stimulus subset pairs (16 cells, 310 stimuli) was
selected for further exemplary analysis, but the lattices computed from the other
subset pairs displayed similar features.

5 Results

To analyse the neural code, the thresholded neural responses were used to build
stimulus-by-cell-response contexts. We performed FCA on these with Colib-
riConcepts1, created stimulus image montages2 and plotted the lattices3. In
these graphs, the images represent the formal objects. The top of the frame
around each concept image contains the concept number and the list of cells in
the intent (which, unfortunately, may be difficult to see in the printed version of
the graphs. Moreover, the list is truncated if more than 6 cells are in the intent.).

Fig.2 shows a lattice which has an emphasis on ”face” and ”head” concepts.
The concepts introducing human and cartoon faces (i.e. with extents consisting
of general ”face” images) tend to be higher up in the lattice and their intents
tend to be small. In contrast, the lower concepts introduce mostly single monkey
faces (and faces of the monkey’s caregivers), with the bottom concepts having
intents of ≥ 7 cells. We may interpret this as an indication that the neural code
has a higher ”resolution” for faces of conspecifics (and other ”important” faces)
than for faces in general, i.e. other monkeys are represented in greater detail in a
monkey’s brain than humans or cartoons. This feature can be observed in most
lattices we generated. Thus, monkey STSa cells are not just responsive to faces
in general, but to specific subclasses, such as monkey faces, in particular.

Fig.3 shows a subgraph from a lattice with full labelling. Full labelling is
of interest in these applications because viewing the full extent simultaneously
gives an impression of “what this concept is about”. The concepts in the left
half of the graph are face concepts, whereas the extents of the concepts in the
right half also contain a number of non-face stimuli. Most of the latter have
something ”roundish” about them. The bottom concept, being subordinate to
both the ”round” and the ”face” concepts, contains a stimulus with both char-
acteristics, which points towards a product-of-experts (PoE) encoding [26]. In
PoE, each ’expert’ can be thought of as an attribute (or attribute combination)
of the represented item. These experts are expected to correspond to meaningful
aspects of the information items. Several examples of this kind can be found in
the other graphs of the complete concept lattices, which cannot be included in
this paper.

1 available at http://code.google.com/p/colibri-concepts/
2 via ImageMagick, available at http://www.imagemagick.org
3 with Graphviz, available at http://www.graphviz.org

188 Dominik Endres, Peter Földiák, Uta Priss



Fig. 2. A lattice with reduced labelling on the stimuli, i.e. stimuli are only shown
in their object concepts. The ∅ indicates that an extent is the intersection of the
parent concept extents, i.e. no new stimuli were introduced by this concept.

An Application of Formal Concept Analysis to Neural Decoding 189



Fig. 3. A subgraph of a lattice with full labelling. The concepts on the right
side are not exclusively ”face” concepts, but most members of their extents have
something ”roundish” about them.

6 Conclusion

We demonstrated the potential usefulness of FCA for the exploration and in-
terpretation of neural codes. This technique is feasible even for high-level visual
codes, where linear decoding methods [20,21] fail, and it provides qualitative
information about the structure of the code which goes beyond stimulus label
decoding [1,2,3,4]. The semantic structure of neural data has previously been
analysed with tree-based clustering methods [27]. Imposing a tree structure on
the data may be inappropriate for neural data that reflects a more general se-
mantic structure, as supported by our results.

Clearly, however, our application of FCA for this analysis is still in its in-
fancy. It would be very interesting to repeat the analysis presented here on data
obtained from simultaneous multi-cell recordings, to elucidate whether the con-
ceptual structures derived by FCA are used for decoding by real brains. On
a larger scale than single neurons, FCA could also be employed to study the
relationships in fMRI data [28].

Acknowledgements D. Endres was supported by MRC fellowship G0501319.

References

1. Georgopoulos, A.P., Schwartz, A.B., Kettner, R.E.: Neuronal population coding
of movement direction. Science 233(4771) (1986) 1416–1419

2. Földiák, P.: The ’Ideal Homunculus’: statistical inference from neural population
responses. In Eeckmann, F., Bower, J., eds.: Computation and Neural Systems.
Kluwer Academic Publishers, Norwell, MA (1993) 55–60

3. Oram, M., Földiák, P., Perrett, D., Sengpiel, F.: The ’Ideal Homunculus’: decoding
neural population signals. Trends In Neurosciences 21 (June 1998) 259–265

4. Quiroga, R.Q., Reddy, L., Koch, C., Fried, I.: Decoding Visual Inputs From Multi-
ple Neurons in the Human Temporal Lobe. J Neurophysiol 98(4) (2007) 1997–2007

5. Duda, O., Hart, P., Stork, D.: Pattern classification. John Wiley & Sons, New
York, Chichester (2001)

190 Dominik Endres, Peter Földiák, Uta Priss



6. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons,
New York (1991)

7. Földiák, P.: Sparse neural representation for semantic indexing. In: XIII Con-
ference of the European Society of Cognitive Psychology (ESCOP-2003). (2003)
http://www.st-andrews.ac.uk/∼pf2/escopill2.pdf.

8. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In Rival, I., ed.: Ordered sets. Reidel, Dordrecht-Boston (1982) 445–470

9. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical foundations.
Springer (1999)

10. Ganter, B., Stumme, G., Wille, R., eds.: Formal Concept Analysis, Foundations
and Applications. Volume 3626 of Lecture Notes in Computer Science. Springer
(2005)

11. Priss, U.: Formal concept analysis in information science. Annual Review of
Information Science and Technology 40 (2006) 521–543

12. Földiák, P., Endres, D.: Sparse coding. Scholarpedia 3(1) (2008) 2984
http://www.scholarpedia.org/article/Sparse coding.

13. Földiák, P.: Sparse coding in the primate cortex. In Arbib, M.A., ed.: The Hand-
book of Brain Theory and Neural Networks. second edn. MIT Press (2002) 1064–
1068

14. Földiák, P.: Forming sparse representations by local anti-Hebbian learning. Bio-
logical Cybernetics 64 (1990) 165–170

15. Olshausen, B.A., Field, D.J., Pelah, A.: Sparse coding with an overcomplete basis
set: a strategy employed by V1. Vision Res. 37(23) (1997) 3311–3325

16. Olshausen, B.: Learning Linear, Sparse, Factorial Codes. Technical Report AIM
1580 (1996)

17. Simoncelli, E.P., Olshausen, B.A.: Natural image statistics and neural representa-
tion. Annual Review of Neuroscience 24 (2001) 1193–1216

18. Rolls, E., Treves, A.: The relative advantages of sparse versus distributed encoding
for neuronal networks in the brain. Network 1 (1990) 407–421

19. Dayan, P., Abbott, L.: Theoretical Neuroscience. MIT Press, London, Cambridge
(2001)

20. Jones, J., Palmer, L.A.: An evaluation of the two-dimensional Gabor filter model
of simple receptive fields in cat striate cortex. Journal of Neurophysiology 58(6)
(1987) 1233–1258

21. Ringach, D.L.: Spatial structure and symmetry of simple-cell receptive fields in
macaque primary visual cortex. Journal of Neurophysiology 88 (2002) 455–463

22. Földiák, P., Xiao, D., Keysers, C., Edwards, R., Perrett, D.: Rapid serial visual
presentation for the determination of neural selectivity in area STSa. Progress in
Brain Research (2004) 107–116

23. Oram, M.W., Perrett, D.I.: Time course of neural responses discriminating different
views of the face and head. Journal of Neurophysiology 68(1) (1992) 70–84

24. Endres, D., Földiák, P.: Exact Bayesian bin classification: a fast alternative to
bayesian classification and its application to neural response analysis. Journal of
Computational Neuroscience 24(1) (2008) 24–35 DOI: 10.1007/s10827-007-0039-5.

25. Endres, D.: Bayesian and Information-Theoretic Tools for Neuroscience.
PhD thesis, School of Psychology, University of St. Andrews, U.K. (2006)
http://hdl.handle.net/10023/162.

26. Hinton, G.: Products of experts. In: Ninth International Conference on Artificial
Neural Networks ICANN 99. Number 470 in ICANN (1999)

An Application of Formal Concept Analysis to Neural Decoding 191



27. Kiani, R., Esteky, H., Mirpour, K., Tanaka, K.: Object category structure in re-
sponse patterns of neuronal population in monkey inferior temporal cortex. Journal
of Neurophysiology 97(6) (April 2007) 4296–4309

28. Kay, K.N., Naselaris, T., Prenger, R.J., Gallant, J.L.: Identifying nat-
ural images from human brain activity. Nature 452 (2008) 352–255
http://dx.doi.org/10.1038/nature06713.

192 Dominik Endres, Peter Földiák, Uta Priss



Some Links Between Decision Tree and Dichotomic
Lattice

S. Guillas, K. Bertet, M. Visani, J-M. Ogier, and N. Girard

Laboratory L3I - University of La Rochelle - France
{sguillas,kbertet,mvisani,jmogier,ngirard02}@univ-lr.fr

Abstract. There are two types of classification methods using a Galois lattice:
as most of them rely on selection, recent research work focus on navigation-
based approaches. In navigation-oriented methods, classification is performed by
navigating through the complete lattice, similar to the decision tree. When de-
fined from binary attributes obtained after a discretization pre-processing step,
and more generally when a non-empty set of complementarity attributes can be
associated to each binary attribute, lattices are denoted as ”dichotomic lattices”.
The Navigala approach is a navigation-based classification method that relies on
the use of a dichotomic lattice. It was initially proposed for symbol recognition
in the field of technical document image analysis. In this paper, we define the
structural links between decision trees and dichotomic lattices defined from the
same table of data described by binary attributes. Under this condition, we prove
both that every decision tree is included in the dichotomic lattice and that the
dichotomic lattice is the merger of all the decision trees that can be constructed
from the same binary data table.

Key words: Classification, Galois lattice, Concept lattice, Decision tree, Navi-
gation

1 Introduction

Galois lattice (or concept lattice) has first been introduced in a formal way in graph
and ordered structures theory [1,2,3]. Afterwards it has been developed in the field
of Formal Concept Analysis (FCA) [4] for data analysis and classification. The concept
lattice structure, based on the notion of concept, enables to describe data and to preserve
their diversity and complexity. A study realized by Mephu Nguifo and Njiwoua [5]
confirms the effectiveness of concept lattices for classification and describes selection-
oriented methods. Even though these structures are associated to a high time and space
complexity (exponential in the worst case), the technological improvements that have
been performed during the last decades enable their use.

Galois lattice gives a representation of all the possible correspondences (denoted as
concepts) between a set of objects (or examples) O and a set of attributes (or features)
I . Whereas in decision trees the path from the root to a given leaf is unique, in Galois
lattices there are multiple paths from the maximal concept to a given terminal concept.
Since a lattice is defined from binary attributes, the continuous-valued primitives have
to be discretized (after being normalized) in a pre-processing step.

c© Radim Belohlavek, Sergei O. Kuznetsov (Eds.): CLA 2008, pp. 193–205,
ISBN 978–80–244–2111–7, Palacký University, Olomouc, 2008.



There are two types of classification methods using a Galois lattice: as most of
them rely on selection, recent research work focus on navigation-based approaches. The
selection-oriented methods come from the field of data mining and rely on a selection
step where the Galois lattice is used to choose concepts which encode relevant informa-
tion from the huge amount of available data. The classification step is then performed
by some usual classifier (k-nearest neighbours, Bayesian classifier. . . ).

On the contrary, in the navigation-oriented methods there is no selection step and
classification is performed by navigating through the complete lattice. Similar to the
classification tree, we navigate from a node to its successors until a labeled (terminal)
concept is reached. Indeed, Galois lattice is a graph whose structure is similar to that
of a decision tree. Whereas in decision trees the path from the root to a given leaf
is unique, in Galois lattices there are multiple paths from the maximal boundary to a
given terminal concept.

This similarity between lattices used by navigation-oriented methods and decision
trees has been mentionned and stated in some works [6,7,8]. Similar to the classification
tree, we navigate from a node to its successors until a labeled (terminal) concept is
reached. It is mentionned in particular for the Navigala method we have developped,
dedicated to symbols classification [9,10] for an objective of noisy symbols recognition.
In order to reduce the size of the lattice, which is generally more important than the size
of the tree, the Navigala method proposes a lattice generation performed on-demand
during the classification step.

As a first consequence of the similarity between lattice and decision tree, the navig-
ation-oriented methods shares the advantages of the decision tree in terms of readability
and ability to automatically select discriminatory variables among a large number of
variables. And, contrary to decision trees where there is a unique navigation path to a
given node, lattices propose several paths. This property provides to lattices enhanced
robustness towards noise.

In this paper, we precise and extend the links between these two structures of lattice
and decision tree in the particular case of dichtomic lattices, i.e lattices defined from
binary features where a non-empty set of complementarity attributes can be associated
to each feature:

– Every decision tree is included in the dichotomic lattice, when both structures are
built from the same binary attributes.

– Every dichotomic lattice is the merger of all the decision trees when these structures
are built from the same binary attributes.

Galois lattice and the navigation-oriented method Navigala are described in Sec-
tion 2. Section 3 provides a proper definition for dichotomic lattices and the two main
results of this paper concerning structural links between dichotomic lattice and decision
tree.

2 Navigala: recognition of symbols by navigation in a Galois lattice

2.1 Galois lattice definition

The concept lattice is built from a relation R between objects O and attributes I . This
graph is composed of a set of concepts ordered by inclusion. It verifies the properties

194 Stéphanie Guillas, Karell Bertet, Muriel Visani, Jean-Marc Ogier, Nathalie
Girard



of a lattice: the relation between concepts is an order relation (transitive, reflexive and
antisymmetric), and there are a lower bound and an upper bound for each pair of con-
cepts in the graph. We associate to a set of objects A ⊆ O the set f(A) of attributes in
relation R with the objects of A:

f(A) = {x ∈ I | pRx ∀ p ∈ A}

Dually, for every set of attributes B ⊆ I , we define the set g(B) of objects in relation
with the attributes of B:

g(B) = {p ∈ O | pRx ∀ x ∈ B}

The relations between the set of objects and the set of attributes are described by a
formal context. A formal context C is a triplet C = (O, I,R) represented by a table
(see for instance Table 1).

Table 1. Example of formal context

Class Id Sunniness Humidity Wind
Sun Cloudy Rain < 77.5 >= 77.5 Yes No

Y 1 X X X
N 2 X X X
N 3 X X X
N 4 X X X
Y 5 X X X
Y 6 X X X
Y 7 X X X
Y 8 X X X
Y 9 X X X
N 10 X X X
N 11 X X X
Y 12 X X X
Y 13 X X X
Y 14 X X X

The two functions f and g defined between objects and attributes form a Galois con-
nection. The composition ϕ = f ◦ g defined on the attributes set enables to associate to
each subset of attributes X ⊆ I the smallest concept containing X: (g(ϕ(X)), ϕ(X)).
This composition ϕ verifies the properties of a closure operator: ϕ is idempotent (i.e.
∀X ⊆ S, ϕ2(X) = ϕ(X)), extensive (i.e. ∀X ⊆ S, X ⊆ ϕ(X)) and isotone (i.e.
∀X, X ′ ⊆ S, X ⊆ X ′ ⇒ ϕ(X) ⊆ ϕ(X ′)).

The Galois lattice associated to a formal context C is a graph composed of a set
of formal concepts equipped with a particular binary relation. Intuitively this graph
is a representation of all the possible maximal correspondences between a subset of
objects (or instances, examples) O and a subset of attributes (or primitives, features) I .
A formal concept is a maximal objects-attributes subset where objects and attributes are

Some Links Between Decision Tree and Dichotomic Lattice 195



in relation. More formally, it is a pair (A,B) with A ⊆ O and B ⊆ I , which verifies
f(A) = B and g(B) = A. Let us introduce the binary relation ≤ defined on the set of
all the concepts by, for two formal concepts (A1, B1) and (A2, B2):

(A1, B1) ≤ (A2, B2) ⇔
∥∥∥∥A2 ⊆ A1

(equivalent to B1 ⊆ B2)

All the set of formal concepts equipped with the order relation ≤ forms a lat-
tice called a concept lattice or Galois lattice. Thus, for each concepts (A1, B1) and
(A2, B2), it exists a greatest lower bound (resp. a least upper bound) called meet (resp.
join) denoted as (A1, B1) ∧ (A2, B2) (resp. (A1, B1) ∨ (A2, B2)) defined by:

(A1, B1) ∧ (A2, B2) = (g(B1 ∩B2), (B1 ∩B2)) (1)

(A1, B1) ∨ (A2, B2) = ((A1 ∩A2), f(A1 ∩A2)) (2)

Therefore, a lattice contains a minimum (resp. maximum) element according to the
relation ≤ called the bottom (resp. top) of the lattice, and denoted as ⊥ = (O, f(O))
(resp. > = (g(I), I)). For more information on Galois lattice and closure systems, the
reader can refer to [1,4].

Figure 1 shows an example of concept lattice built from the formal context in Table
1. This formal context is composed of a set of 14 objects described by 7 attributes (sun,
cloudy, rain, hum < 77.5, hum ≥ 77.5, windY and windN ).

2.2 Navigala method description

The navigation-base recognition method named Navigala (NAVIgation into GAlois
LAttice) has been introduced in [11]. This method is fitted for recognizing noisy graphic
objects and especially symbol images. Such symbols appear in technical documents
such as architectural plans or electrical schemes. Graphic objects may be described
by statistical or structural primitives. As statistical features describe the spatial distri-
butions of the pixel values of the symbol, structural primitives describe the spatial or
topological relations between some sub-patterns extracted from the symbol images. In
the following, the primitives vector of each symbol is called the signature of this sym-
bol.

Navigala is a supervised classification approach, no matter if the discretization pre-
processing relies on a supervised or unsupervised criterion. This method relies on the
classical steps of recognition: data preparation that mainly consists in discretizing con-
tinuous data, learning where the Galois lattice is built, and classification where the
samples to recognize are labeled after navigating through the graph until they reach a
labeled concept.

Data preparation Firstly, several signatures are extracted from the symbol images: sta-
tistical signatures (Fourier-Mellin invariants [12], Radon transform-based Radon tran-
sform [13], Zernike moments [14]), and a structural signature named flexible structural
signature [15]. Data preparation then consists in normalizing the various features. The
continuous valued primitives must then be discretized. At each step of discretization, a

196 Stéphanie Guillas, Karell Bertet, Muriel Visani, Jean-Marc Ogier, Nathalie
Girard



Fig. 1. Example of Galois lattice

Some Links Between Decision Tree and Dichotomic Lattice 197



criterion selects both the primitive to divide and the optimal cutting point. Let x ∈ I
be a primitive interval composed of values Vx = (v1 . . . vn) sorted by ascending order.
The interval will be cut between the values vj and vj+1, where v maximizes a given
”cutting” criterion of the primitive values objects. We can define a lot of cutting crite-
ria, supervised or not. Among these criteria, let us mention maximal distance, entropy
and Hotelling’s coefficient. Discretization is processed until a given stopping criterion
is met. The stopping criterion used for Navigala is based on class separation, i.e. this
criterion is met when each class of objects can be represented by its own set of in-
tervals. More precisely, one class can be separated from the others when the objects
characterizing this class share at least one interval which enables to distinguish them
from the objects of the other classes. At the end of the process, the continuous-valued
primitives are converted into intervals of values, called discretized data. Once intervals
are computed, they are extended to a fuzzy number.

Learning The discretized data obtained from the data preparation will then be used as
a training set, in order to compute the Galois lattice. The generation algorithm [11] is
an extension of the Bordat’s algorithm [16] since navigation uses the Hasse diagram
of the lattice (an example of Hasse diagram of a Galois lattice is shown on Figure 1).
Once the Hasse diagram is computed, as each concept contains a set of objects, it is
possible to label them depending on these objects. Indeed, when all the objects in a
given concept correspond to the same class, this concept is named final concept and can
be labeled. Intuitively, these final concepts correspond to the classes to reach when the
Galois lattice is explored for the classification of a new object.

Classification Using the Hasse diagram of the Galois lattice, we can process recog-
nition of the new symbols belonging to the test set. Classification of a new symbol is
then processed by navigating through the graph, from the minimal concept (the top >)
to a final concept which has been previously labeled by a class. Intuitively, during this
progression, we observe a specification of the objects set and a generalization of the
attributes set, that is to say that the number of objects is reduced while the number of
attributes is increased. Thus, we refine the description of the object to recognize, un-
til it corresponds to the description of one of the learning objects whose class will be
assigned to the object to recognize. The progression in the graph from a concept to its
successor is done according to a fuzzy distance measure and a choice criterion (for more
details please refer to [11]).We estimate the distance between the signature values of the
object to recognize and the signatures values of the learning objects, and we choose the
successor concept in the Galois lattice whose description best corresponds to the object.

The Galois lattice construction algorithm we use holds several advantages: it is quite
easy to implement, and it enables an on-demand concepts generation of the Galois lat-
tice. In other words, it enables to generate from a given concept every successor concept
in the lattice. This is interesting because it avoids the construction of the whole graph,
which can be of exponential complexity in the worst case. Indeed, recognition is per-
formed by exploring only a small region of the lattice. On-demand concepts generation
therefore considerably reduces the complexity of the structure generation.

198 Stéphanie Guillas, Karell Bertet, Muriel Visani, Jean-Marc Ogier, Nathalie
Girard



3 Lattice and decision tree

In Navigala, the classification based on a navigation into the graph is quite similar to the
one proposed with a decision tree. In this section, we describe both of these structures,
and the handled data.

3.1 Decision tree definition

Since years 1960-1970, the decision tree built from a data set has been used in several
research works [17,18]. Among the most widely used decision tree generation methods,
we can cite CART [19], C4.5 [20] and ID3 [21]. As with a Galois lattice, the data are
represented by a table containing a set of objects, set described by a set of attributes.
This table can contain discrete, ordinal or continuous data. Decision tree nodes are built
from its top, called the root, to its basis where the terminal nodes are called leaves.
The construction of a decision tree requires three criteria: a selection criterion, which
enables, at each division step, to select one/several feature(s) in the table, a second
criterion to discretize the continuous data, and a last criterion to stop the divisions in
the tree, which is generally based on a purity measure of the leaves. The root regards
all the set of objects in the table; a feature of the table is then selected to separate the
objects into two distinct subsets corresponding to two children nodes. This process is
likewise iterated on each subset until the stopping criterion is satisfied (see for instance
Figure 2).

Fig. 2. Example of decision tree

When the features are continuous-valued, as it is the case with the signatures we
consider, they need a discretization step which can be processed:

– during the tree construction. Only the selected features will then be discretized.
– before the tree construction, in a pre-processing stage. The data will then be dis-

cretized until the classes are separated.

Some Links Between Decision Tree and Dichotomic Lattice 199



Several heuristics can be used for decision tree construction. For example, a pruning
stage can be performed on the decision tree to avoid over-partitioning the data. The
pruning principle is to raise into the tree from the leaves by changing nodes in leaves
depending on a purity criterion of the nodes. In the structural comparison we describe
in the following, the considered decision trees are not pruned.

3.2 Dichotomic lattice

As the decision tree construction infers a discretization of the data, it is possible to
consider the binary data table issued from this discretization, and consequently the re-
sulting Galois lattice. We thus find in this binary table (see Table 1), and in the Galois
lattice (see Figure 1), the same binary attributes as those proposed by the decision tree
(see Figure 2). Thus, when a feature V is proposed, with two children, one for yes, and
the other for no, we had to consider the two binary attributes V = yes and V = no. In
a more general way, the binary attributes issued from the children of a node are present
into the table and separate the set of objects.

In Navigala method, features are continuous data which are discretized in a pre-
processing stage in order to obtain classes’ separation. The binary attributes in the table
are intervals issued from this discretization. A symbol is described by a fixed-size sig-
nature before the discretization, and then by a set of binary intervals with the same
cardinality after discretization. A symbol is associated to only one interval among the
set of intervals issued from a same feature.

Notice that the obtained binary attributes infer an automatic selection of the dis-
criminant features. Indeed, an attribute belonging to all the set of objects will not been
proposed in the decision tree, and consequently will not been taken into account in the
table. It is the same in Navigala method where a non discretized continuous feature will
not appear in the table.

When all objects in a binary table are associated to a same number of binary at-
tributes, the final concepts (i.e. the concepts corresponding to a unique class) contain
the same number of attributes. The final concepts of a lattice cannot be related the ones
to the others (because two concepts in relation≤ can not be composed of a same number
of attributes). The final concepts thus have as a unique direct successor the concept >.
This property can be found in lattice theory with the notion of co-atomisticity. It is the
case in our approach Navigala. When discretization is performed (during decision tree
construction), the table depends on the proposed attributes in the tree, and two different
trees could infer two different binary attributes sets. These two attributes sets can then
infer two different lattices. The discretization can also be performed in pre-processing,
as in the method Navigala. From this table, several decision trees can be generated but
a unique lattice will be associated.

Whatever the case, to each binary attribute x we can associate a non empty set X
of binary attributes such as the objects having the attribute x, and those having the
attributes in X are all distinct. The binary attributes are deduced from the decision tree:
when x is a feature proposed by a node of the tree, then X is a set of all the other
features proposed by this same node. Using continuous features discretized in a pre-
processing stage, x corresponds to an interval, and X contains all remaining intervals
corresponding to this same feature. From this property, lattices issued from a tree belong

200 Stéphanie Guillas, Karell Bertet, Muriel Visani, Jean-Marc Ogier, Nathalie
Girard



to particular lattices called dichotomic lattices. More formally, dichotomic lattices are
characterized by the fact to be ∨-complementary, that is to say that for each concept
(A,B), a complementary concept (A′, B′) always exists such as

(A,B) ∨ (A′, B′) = > = (∅, I) (3)

Proposition 1 Each dichotomic lattice (i.e. lattice issued from a tree) is ∨-complemen-
tary.

Proof. Let (A,B) be any concept of a dichotomic lattice. It consists in showing the ex-
istence of a complementary concept to (A,B). We consider x any binary attribute of B,
and x a complementary attribute of x belonging to the set X . Thus, the objects having
x, and those having x are distinct. This is formalized by g({x}) ∩ g({x}) = ∅. Then
we consider the smallest concept containing x which, by definition, will be the concept
(g(ϕ({x})), ϕ({x})) where the set of attributes is ϕ({x}). From the definition of func-
tions f and g, we deduce that g(ϕ({x})) = g({x}), and that A ⊆ g({x}). Assuming
that g({x})∩ g({x}) = ∅, we can then deduce that A∩ g(ϕ({x})) = ∅. Consequently,
(A,B) ∨ (g(ϕ({x})), ϕ({x})) = (∅, I), and the concept (g(ϕ({x})), ϕ({x})) is the
complementary concept of (A,B). It proves the ∨-complementarity of the lattice.

3.3 Structural links between dichotomic lattice and decision tree

A first structural link between decision tree and dichotomic lattice consists in the fact
that both structures can be used in classification, and can be defined from a table of
binary attributes.

We can notice that the use of navigation-based lattices for classification is similar
to the one of decision trees. This similarity is formalized by a structural link between
nodes and concepts: indeed, every node in the decision tree may be associated to a
unique concept in the lattice. We consider a node n in the tree, and the set of binary
attributes Xn proposed from the root to this node. Assuming that these binary attributes
belong to the table corresponding to the lattice construction, we then associate to the
node n the smallest concept containing the features of Xn:

(g(ϕ(Xn)), ϕ(Xn)) (4)

Figure 2 presents the decision tree associated to the data of the example. Notice that
all the nodes of the decision tree are present into the lattice whatever the construction
criterion of the decision tree. Moreover, the structure of the decision tree is also pre-
served in the lattice as shown in figure 3, where the tree (in bold) is included in the
lattice. This property is verified in the general case. Thus, we show that each decision
tree is included in the Galois lattice. We also prove that the lattice is the merger of all
the decision trees.

Proposition 2 Each decision tree is included in the dichotomic lattice, when both struc-
tures are built from the same binary attributes.

Some Links Between Decision Tree and Dichotomic Lattice 201



Fig. 3. Inclusion of the decision tree (in bold) in the Galois lattice

202 Stéphanie Guillas, Karell Bertet, Muriel Visani, Jean-Marc Ogier, Nathalie
Girard



Proof. Let us consider a decision tree and a dichotomic lattice issued from the same
binary attributes. As mentioned before, these two structures handle the same binary
attributes. Moreover, to a node n of the decision tree accessible by validation of the
set of attributes Xn we associate the concept (g(ϕ(Xn)), ϕ(Xn)). To prove that the
decision tree is included into the lattice, it is necessary to prove the three following
points:

1. Two different nodes of a decision tree are associated to different concepts:
By contradiction, when two nodes n1 and n2 are associated to a same concept, then
ϕ(Xn1) = ϕ(Xn2). It means that the same objects share the attributes of Xn1 and
Xn2 , that is in contradiction with the fact that two nodes n1 and n2 are two different
nodes of the decision tree.

2. When two nodes are ancestors in the decision tree, then their associated concepts
are related in the lattice:
Clearly when a node n1 is ancestor of a node n2 in a decision tree, then Xn1 ⊆ Xn2 .
The operator ϕ being isotone, we deduce that ϕ(Xn1) ⊆ ϕ(Xn2), and consequently
that these two concepts (g(ϕ(Xn1)), ϕ(Xn1)), (g(ϕ(Xn2)), ϕ(Xn2)) are related
depending on the relation ≤.

3. Conversely, when two nodes are not ancestor in the decision tree, then their associ-
ated concepts are not related in the lattice:
When a node n1 is not ancestor of a node n2, then we need to consider all the chil-
dren of the smallest common ancestor to n1 and n2, and particularly the child n′

1

ancestor of n1 and the child n′
2 ancestor of n2. These two nodes n′

1 and n′
2 exist

by construction of the table. Clearly, as n′
1 and n′

2 are brothers, their attributes in
the associated concepts, being ϕ(Xn′

1
) and ϕ(Xn′

1
), are not shared by any object.

That is formalized by g(ϕ(Xn′
1
)) ∩ g(ϕ(Xn′

2
)) = ∅. Then, n′

1 being ancestor of
n1, we can deduce that Xn′

1
⊆ Xn1 , where ϕ(Xn′

1
) ⊆ ϕ(Xn1) by isotony of the

operator ϕ, and reversely g(ϕ(Xn′
1
)) ⊇ g(ϕ(Xn1)) by definition of g. We also

have g(ϕ(Xn′
2
)) ⊇ g(ϕ(Xn2)) because n′

2 is ancestor of n2. Thus we deduce that
g(ϕ(Xn2)) ∩ g(ϕ(Xn1)) = ∅, and that proves that the concepts associated to the
nodes n1 and n2 are not in relation by ≤.

Proposition 3 A dichotomic lattice is the merger of all the decision trees when these
structures are built from the same binary attributes.

Proof. We previously proved that each decision tree is included into the dichotomic
lattice built from the same binary attributes. To prove that the dichotomic lattice is the
merger of all the decision trees, we must prove that each concept potentially belong to
a decision tree. This proof is given by construction.

We consider an any concept (A,B). Then we build the subset of concepts C of the
lattice containing: the concept (A,B), a complementary concept (A′, B′) to (A,B), the
minimal concept ⊥, and all the final successors concepts of (A,B) and (A′, B′). The
existence of the complementary concept (A′, B′) is deduced from the∨-complementari-
ty property of the dichotomic lattice. Moreover, it infers that this subset C in addition to
the relation ≤ forms a tree. Then we add in the set C a maximal number of concepts of
the dichotomic lattice such as (C,≤) preserves the property to be a tree. Thus, by con-
struction, we obtain a sub-tree included into the dichotomic lattice, containing (A,B).

Some Links Between Decision Tree and Dichotomic Lattice 203



In this sub-tree, the leaves are final concepts and correspond to subsets of objects which
can not be separated by any binary attribute, i.e. the classes when the data have been
discretized until the classes are separated. This tree can thus be considered as a decision
tree, what finishes this proof.

4 Conclusion

This paper is about Galois lattice which is used as a classifier in the Navigala approach
and, more generally, about dichotomic lattices defined from a structural way: to every
binary feature, a non-empty set of complementarity features can be associated.

There is some published work about using Galois lattices as a classifier: as most
of the proposed approaches consider the lattice as a concept selection tool, Navigala
performs classification by navigating through the lattice from one node to its successors,
similar to a classification tree.

As a first consequence, the Navigala approach shares the advantages of the decision
tree in terms of readability and ability to automatically select discriminatory variables
among a large number of variables. As another consequence, contrary to decision trees
where there is a unique navigation path to a given node, lattices propose several paths.
This property provides to lattices enhanced robustness towards noise.

The inclusion result (Proposition 2) of this paper implies that navigation paths pro-
posed by decision tree are included in the dichotomic lattice issued from the same binary
features. Moreover, Proposition 3 states that the every dichotomic lattice is equal to the
merge of navigation paths of all the decision trees.

This work opens the way for the definition of a new method that would combine the
advantages of both trees and lattices.

References

1. Barbut, M., Monjardet, B.: Ordre et classification, Algèbre et combinatoire, Paris (1970) 2
tomes.

2. Birkhoff, G.: Lattice theory. 3rd edn. Volume 25. American Mathematical Society (1967)
3. Davey, B., Priestley, H.: Introduction to lattices and orders. 2nd edn. Cambridge University

Press (1991)
4. Wille, R.: Restructuring lattice theory: an approach based on hierarchy on contexts. Ordered

sets (1982) 445–470
5. Mephu-Nguifo, E., Njiwoua, P.: Treillis des concepts et classification supervisée. Technique

et Science Informatiques, RSTI 24 (2005) 449–488 Hermès - Lavoisier, Paris, France.
6. Kuznetsov, S.: Machine learning on the basis of formal concept analysis. 62 (2001) 1543 –

1564
7. Kuznetsov, S.: Machine learning and formal concept analysis. 3029 (2004) 287–312
8. Guillas, S., Bertet, K., Ogier, J.M.: Concept lattice classifier : a first step towards an iterative

process of recognition of noised graphic objects. In: Fourth International Conference on
Concept Lattices and their Applications (CLA’2006). (2006) 257–263

9. Guillas, S.: Reconnaissance d’objets graphiques détériorés : approche fondée sur un treillis
de Galois. PhD thesis, Université de La Rochelle (2007)

204 Stéphanie Guillas, Karell Bertet, Muriel Visani, Jean-Marc Ogier, Nathalie
Girard



10. Guillas, S., Bertet, K., Ogier, J.M.: A generic description of the concept lattices’ classifier:
Application to symbol recognition. In Wenyin, L., Lladós, J., eds.: Graphics Recognition:
Ten Years Review and Future Perspectives - Selected papers from GREC’05. Volume 3926.,
LNCS (2006) 47–60

11. Bertet, K., Guillas, S., Ogier, J.M.: Extensions of bordat’s algorithm for attributes. In: Fifth
International Conference on Concept Lattices and their Applications (CLA’2007), Montpel-
lier, France (2007) 38–49

12. Derrode, S., Daoudi, M., Ghorbel, F.: Invariant content-based image retrieval using a com-
plete set of Fourier-Mellin descriptors. Int. Conf. on Multimedia Computing and Systems
(ICMCS’99) (1999) 877–881

13. Tabbone, S., Wendling, L.: Recherche d’images par le contenu à l’aide de la transformée de
Radon. Technique et Science Informatiques (2003)

14. Teague, M.: Image analysis via the general theory of moments. Journal of Optical Society
of America (JOSA) 70 (2003) 920–930

15. Coustaty, M., Guillas, S., Visani, M., Bertet, K., Ogier, J.M.: Flexible structural signature
for symbol recognition using a concept lattice classifier. In: Seventh IAPR International
Workshop on Graphics Recognition (GREC’07), Curitiba, Brazil (2007)

16. Bordat, J.: Calcul pratique du treillis de Galois d’une correspondance. Math. Sci. Hum. 96
(1986) 31–47

17. Rakotomalala, R.: Graphes d’induction. PhD thesis, Université Claude Bernard, Lyon I
(1997)

18. Rakotomalala, R.: Arbres de décision. Revue MODULAD 33 (2005)
19. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regression trees.

Wadsworth Inc., Belmont, California (1984)
20. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufman, Los Altos, Califor-

nia (1993)
21. Quinlan, J.: Induction of decision trees. Machine Learning 1 (1986)

Some Links Between Decision Tree and Dichotomic Lattice 205





On Generalization of Fuzzy Concept Lattices
Based on Change of Underlying Fuzzy Order

Pavel Martinek

Department of Computer Science, Palacky University, Olomouc
Tomkova 40, CZ-779 00 Olomouc, Czech Republic

pavel.martinek@upol.cz

Abstract. The paper presents a generalization of the main theorem
of fuzzy concept lattices. The theorem is investigated from the point
of view of fuzzy logic. There are various fuzzy order types which differ
by incorporated relation of antisymmetry. This paper focuses on fuzzy
order which uses fuzzy antisymmetry defined by means of multiplication
operation and fuzzy equality.

Keywords. Fuzzy order, fuzzy concept lattice

1 Introduction

A notion of fuzzy order has been derived from the classical one by fuzzification
the three underlying relations. This led to various versions, at the beginning
versions utilizing the classical relation of equality (see e.g. [9]); later versions are
more general by introducing fuzzy similarity (or fuzzy equality) instead of the
classical equality (see e.g. [4]). Fuzzy similarity is based on idea that relationship
between objects A and B should be transformed to a similar relationship between
objects A′ and B′ whenever A′, B′ are similar to A, B, respectively.

In [3], one of the later definitions of fuzzy order was used to formulate and
prove a fuzzy logic extension of the main theorem of concept lattices. The aim
of this paper is to enlarge validity of the theorem to more general fuzzy order.

2 Preliminaries

First, we recall some basic notions. It is known that in fuzzy logic an important
structure of truth values is represented by a complete residuated lattice (see e.g.
[5], [6], [7]).

Definition 1. A residuated lattice is an algebra L = 〈L,∧,∨,⊗,→, 0, 1〉 such
that

– 〈L,∧,∨, 0, 1〉 is a lattice with the least element 0 and the greatest element 1,
– 〈L,⊗, 1〉 is a commutative monoid,

c© Radim Belohlavek, Sergei O. Kuznetsov (Eds.): CLA 2008, pp. 207–215,
ISBN 978–80–244–2111–7, Palacký University, Olomouc, 2008.



– ⊗ and → form so-called adjoint pair, i.e. a ⊗ b ≤ c iff a ≤ b → c holds for
all a, b, c ∈ L.

Residuated lattice L is called complete if 〈L,∧,∨〉 is a complete lattice.

Throughout the paper, L will denote a complete residuated lattice. An L-
set (or fuzzy set) A in a universe set X is any mapping A : X → L, A(x)
being interpreted as the truth degree of the fact that “x belongs to A”. By LX

we denote the set of all L-sets in X. A binary L-relation is defined obviously.
Operations on L extend pointwise to LX , e.g. (A∨B)(x) = A(x)∨B(x) for any
A,B ∈ LX . As is usual, we write A ∪B instead of A ∨B, etc.

L-equality (or fuzzy equality) is a binary L-relation ≈ ∈ LX×X such that
(x ≈ x) = 1 (reflexivity), (x ≈ y) = (y ≈ x) (symmetry), (x ≈ y) ⊗ (y ≈ z) ≤
(x ≈ z) (transitivity), and (x ≈ y) = 1 implies x = y. We say that a binary
L-relation R ∈ LX×Y is compatible with respect to ≈X and ≈Y if R(x, y) ⊗
(x ≈X x′) ⊗ (y ≈Y y′) ≤ R(x′, y′) for any x, x′ ∈ X, y, y′ ∈ Y . Analogously
an L-set A ∈ LX is compatible with respect to ≈X if A(x)⊗(x ≈X x′) ≤ A(x′) for
any x, x′ ∈ X. Given A,B ∈ LX , in agreement with [5] we define the subsethood
degree S(A,B) of A in B by S(A,B) =

∧
x∈X A(x) → B(x). For A ∈ LX and

a ∈ L, the set aA = {x ∈ X; A(x) ≥ a} is called the a-cut of A. Analogously, for
R ∈ LX×Y and a ∈ L, we denote aR = {(x, y) ∈ X×Y ; R(x, y) ≥ a}. For x ∈ X
and a ∈ L, {a/x} is the L-set defined by {a/x} (x) = a and {a/x} (y) = 0 for
y 6= x.

Definition 2. An L-order on a set X with an L-equality ≈ is a binary
L-relation � which is compatible with respect to ≈ and satisfies the following
conditions for all x, y, z ∈ X:

(x � x) = 1 (reflexivity),

(x � y)⊗ (y � x) ≤ (x ≈ y) (antisymmetry),

(x � y)⊗ (y � z) ≤ (x � z) (transitivity).

(Cf. T-E-ordering from [4].) Since in residuated lattices x⊗ y ≤ x ∧ y for every
x, y ∈ X, our relation is more general than L-order of [3] or [2] where antisym-
metry is expressed by condition (x � y) ∧ (y � x) ≤ (x ≈ y).

Note that

(x � y)⊗ (y � x) ≤ (x ≈ y) ≤ (x � y) ∧ (y � x). (1)

Indeed, the first inequality represents antisymmetry and the second one follows
from compatibility (see proof of Lemma 4 in [3]):
(x ≈ y) = (x � x) ⊗ (x ≈ x) ⊗ (x ≈ y) ≤ (x � y) and analogously, (x ≈ y) ≤
(y � x).

The inequalities (1) represent the fact that L-equality must satisfy the inter-
val confinement as follows:

(x ≈ y) ∈ [(x � y)⊗ (y � x), (x � y) ∧ (y � x)] .

208 Pavel Martinek



On the other hand, the definition of L-order by [3] (which must satisfy the
condition (x �[3] y) ∧ (y �[3] x) ≤ (x ≈ y)) leads to firm binding of L-equality
with the upper bound of previous interval (see Lemma 4 of [3]), i.e.

(x ≈ y) = (x �[3] y) ∧ (y �[3] x).

Now, we can interpret the relationship between L-order and L-equality defined
either in [3] and in this paper as follows. By the definition, L-order is dependent
on a given L-equality. However, if we change point of view and have a look to
the inverse “dependence”, we can see that

– by [3], an L-equality is binded with any corresponding L-order firmly,
– in our paper, an L-equality has certain freedom (with respect to a corre-

sponding L-order).

This will play an important role during generalizing results achieved in [3].

If � is an L-order on a set X with an L-equality ≈, we call the pair X =
〈〈X,≈〉,�〉 an L-ordered set. In agreement with [3], we say that L-ordered sets
〈〈X,≈X〉,�X〉 and 〈〈Y,≈Y 〉,�Y 〉 are isomorphic if there is a bijective mapping
h : X → Y such that (x ≈X x′) = (h(x) ≈Y h(x′)) and (x �X x′) =
(h(x) �Y h(x′)) hold for any x, x′ ∈ X.

Note that in case of firm binding of L-equality and L-order by [3] (see the note
above), preservation of the L-order by the bijection h implies also preservation
of the L-equality. Clearly this is not true for L-order defined in this paper.

3 Some properties of fuzzy ordered sets

In this section, we describe some notions and properties related to fuzzy ordered
sets which represent appropriate generalizations of notions and facts known from
classical (partial) ordered sets. These generalizations were introduced mainly
in [2] and [3] (the fact that originally they used less general definition of L-order
is unimportant).

Definition 3. For an L-ordered set 〈〈X,≈〉,�〉 and A ∈ LX we define the
L-sets L(A) and U(A) in X by

L(A)(x) =
∧

x′∈X

(A(x′) → (x � x′)) for all x ∈ X,

U(A)(x) =
∧

x′′∈X

(A(x′′) → (x′′ � x)) for all x ∈ X.

L(A) and U(A) are called the lower cone and upper cone of A, respectively.

These L-sets can be described as the L-sets of elements which are smaller
(greater) than all elements of A. We will abbreviate U(L(A)) by UL(A), L(U(A))
by LU(A) etc.

On Generalization of Fuzzy Concept Lattices Based on Change of
Underlying Fuzzy Order

209



Definition 4. For an L-ordered set 〈〈X,≈〉,�〉 and A ∈ LX we define the
L-sets inf(A) and sup(A) in X by

(inf(A))(x) = (L(A))(x) ∧ (UL(A))(x) for all x ∈ X,

(sup(A))(x) = (U(A))(x) ∧ (LU(A))(x) for all x ∈ X.

inf(A) and sup(A) are called the infimum and supremum of A, respectively.

Lemma 1. Let 〈〈X,≈〉,�〉 be an L-ordered set, A ∈ LX . If (inf(A))(x) = 1 and
(inf(A))(y) = 1 then x = y (and similarly for sup(A)).

Proof. The proof is almost verbatim repetition of the proof of Lemma 9 in [3].�

Lemma 2. For an L-ordered set 〈〈X,≈〉,�〉 and A ∈ LX , the L-sets inf(A)
and sup(A) are compatible with respect to ≈.

Proof. The proof can be found in [2], namely in more general proof of Lemma 5.39
with regard to Remark 5.40. �

Definition 5. For a set X with an L-equality ≈, an L-set A ∈ LX is called
an S-singleton if it is compatible with respect to ≈ and there is some x0 ∈ X
such that A(x0) = 1 and A(x) < 1 for x 6= x0.

Remark 1. There are various definitions of fuzzy singletons (see e.g. [8] or [2]).
Our definition represents the simplest one, that is why we call it S-singleton.
Demanding more conditions than stated would lead to serious troubles in proof
of Theorem 2. Note that in case of L equal to the Boolean algebra 2 of classical
logic with the support {0, 1}, S-singletons represent classical one-element sets.

Lemma 3. For an L-ordered set 〈〈X,≈〉,�〉 and A ∈ LX , if (inf(A))(x0) = 1
for some x0 ∈ X then inf(A) is an S-singleton. The same is true for suprema.

Proof. The assertion immediately follows from Lemmata 1 and 2. �

Definition 6. An L-ordered set 〈〈X,≈〉,�〉 is said to be completely lattice
L-ordered if for any A ∈ LX both inf(A) and sup(A) are S-singletons.

Theorem 1. For an L-ordered set X = 〈〈X,≈〉,�〉, the relation 1� is an order
on X. Moreover, if X is completely lattice L-ordered then 1� is a lattice order
on X.

Proof. The proof is analogous to the proof of Theorem 13 in [3]. �

210 Pavel Martinek



4 Fuzzy concept lattices

We remind some basic facts about concept lattices in fuzzy setting. A formal
L-context is a tripple 〈X, Y, I〉 where I is an L-relation between the sets X and Y
(with elements called objects and attributes, respectively). For any L-context we
can generalize notions introduced in Definition 3 as follows. Let X, Y be sets with
L-equalities ≈X ,≈Y , respectively; I ∈ LX×Y be an L-relation compatible with
respect to ≈X and ≈Y . For any A ∈ LX , B ∈ LY , we define A↑ ∈ LY , B↓ ∈ LX

(see e.g. [1]) by

A↑(y) =
∧

x∈X

(A(x) → I(x, y)) for all y ∈ Y,

B↓(x) =
∧

y∈Y

(B(y) → I(x, y)) for all x ∈ X.

Clearly, A↑(y) describes the truth degree, to which “for each x from A, x and y
are in I”, and similarly B↓(x). We will abbreviate (A↑)↓ by A↑↓, (B↓)↑ by B↓↑

etc. The equation A↑ = A↑↓↑ holds true for all A ∈ LX (see e.g. [1]). Note that
if X = Y and I = � is an L-order on X, then A↑ coincides with U(A) and
B↓ coincides with L(B). An L-concept in a given L-context 〈X, Y, I〉 is any pair
〈A,B〉 of A ∈ LX and B ∈ LY such that A↑ = B and B↓ = A (see [2]).

We denote by B(X, Y, I) the set of all L-concepts given by an L-context
〈X, Y, I〉, i.e.

B(X, Y, I) = {〈A,B〉 ∈ LX × LY ; A↑ = B, B↓ = A}.

For any B(X, Y, I), we put (see [3])

(〈A1, B1〉 �S 〈A2, B2〉) = S(A1, A2) for all 〈A1, B1〉, 〈A2, B2〉 ∈ B(X, Y, I).

The L-relation �S obviously satisfies the conditions of reflexivity and transitiv-
ity. As to the antisymmetry, we need an L-equality. Therefore, consider an arbi-
trary L-equality ≈ on the set B(X, Y, I) such that �S is compatible with respect
to ≈ and the inequality

(〈A1, B1〉 �S 〈A2, B2〉)⊗ (〈A2, B2〉 �S 〈A1, B1〉) ≤ (〈A1, B1〉 ≈ 〈A2, B2〉)

holds true for every 〈Ai, Bi〉 ∈ B(X, Y, I), i ∈ {1, 2}. (Existence of such an L-
equality is demonstrated e.g. by (〈A1, B1〉 ≈ 〈A2, B2〉) = S(A1, A2)∧S(A2, A1) in
[3].) Consequently, �S is an L-order on 〈B(X, Y, I),≈〉 and we get an L-ordered
set 〈〈B(X, Y, I),≈〉,�S〉 which will act in further two theorems. Note that the
L-ordered set is more general than L-concept lattice 〈〈B(X, Y, I),≈〉,�S〉 of [3]
because of more general L-equality.

The next theorem characterizing L-concept lattices needs further denotation.
As usual, for an L-set A in U and a ∈ L, we denote by a⊗A the L-set such that

On Generalization of Fuzzy Concept Lattices Based on Change of
Underlying Fuzzy Order

211



(a ⊗ A)(u) = a ⊗ A(u) for all u ∈ U . If M is an L-set in Y and each y ∈ Y is
an L-set in X, we define the L-set

⋃
M in X (see [3]) by

(
⋃
M)(x) =

∨
A∈Y

M(A)⊗A(x) for all x ∈ X.

Clearly,
⋃
M represents a generalization of a union of a system of sets. For an

L-set M in B(X, Y, I), we put
⋃

X M =
⋃

prX(M),
⋃

Y M =
⋃

prY (M) where
prX(M) is an L-set in the set {A ∈ LX ; A = A↑↓} of all extents of B(X, Y, I)
defined by (prXM)(A) = M(A,A↑) and, similarly, prY (M) is an L-set in the
set {B ∈ LY ; B = B↓↑} of all intents of B(X, Y, I) defined by (prYM)(B) =
M(B↓, B). Hence,

⋃
X M is the “union of all extents from M” and

⋃
Y M is

the “union of all intents from M” (see [3]).

Theorem 2. Let 〈X, Y, I〉 be an L-context. An L-ordered set
〈〈B(X, Y, I),≈〉,�S〉 is completely lattice L-ordered set in which infima and
suprema can be described as follows: for an L-set M in B(X, Y, I) we have

1inf(M) =

{〈
(
⋃
Y

M)↓, (
⋃
Y

M)↓↑
〉}

(2)

1sup(M) =

{〈
(
⋃
X

M)↑↓, (
⋃
X

M)↑
〉}

(3)

Proof. The proof of (2) and (3) is analogous to the proof of part (i) of Theorem 14
in [3] where differently defined antisymmetry is not used anywhere. Further-
more by Lemma 3, each L-ordered set 〈〈B(X, Y, I),≈〉,�S〉 is completely lattice
L-ordered. �

For any completely lattice L-ordered set X = 〈〈X,≈〉,�〉, a subset K ⊆ X
is called {0, 1}-infimally dense ({0, 1}-supremally dense) in X (cf. [3]) if for each
x ∈ X there is some K ′ ⊆ K such that x =

∧
K ′ (x =

∨
K ′). Here

∧
(
∨

) means
infimum (supremum) with respect to the 1-cut of �.

Theorem 3. Let 〈X, Y, I〉 be an L-context. A completely lattice L-ordered set
V = 〈〈V,≈V 〉,�〉 is isomorphic to an L-ordered set 〈〈B(X, Y, I),≈〉,�S〉 iff there
are mappings γ : X × L → V, µ : Y × L → V , such that

(i) γ(X × L) is {0, 1}-supremally dense in V,
(ii) µ(Y × L) is {0, 1}-infimally dense in V,
(iii) ((a⊗ b) → I(x, y)) = (γ(x, a) � µ(y, b)) for all x ∈ X, y ∈ Y, a, b ∈ L.

(iv) (〈A1, B1〉 ≈ 〈A2, B2〉) =
( ∨

x∈X

γ(x,A1(x)) ≈V

∨
x∈X

γ(x,A2(x))
)

for all 〈A1, B1〉, 〈A2, B2〉 ∈ B(X, Y, I).

212 Pavel Martinek



Proof. Let γ and µ with the above properties exist. If we define the mapping
ϕ : B(X, Y, I) → V by ϕ(A,B) =

∨
x∈X

γ(x,A(x)) for all 〈A,B〉 ∈ B(X, Y, I),

then by the proof of Part (ii) of Theorem 14 in [3] (where differently defined
antisymmetry is not used anywhere) the mapping ϕ is bijective and preserves
fuzzy order. Thus, we have to prove that it preserves also fuzzy equality. However
this is immediate:
(ϕ(A1, B1) ≈V ϕ(A2, B2)) = (

∨
x∈X

γ(x,A1(x)) ≈V

∨
x∈X

γ(x,A2(x))) =

= (〈A1, B1〉 ≈ 〈A2, B2〉).

Conversely, let V and 〈〈B(X, Y, I),≈〉,�S〉 be isomorphic. Similarly to [3],
it suffices to prove existence of mappings γ, µ with desired properties for V =
〈〈B(X, Y, I),≈〉,�S〉 and for identity on 〈〈B(X, Y, I),≈〉,�S〉 which is obviously
an isomorphism. The reason for this simplification lies in the fact that for the
general case V ∼= 〈〈B(X, Y, I),≈〉,�S〉 one can take γ ◦ ϕ : X × L → V, µ ◦ ϕ :
Y × L → V , where ϕ is the isomorphism of 〈〈B(X, Y, I),≈〉,�S〉 onto V. If we
define γ : X × L → B(X, Y, I), µ : Y × L → B(X, Y, I) by

γ(x, a) =
〈
{a/x}

↑↓
, {a/x}

↑
〉

,

µ(y, b) =
〈{

b/y
}↓

,
{
b/y

}↓↑〉
for all x ∈ X, y ∈ Y, a, b ∈ L, then by the proof of Part (ii) of Theorem 14
in [3] (where differently defined antisymmetry is not used anywhere) these map-
pings γ, µ satisfy conditions (i–iii) of our theorem. So, it remains to prove con-
dition (iv), i.e. the equality

(〈A1, B1〉 ≈ 〈A2, B2〉) =
( ∨

x∈X

γ(x, A1(x)) ≈V

∨
x∈X

γ(x,A2(x))
)

.

Since we consider identity on 〈〈B(X, Y, I),≈〉,�S〉, we have ≈=≈V and it suf-
fices to prove that

∨
x∈X

γ(x,A(x)) = 〈A,B〉 for all 〈A,B〉 ∈ B(X, Y, I).

We start with proof of the equation A =
⋃

x∈X

{
A(x)/x

}↑↓
for any A = A↑↓.

On the one hand we get for each x′ ∈ X:( ⋃
x∈X

{
A(x)/x

}↑↓
)

(x′) =
∨

x∈X

{
A(x)/x

}↑↓
(x′) =

=
∨

x∈X

[ ∧
y∈Y

{
A(x)/x

}↑
(y) → I(x′, y)

]
=

=
∨

x∈X

[ ∧
y∈Y

( ∧
x̃∈X

{
A(x)/x

}
(x̃)→I(x̃, y)

)
→ I(x′, y)

]
=

On Generalization of Fuzzy Concept Lattices Based on Change of
Underlying Fuzzy Order

213



=
∨

x∈X

[ ∧
y∈Y

(A(x) → I(x, y)) → I(x′, y)

]
≥

≥
∧

y∈Y

[(A(x′) → I(x′, y)) → I(x′, y)] ≥

≥
∧

y∈Y

A(x′) = A(x′).

On the other hand we have:( ⋃
x∈X

{
A(x)/x

}↑↓
)

(x′) =
∨

x∈X

[ ∧
y∈Y

(A(x) → I(x, y)) → I(x′, y)

]
≤

≤
∨

x∈X

[ ∧
y∈Y

( ∧
x̃∈X

A(x̃) → I(x̃, y)
)
→ I(x′, y)

]
=

=
∨

x∈X

[ ∧
y∈Y

A↑(y) → I(x′, y)

]
=

=
∨

x∈X

A↑↓(x′) = A↑↓(x′) = A(x′).

Using also the definition of γ and Theorem 2, we obtain∨
x∈X

γ(x, A(x)) =
∨

x∈X

〈{
A(x)/x

}↑↓
,
{

A(x)/x

}↑
〉

=

=

〈( ⋃
x∈X

{
A(x)/x

}↑↓
)↑↓

,

( ⋃
x∈X

{
A(x)/x

}↑↓
)↑

〉
=

= 〈A↑↓, A↑〉 = 〈A,B〉. �

Remark 2. Note that the essential difference between Theorem 3 in this paper
and Theorem 14, part (ii) in [3] lies in differently defined L-ordered sets (see
the notes at the end of Section 2). Therefore in comparison to Theorem 14
of [3], Theorem 3 must contain “additional” condition (iv) which is necessary
for isomorphism between (more general) V and 〈〈B(X, Y, I),≈〉,�S〉.

5 Work in progress

There is an interesting proposition which deals with a completely lattice
L-ordered set 〈〈B(V, V,�),≈S〉,�S〉 such that

• � is an L-order on V ,

214 Pavel Martinek



• ≈S denotes an L-equality defined by (〈A1, B1〉 ≈S 〈A2, B2〉) = (v1 ≈ v2)
where vi (i ∈ {1, 2}) is the (unique) element of V such that (sup(Ai))(vi) = 1.
(Thus fuzzy equality between L-concepts 〈A1, B1〉, 〈A2, B2〉 ∈ B(V, V,�) is
expressed by fuzzy equality between suprema of their extents.)

Proposition 1. A completely lattice L-ordered set V = 〈〈V,≈V 〉,�〉 is isomor-
phic to 〈〈B(V, V,�),≈S〉,�S〉.

The proposition represents a corollary of Theorem 3, but an elegant proof of
this fact is a matter of further investigations.

6 Acknowledgements

The author wishes to thank the anonymous reviewers for their criticisms and
useful comments.

References

1. Bělohlávek, R.: Fuzzy Galois connections, Math. Logic Quarterly 45 (4), 1999,
497–504.

2. Bělohlávek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer,
New York, 2002.

3. Bělohlávek, R.: Concept lattices and order in fuzzy logic, Annals of Pure and Appl.
Logic 128 (1-3), 2004, 277–298.

4. Bodenhofer, U.: A similarity-based generalization of fuzzy orderings preserving the
classical axioms, Internat. J. Uncertain. Fuzziness Knowledge-based Systems 8 (5),
2000, 593–610.

5. Goguen, J. A.: L-fuzzy sets, J. Math. Anal. Appl. 18, 1967, 145–174.
6. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.
7. Höhle, U.: On the fundamentals of fuzzy set theory, J. Math. Anal. Appl. 201,

1996, 786–826.
8. Höhle, U.: Many-valued equalities, singletons and fuzzy partitions, Soft Computing

2, 1998, 134–140.
9. Zadeh, L. A.: Similarity relations and fuzzy orderings, Inf. Sci. 3, 1971, 177–200.

On Generalization of Fuzzy Concept Lattices Based on Change of
Underlying Fuzzy Order

215





On the Isomorphism Problem of Concept
Algebras

Léonard Kwuida1? and Hajime Machida2

1 Technische Universität Dresden
Institut für Algebra

D-01062 Dresden, Germany

2 Hitotsubashi University
Department of Mathematics

2-1 Naka, Kunitachi, Tokyo 186-8601, Japan

Abstract. Weakly dicomplemented lattices are bounded lattices equipped
with two unary operations to encode a negation on concepts. They have
been introduced to capture the equational theory of concept algebras [12].
They generalize Boolean algebras. Concept algebras are concept lattices,
then complete lattices, with a weak negation and a weak opposition. A
special case of the representation problem for weakly dicomplemented
lattices, posed in [4] is whether complete weakly dicomplemented lat-
tices are isomorphic to concept algebras. In this contribution we give a
negative answer to this question (Theorem 3). We also provide a new
proof of a well known result due to M.H. Stone [8], saying that each
Boolean algebra is a field of sets (Corollary 4).

1 Weak dicomplementation.

Definition 1. A weakly dicomplemented lattice is a bounded lattice L
equipped with two unary operations 4 and 5 called weak complementation
and dual weak complementation, and satisfying for all x, y ∈ L the following
equations:

(1) x44 ≤ x,
(2) x ≤ y =⇒ x4 ≥ y4,
(3) (x ∧ y) ∨ (x ∧ y4) = x,

(1’) x55 ≥ x,
(2’) x ≤ y =⇒ x5 ≥ y5,
(3’) (x ∨ y) ∧ (x ∨ y5) = x.

We call x4 the weak complement of x and x5 the dual weak complement
of x. The pair (x4, x5) is called the weak dicomplement of x and the pair
(4,5 ) a weak dicomplementation on L. The structure (L,∧,∨,4 , 0, 1) is
called a weakly complemented lattice and (L,∧,∨,5 , 0, 1) a dual weakly
complemented lattice.

? was supported by the grant of Prof. Hajime Machida for a stay in Japan at Hitot-
subashi University, Kunitachi, Tokyo, Japan during which this paper was discussed.

c© Radim Belohlavek, Sergei O. Kuznetsov (Eds.): CLA 2008, pp. 217–229,
ISBN 978–80–244–2111–7, Palacký University, Olomouc, 2008.



The following properties are easy to verify: (i) x ∨ x4 = 1, (ii) x ∧ x5 = 0,
(iii) 04 = 1 = 05, (iv) 14 = 0 = 15, (v) x5 ≤ x4, (vi) (x ∧ y)4 = x4 ∨ y4,
(vii) (x ∨ y)5 = x5 ∧ y5, (viii) x444 = x4, (ix) x555 = x5, and
(x) x45 ≤ x44 ≤ x ≤ x55 ≤ x54.

Example 1.

(a) The natural examples of weakly dicomplemented lattices are Boolean alge-
bras. For (B,∧,∨, ¯, 0, 1) a Boolean algebra, (B,∧,∨, ¯, ¯, 0, 1) (the comple-
mentation is duplicated, i.e. x4 := x̄ =: x5) is a weakly dicomplemented
lattice.

(b) Each bounded lattice can be endowed with a trivial weak dicomplemen-
tation by defining (1, 1), (0, 0) and (1, 0) as the dicomplement of 0, 1 and
of each x 6∈ {0, 1}, respectively.

Definition 2. Let (P,≤) be a poset and f : P → P be a map. f is a closure
operator on P if for all x, y ∈ P , x ≤ f(y) ⇐⇒ f(x) ≤ f(y). This is equivalent
to x ≤ f(x), x ≤ y =⇒ f(x) ≤ f(y) and f(f(x)) = f(x). Usually we will
write a closure operator on a set X to mean a closure operator on the powerset
(P(X),⊆) of X. Dually, f is a kernel operator on P if for all x, y ∈ P ,
x ≥ f(y) ⇐⇒ f(x) ≥ f(y). As above, we will say that f is a kernel operator
on X to mean a kernel operator on (P(X),⊆).

For a weakly dicomplemented lattice (L,∧,∨,4 ,5 , 0, 1), the maps x 7→ x44

and x 7→ x55 are resp. kernel and closure operators on L. If f is a closure
operator (resp. a kernel operator) on a lattice L, then f(L) (with the induced
order) is a lattice. Recall that for any closure operator h on L we it holds
h(h(x)∧h(y)) = h(x)∧h(y) as well as h(h(x)∨h(y)) = h(x∨y), and for any kernel
operator k on L it holds k(k(x)∧k(y)) = k(x∧y) and k(k(x)∨k(y)) = k(x)∨k(y).
We denote by P d the dual poset of (P,≤), i.e. P d := (P,≥). Then f is a kernel
operator on P iff f is a closure operator on P d.

Proposition 1. Let h be a closure operator and k a kernel operator on a set X.
For A ⊆ X define A4h := h(X \A) and A5k := k(X \A).

(i) (hP(X),∩,∨h,4h , h∅, X), with A ∨h B := h(A ∪ B), is a weakly comple-
mented lattice.

(i’) (kP(X),∧k,∪,5k , ∅, kX), with A ∧k B := k(A ∩ B), is a dual weakly com-
plemented lattice.

(ii) If hP(X) is isomorphic to kP(Y ), then h and k induce weakly dicomple-
mented lattice structures on hP(X) and on kP(Y ) that are extensions of
those in (i) and (i′) above respectively.

Proof. For (i), let h be a closure operator on X; (hP(X),∩,∨h, h∅, X) is a
bounded lattice. So we should only check the equations (1)− (3) in Definition 1.
For x ∈ hP(X), we have x44 = h(X\h(X\x)) ⊆ h(X\(X\x)) = h(x) = x, and
(1) is proved. For x1 ≤ x2 in hP(X), we have x1 ⊆ x2 and h(X \x1) ⊇ h(X \x2),

218 Léonard Kwuida, Hajime Machida



and (2) is proved. Now we consider x, y ∈ hP(X). Trivially (x∩y)∨h (x∩y4h) ≤
x. In addition,

(x ∩ y) ∨h (x ∩ y4h) = (x ∩ y) ∨h (x ∩ h(X \ y)) = h((x ∩ y) ∪ (x ∩ h(X \ y)))

⊇ h((x ∩ y) ∪ (x ∩ (X \ y))) = h(x) = x.

(i′) is proved similarly.
For (ii) we will extend the structures of (i) and (i′) to get weakly dicom-

plemented lattices. By (i), (hP(X),∩,∨h,4h , h∅, X) is a weakly complemented
lattice. Let ϕ be an isomorphism from hPX to kPX. We define 5ϕ on hP(X)
by: x5ϕ := ϕ−1(ϕ(x)5k). Then

x5ϕ5ϕ =
(
ϕ−1

(
ϕ(x)5k

))5ϕ = ϕ−1
(
ϕ

(
ϕ−1

(
ϕ(x)5k

))5k
)

= ϕ−1
(
ϕ(x)5k5k

)
,

and x5ϕ5ϕ ≥ ϕ−1(ϕ(x)) = x. For x ≤ y in hPX we have ϕ(x) ≤ ϕ(y) implying
ϕ(x)5k ≥ ϕ(y)5k and x5ϕ = ϕ−1(ϕ(x)5k) ≥ ϕ−1(ϕ(y)5k) = y5ϕ . For x, y in
hPX, we have

(x ∨ y) ∧ (x ∨ y5ϕ) = (x ∨ y) ∧ (x ∨ ϕ−1(ϕ(y)5k))
= ϕ−1

(
(ϕ(x) ∨ ϕ(y)) ∧ (ϕ(x) ∨ ϕ(y)5k)

)
= ϕ−1(ϕ(x)) = x.

Therefore (hP(X),∩,∨h,4h ,5ϕ , h∅, X) is a weakly dicomplemented lattice. Sim-
ilarly (kP(X),∧k,∪,4ϕ ,5k , ∅, kX) with x4ϕ := ϕ(ϕ−1(x)4h) is a weakly di-
complemented lattice.

Proposition 2. Let h be a closure operator on X and k a kernel operator on Y
such that hP(X) is isomorphic to kP(Y ). Let ϕ be an isomorphism from hP(X)
to kP(Y ). We set L := {(x, y) ∈ hP(X) × kP(Y ) | y = ϕ(x)}. L has a weakly
dicomplemented lattice structure induced by h and k.

Proof. By Lemma 1 (hP(X),∩,∨h,4h , h∅, X) is a weakly complemented lattice
and (kP(X),∧k,∪,5k , ∅, kX) a dual weakly complemented lattice. For every
y ∈ kP(Y ) there is a unique x ∈ hP(X) such that y = ϕ(x). For (a, b) and
(c, d) in L, we have a ≤ c ⇐⇒ b ≤ d. We define a relation ≤ on L by:

a ≤ c ⇐⇒ : (a, b) ≤ (c, d) : ⇐⇒ b ≤ d. Then hP(X)
π1∼= L

π2∼= kP(Y ) where πi

is the ith projection. Thus (L,≤) is a bounded lattice. Moreover (a, b)∧ (c, d) =
(a ∩ c, ϕ(a ∩ c)) and (a, b) ∨ (c, d) = (ϕ−1(b ∪ d), b ∪ d). For (x, y) ∈ L, we
define (x, y)4 := (x4h , ϕ(x4h)) and (x, y)5 := (ϕ−1(y5k), y5k). We claim that
(L,∧,∨,4 ,5 , 0, 1) is a weakly dicomplemented lattice. In fact,

(x, y)44 = (x4h , ϕ(x4h))4 = (x4h4h , ϕ(x4h4h)) ≤ (x, ϕ(x)) = (x, y).

If (x, y) ≤ (z, t) in L, we have x ≤ z and y ≤ t, implying x4h ≥ z4h and
ϕ(x4h) ≥ ϕ(z4h); thus (x, y)4 = (x4h , ϕ(x4h)) ≥ (z4h , ϕ(z4h)) = (z, t)4.

On the Isomorphism Problem of Concept Algebras 219



These prove (1) and (2) of Definition 1. It remains to prove (3). Let (x, y) and
(z, t) in L;

((x, y) ∧ (z, t)) ∨ ((x, y) ∧ (z, t)4) = (x ∩ z, ϕ(x ∩ z)) ∨ ((x, y) ∧ (z4h , ϕ(z4h)))
= (x ∩ z, ϕ(x ∩ z)) ∨ (x ∩ z4h , ϕ(x ∩ z4h))
= (ϕ−1(ϕ(x ∩ z) ∪ ϕ(x ∩ z4h)), ϕ(x ∩ z) ∪ ϕ(x ∩ z4h))
= ((x ∩ z) ∨h (x ∩ z4h), ϕ((x ∩ z) ∨h (x ∩ z4h)))
= (x, ϕ(x)).

and (3) is proved.

The advantage of the weakly dicomplemented lattice L in Lemma 2 is that, in ad-
dition to extending the weakly and dual weakly complemented lattice structures
induced by h and k, it also keeps track of the closure and kernel systems.

Definition 3. Let L be a bounded lattice and x ∈ L. The element x∗ ∈ L (resp.
x+ ∈ L) is the pseudocomplement (resp. dual pseudocomplement) of x if

x ∧ y = 0 ⇐⇒ y ≤ x∗ (resp. x ∨ y = 1 ⇐⇒ y ≥ x+) for all y ∈ L.

A double p-algebra is a lattice in which every element has a pseudocomplement
and a dual pseudocomplement.

Example 2. Boolean algebras are double p-algebras. Finite distributive lattices
are double p-algebras. N5 is a double p-algebra that is not distributive. All
distributive double p-algebras are weakly dicomplemented lattices.

The following result give a class of “more concrete” weakly dicomplemented
lattices.

Proposition 3. Let L be a finite lattice. Denote by J(L) the set of join irre-
ducible elements of L and by M(L) the set of meet irreducible elements of L
respectively. Define two unary operations 4 and 5 on L by

x4 :=
∨
{a ∈ J(L) | a � x} and x5 :=

∧
{m ∈ M(L) | m � x}.

Then (L,∧,∨,4 ,5 , 0, 1) is a weakly dicomplemented lattice. In general, for G ⊇
J(L) and H ⊇ M(L), the operations 4G and 5H defined by

x4G :=
∨
{a ∈ G | a � x} and x5H :=

∧
{m ∈ H | m � x}

turn (L,∧,∨,4G ,5H , 0, 1) into a weakly dicomplemented lattice.

Proof. Let G ⊇ J(L), b ∈ G and x ∈ L. Then b �
∨
{a ∈ G | a � x} implies

b ≤ x; i.e. b � x4G =⇒ b ≤ x. Thus x4G4G =
∨
{b ∈ G | b � x4G} ≤ x

and (1) is proved. For x ≤ y we have {a ∈ G | a � x} ⊇ {a ∈ G | a � y}
implying x4G ≥ y4G , and (2) is proved. For (3), it is enough to prove that for
a ∈ J(L), a ≤ x ⇐⇒ a ≤ (x ∧ y) ∨ (x ∧ y4G), since J(L) is

∨
-dense in L.

Let a ≤ x. We have a ≤ y or a ≤ y4G . Then a ≤ x ∧ y or a ≤ x ∧ y4G . Thus
a ≤ (x∧ y)∨ (x∧ y4G). The reverse inequality is obvious. (1′)− (3′) are proved
similarly.

220 Léonard Kwuida, Hajime Machida



Example 3 above is a special case of concept algebras. Before we introduce con-
cept algebras, let us recall some notions from Formal Concept Analysis (FCA).
The reader is refered to [5]. Formal Concept Analysis was born in the eighties
from the formalization of the notion of concept [10]. Traditional philosophers
considered a concept to be determined by its extent and its intent. The extent
consists of all objects belonging to the concept while the intent is the set of all
attributes shared by all objects of the concept. In general, it may be difficult
to list all objects or attributes of a concept. Therefore a specific context should
be fixed to enable formalization. A formal context is a triple (G, M, I) of sets
such that I ⊆ G × M . The members of G are called objects and those of M
attributes. If (g,m) ∈ I, then the object g is said to have m as an attribute.
For subsets A ⊆ G and B ⊆ M , A′ and B′ are defined by

A′ := {m ∈ M | ∀g ∈ A g I m} and B′ := {g ∈ G | ∀m ∈ B g I m}.

A formal concept of the formal context (G, M, I) is a pair (A,B) with A ⊆ G
and B ⊆ M such that A′ = B and B′ = A. The set A is called the extent
and B the intent of the concept (A,B). B(G, M, I) denotes the set of all formal
concepts of the formal context (G, M, I). For concepts (A,B) and (C,D), (A,B)
is called a subconcept of (C,D) provided that A ⊆ C (which is equivalent to
D ⊆ B). In this case, (C,D) is a superconcept of (A,B) and we write (A,B) ≤
(C,D). The relation subconcept-superconcept encodes the hierarchy on
concepts, namely, that a concept is more general if it contains more objects,
and equivalently, if it is determined by less attributes.

Theorem 1 ([10]). The concept lattice B(G, M, I) is a complete lattice in
which infimum and supremum are given by:

^
t∈T

(At, Bt) =

 \
t∈T

At,

 [
t∈T

Bt

!′′!
and

_
t∈T

(At, Bt) =

  [
t∈T

At

!′′
,
\
t∈T

Bt

!
.

A complete lattice L is isomorphic to B(G, M, I) iff there are mappings γ̃ : G →
L and µ̃ : M → L such that γ̃(G) is supremum-dense, µ̃(M) is infimum-dense
and g I m ⇐⇒ γ̃g ≤ µ̃m for all (g,m) ∈ G×M .

(B(G, M, I);≤) is called the concept lattice of the context (G, M, I). All com-
plete lattices are (copies of) concept lattices. We adopt the notations below for
g ∈ G and m ∈ M :

g′ := {g}′, m′ := {m}′, γg := (g′′, g′) and µm := (m′,m′′).

The concept γg is called object concept and µm attribute concept. The sets
γG is supremum-dense and µM infimum-dense in B(G, M, I). We usually assume
our context clarified, meaning that x′ = y′ =⇒ x = y for all x, y ∈ G∪M . If γg
is supremum-irreducible we say that the object g is irreducible. An attribute
m is said irreducible if the attribute concept µm is infimum-irreducible. A
formal context is called reduced if all its objects and attributes are irreducible.
For every finite lattice L there is, up to isomorphism, a unique reduced context

On the Isomorphism Problem of Concept Algebras 221



K(L) := (J(L),M(L),≤) such that L ∼= B(K(L)). We call it standard context
of L. The meet and join operations in the concept lattice can be used to formalize
the conjunction and disjunction on concepts [6]. To formalize a negation two
operations are introduced as follow:

Definition 4. Let (G, M, I) be a formal context and (A,B) a formal concept.
We define

its weak negation by (A,B)4 :=
(
(G \A)′′ , (G \A)′

)
and its weak opposition by (A,B)5 :=

(
(M \B)′ , (M \B)′′

)
.

A(K) :=
(
B(K);∧,∨,4 ,5 , 0, 1

)
is called the concept algebra of the formal

context K, where ∧ and ∨ denote the meet and the join operations of the concept
lattice.

These operations satisfy the equations in Definition 1 (cf. [12]). In fact concept
algebras are typical examples of weakly dicomplemented lattices. One of the
important and still unsolved problems in this topic is to find out the equational
theory of concept algebras; that is the set of all equations valid in all concept
algebras. Is it finitely generated? i.e. is there a finite set E of equations valid in
all concept algebras such that each equation valid in all concept algebras follows
from E? We start with the set of equations defining a weakly dicomplemented
lattice and have to check whether they are enough to represent the equational
theory of concept algebras. This representation problem can be split:

strong representation: Describe weakly dicomplemented lattices that are iso-
morphic to concept algebras.

equational axiomatization: Find a set of equations that generate the equa-
tional theory of concept algebras.

concrete embedding: Given a weakly dicomplemented lattice L, is there a
context K4

5(L) such that L can be embedded into the concept algebra of

A
(
K4
5(L)

)
?

We proved (see [4] or [3]) that finite distributive weakly dicomplemented lattices
are isomorphic to concept algebras. However we cannot expect all weakly dicom-
plemented lattices to be isomorphic to concept algebras, since concept algebras
are first of all complete lattices. In Section 3 we will show that being complete
is not enough for weakly dicomplemented lattices to be isomorphic to concept
algebras. Before that we show in Section 2 that weakly dicomplemented lattices
generalize Boolean algebras.

2 Weakly Dicomplemented Lattices with Negation

Example 1 states that duplicating the complementation of a Boolean algebra
leads to a weakly dicomplemented lattice. Does the converse hold? The finite
case is easily obtained [Corollary 1]. Major parts of this section are taken from
[4]. We will also describe weakly dicomplemented lattices whose Boolean part is
the intersection of their skeletons (definitions below).

222 Léonard Kwuida, Hajime Machida



Definition 5. A weakly dicomplemented lattice is said to be with negation if
the unary operations coincide, i.e., if x5 = x4 for all x. In this case we set
x4 =: x̄ := x5.

Lemma 1. A weakly dicomplemented lattice with negation is uniquely comple-
mented.

Proof. x44 ≤ x ≤ x55 implies that x = ¯̄x. Moreover, x ∧ x̄ = 0 and x̄ is a
complement of x. If y is another complement of x then

x = (x ∧ y) ∨ (x ∧ ȳ) = x ∧ ȳ =⇒ x ≤ ȳ

x = (x ∨ y) ∧ (x ∨ ȳ) = x ∨ ȳ =⇒ x ≥ ȳ

Then ȳ = x and x̄ = y. L is therefore a uniquely complemented lattice.

It can be easily seen that each uniquely complemented atomic lattice is a copy
of the power set of the set of its atoms, and therefore distributive. Thus

Corollary 1. The finite weakly dicomplemented lattices with negation are ex-
actly the finite Boolean algebras.

Of course, the natural question will be if the converse of Lemma 1 holds. That is,
can any uniquely complemented lattice be endowed with a structure of a weakly
dicomplemented lattice with negation? The answer is yes for distributive lattices.
If the assertion of Corollary 1 can be extended to lattices in general, the answer
will unfortunately be no. In fact R. P. Dilworth proved that each lattice can be
embedded into a uniquely complemented lattice [?]. The immediate consequence
is the existence of non-distributive uniquely complemented lattices. They are
however infinite. If a uniquely complemented lattice could be endowed with a
structure of weakly dicomplemented lattice, it would be distributive. This cannot
be true for non distributive uniquely complemented lattices.

Lemma 2. Each weakly dicomplemented lattice with negation L satisfies the de
Morgan laws.

Proof. We want to prove that x ∧ y = x̄ ∨ ȳ.

(x̄ ∨ ȳ) ∨ (x ∧ y) ≥ x̄ ∨ (x ∧ ȳ) ∨ (x ∧ y) = x̄ ∨ x = 1

and
(x̄ ∨ ȳ) ∧ (x ∧ y) ≤ (x̄ ∨ ȳ) ∧ x ∧ (x̄ ∨ y) = x̄ ∧ x = 0.

So x̄∨ ȳ is a complement of x∧y, hence by uniqueness it is equal to x ∧ y. Dually
we have x ∨ y = x̄ ∧ ȳ.

Now for the distributivity we can show that

Lemma 3. x ∧ (y ∨ z) is a complement of (x ∧ y) ∨ (x ∧ z).

On the Isomorphism Problem of Concept Algebras 223



Proof. Since in every lattice the equation x ∧ (y ∨ z) ≥ (x ∧ y) ∨ (x ∧ z) holds,
we have that x ∧ (y ∨ z) ≤ (x ∧ y) ∨ (x ∧ z); so we have to show only that
x ∧ (y ∨ z) ∨ (x ∧ y) ∨ (x ∧ z) = 1. Using the de Morgan laws and axiom (3)
several times we obtain:

x ∧ (y ∨ z) ∨ (x ∧ y) ∨ (x ∧ z) = x̄ ∨ (ȳ ∧ z̄) ∨ (x ∧ y) ∨ (x ∧ z)
= x̄ ∨ (ȳ ∧ z̄ ∧ x) ∨ (ȳ ∧ z̄ ∧ x̄) ∨ (x ∧ y ∧ z)
∨(x ∧ y ∧ z̄) ∨ (x ∧ z ∧ ȳ)

= x̄ ∨ (ȳ ∧ z̄ ∧ x̄) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z̄)
∨(x ∧ ȳ ∧ z) ∨ (x ∧ ȳ ∧ z̄)

= x̄ ∨ (ȳ ∧ z̄ ∧ x̄) ∨ (x ∧ y) ∨ (x ∧ ȳ)
= x̄ ∨ (ȳ ∧ z̄ ∧ x̄) ∨ x

= 1.

Thus x ∧ (y ∨ z) is a complement of (x ∧ y) ∨ (x ∧ z).

Since the complement is unique we get the equality

x ∧ (y ∨ z) = x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Thus weakly dicomplemented lattices generalize Boolean algebras in the follow-
ing sense

Theorem 2. Boolean algebras with the complementation duplicated3 are weakly
dicomplemented lattices. If 4 =5 in a weakly dicomplemented lattice L, then
(L,∧,∨, ¯, 0, 1), with x̄ := x4 = x5 for all x ∈ L, is a Boolean algebra.

As the equality x4 = x5 not always holds, we can look for a maximal subset
with this property.

Definition 6. For any weakly dicomplemented lattice L, we will call B(L) :=
{x ∈ L | x4 = x5} the subset of elements with negation.

As in Definition 5 we denote by x̄ the common value of x4 and x5. We set
L4 := {a4 | a ∈ L} = {a ∈ L | a44 = a} and call it the skeleton of L, as well
as L5 := {a5 | a ∈ L} = {a ∈ L | a55 = a} and call it the dual skeleton of
L.

Corollary 2. (B(L),∧,∨, ¯, 0, 1) is a Boolean algebra that is a subalgebra of the
skeleton and the dual skeleton.

Proof. From x4 = x5 we get x44 = x54 and x45 = x55. Thus

x45 = x44 = x = x55 = x54

3 see Example 1

224 Léonard Kwuida, Hajime Machida



and B(L) is closed under the operations 4 and 5. We will prove that B(L) is a
subalgebra of L. We consider x and y in B(L). We have

(x ∧ y)4 = x4 ∨ y4 = x5 ∨ y5 ≤ (x ∧ y)5 ≤ (x ∧ y)4 and

(x ∨ y)5 = x5 ∧ y5 = x4 ∧ y4 ≥ (x ∨ y)4 ≥ (x ∨ y)5.

Thus x ∧ y and x ∨ y belong to B(L). B(L) is a weakly dicomplemented lattice
with negation, and is by Theorem 2, a Boolean algebra.

While proving Corollary 2 we show that B(L) is a subalgebra of L. It is the
largest Boolean algebra that is a subalgebra of the skeletons and of L. We call
it the Boolean part of L. The inclusion B(L) ⊆ L4 ∩ L5 can be strict (see
Fig. 1). It would be nice to find under which conditions the Boolean part is the
intersection of the skeleton and dual skeleton?

Lemma 4. If L is a finite distributive lattice with 5 = ∗ (pseudocomplementa-
tion) and 4 = + (dual pseudocomplementation), then B(L) is the set of com-
plemented elements of L.

Proof. Let L be a finite distributive lattice with 5 = ∗ and 4 = +. We denote
by C(L) the set of complemented elements of L. Of course B(L) ⊆ C(L). Let
x ∈ C(L). From the distributivity there is a unique elements z ∈ L such that
x ∨ z = 1 and x ∧ z = 0. Then z ≤ x5 ≤ x4 ≤ z, and x ∈ B(L).

Even in this case, the Boolean part can still be strictly smaller than the inter-
section of the skeletons (see Fig. 1 below).

Fig. 1. Examples of dicomplementations. For L1, the elements c, b and a are each im-
age (of their image). The operation 4 is the dual of 5. We have B(L1) = {0, 1}, L41 =
{0, 1, c, d, e, c4, d4, e4}, L51 = {0, 1, c, a, b, c5, a5, b5} and C(L1) = {0, 1, c, a5}.
Thus B(L1) ( C(L1) = L41 ∩ L51 . For L2,

4 =+ and 5 =∗. L42 = {0, 1, c, c4},
L52 = {0, 1, c, c5}, B(L2) = {0, 1} = C(L2) ( {0, 1, c} = L42 ∩ L52 .

Lemma 5. B(L) = L4 ∩ L5 iff x44 = x55 =⇒ x45 = x54.

On the Isomorphism Problem of Concept Algebras 225



Proof. (⇒). Let x ∈ L such that x44 = x55. Then x ∈ L4 ∩ L5 = B(L) and
implies x4 = x5. Therefore x45 = x55 = x = x44 = x54.

(⇐). Let x ∈ L4 ∩ L5. Then x44 = x = x55 and implies x4 = x544 ≤
x5. Thus x4 = x5, and x ∈ B(L).

3 Strong representation problem

We start this section by a negative result, namely by showing that completeness is
not enough for weakly dicomplemented lattices to be (copies of) concept algebras.

Theorem 3. There is no formal context whose concept algebra is isomorphic to
a complete atomfree Boolean algebra.

Proof. Let B be a complete and atomfree Boolean algebra. By Theorem 1, there
is a context (G, M, I) such that B(G, M, I) ∼= B (lattice isomorphism). Without
loss of generality, we can assume that (G, M, I) is a subcontext of (B,B,≤).
We claim that there are g, h ∈ G with 0 < h < g < 1. In fact, for an element
g ∈ G ⊆ B with 0 6= g there is a ∈ B such that 0 < a < g, since B is atomfree.
Moreover G is

∨
-dense in B and then 0 6= a =

∨
{x ∈ G | x ≤ a}, implying that

there {x ∈ G | 0 < x ≤ a} 6= ∅. Thus we can choose h ∈ G with 0 < h ≤ a < g.
In the concept algebra of (G, M,≤) we have h4 =

∨
{x ∈ G | x � h} ≥ g > h.

From h ∨ h4 = 1 we get h4 = 1 6= h′ (the complement of h in B).

Theorem 3 says that an atomfree Boolean algebra is not isomorphic to a
concept algebra. However it can be embedded into a concept algebra. The cor-
responding context is constructed via ultrafilters. A general construction was
presented in [4].

Definition 7. A primary filter is a (lattice) filter that contains w or w4 for
all w ∈ L. Dually, a primary ideal is an ideal that contains w or w5 for all
w ∈ L. Fpr(L) denotes the set of all primary filters and Ipr(L) the set of primary
ideals of L.

For Boolean algebras, a proper filter F is primary iff it is an ultrafilter, iff it is
a prime filter (x ∨ y ∈ F =⇒ x ∈ F or y ∈ F ). The following result, based on
Zorn’s lemma provides the sets of K4

5.

Theorem 4 (“Prime ideal theorem”). For every filter F and every ideal I
such that F ∩ I = ∅ there is a primary filter G containing F and disjoint from
I. Dually, for every ideal I and every filter F such that I ∩ F = ∅ there is a
primary ideal J containing I and disjoint from F .

Corollary 3. If x 6≤ y in L, then there exists a primary filter F containing x
and not y.

For x ∈ L, we set

Fx := {F ∈ Fpr(L) | x ∈ F} and Ix := {I ∈ Ipr(L) | x ∈ I}.

226 Léonard Kwuida, Hajime Machida



The canonical context of a weakly dicomplemented lattice L is the formal
context

K
4
5(L) := (Fpr(L), Ipr(L),2) with F 2 I : ⇐⇒ F ∩ I 6= ∅.

The derivation in K45(L) yields, F ′x = Ix and I ′x = Fx for every x ∈ L. Moreover,
the map

i : L → B
(
K
4
5(L)

)
x 7→ (Fx, Ix)

is a bounded lattice embedding with i(x5) ≤ i(x)5 ≤ i(x)4 ≤ i(x4). If the
first and last inequalities above were equalities, we would get a weakly dicom-
plemented embedding into the concept algebra of K4

5(L). This would give a
solution to the representation problem of weakly dicomplemented lattices.

Theorem 5. If L is a Boolean algebra, then the concept algebra of K4
5(L) is a

complete and atomic Boolean algebra into which L embeds.

Proof. If B is a Boolean algebra, then a proper filter F of L is primary iff it is an
ultrafilter, and a proper ideal J is primary iff it is maximal. Thus Fpr(L) is the
set of ultrafilters of L and Ipr(L) the set of its maximal ideals. In addition, the
complement of an ultrafilter is a maximal ideal and vice-versa. For F ∈ Fpr(L),
L\F is the only primary ideal that does not intersect F , and for any J ∈ Ipr(L),
L\J is the only primary filter that does not intersect J . Thus the context K4

5(L)
is a copy of (Fpr(L),Fpr(L), 6=). The concepts of this context are exactly pairs
(A,B) such that A ∪B = Fpr(L) and A ∩B = ∅. Thus B(K4

5(L)) ∼= P(Fpr(L))
and each subset A of Fpr(L) is an extent of K4

5(L). It remains to prove that the
lattice embedding

i : L → B
(
K
4
5(L)

)
x 7→ (Fx, Ix)

is also a Boolean algebra embedding. If i(x4) 6= i(x)4 then there is F ∈ Fx4 \
(Fpr(L) \ Fx)

′′ = Fx4 \ (Fpr(L) \ Fx) = ∅, which is a contradiction. Similarly
i(x5) = i(x)5. Therefore B embeds into the complete and atomic Boolean
algebra A

(
K4
5(L)

)
which is a copy of P (Fpr(L)).

The above result is a new proof to a well-known result (Corollary 4) due to
Marshall Stone [8]. The advantage here is that the proof is very simple and does
not require any knowledge from topology. Recall that a field of subsets of a set
X is a subalgebra of P(X), .i.e. a family of subsets of X that contains ∅ and X,
and that is closed under union, intersection, and complementation.

Corollary 4 ([8]). Each Boolean algebra embeds into a field of sets.

On the Isomorphism Problem of Concept Algebras 227



We conclude this section by an example. Consider the Boolean algebra FN of
finite and cofinite subsets of N. It is not complete. But P(N) is a complete
and atomic Boolean algebra containing FN. By Theorem 5 A(K4

5(B)) is also
a complete and atomic Boolean algebra into which FN embeds. The atoms of
FN are {n}, n ∈ N. These generate its principal ultrafilters. FN has exactly one
non-principal ultrafilter U (the cofinite subsets). Thus |FN| = |N| + 1 = |N|.
We can find a bijection let say f between the atoms of P(N) and the atoms
of A(K4

5(FN)). f induces an isomorphism f̂ : P(N) → A(K4
5(FN)). Is there a

universal property for A(K4
5(B)) of Boolean algebras. For example is A(K4

5(B))
the smallest complete and atomic Boolean algebra into which B can be embedded?

4 Conclusion

Weakly dicomplemented lattices with negation are exactly Boolean algebras
(Thm. 2). Even if they are not always isomorphic to concept algebras (Thm. 3),
they embed into concept algebras (Thm. 5). Finite distributive weakly dicomple-
mented lattices are isomorphic to concept algebras [3]. Extending these results
to finite weakly dicomplemented lattices in one sense and to distributive weakly
dicomplemented lattices in the other are the next tasks. Finding a kind of uni-
versal property to characterize the construction in Thm. 5 is a natural question
to be addressed.

References

1. Boole., G.: An investigation of the laws of thought on which are founded the
mathematical theories of logic and probabilities. Macmillan 1854. Reprinted by
Dover Publ. New york (1958).

2. Davey, B. A. Priestley, H.A. : Introduction to lattices and order. Second edition
Cambridge (2002).

3. Ganter, B. Kwuida, L.: Finite distributive concept algebras. Order. (2007).

4. Kwuida, L.: Dicomplemented lattices. A contextual generalization of Boolean
algebras. Dissertation TU Dresden. Shaker Verlag. (2004).

5. Ganter, B. Wille, R.: Formal Concept Analysis. Mathematical Foundations.
Springer (1999).

6. Ganter, B.Wille, R.: Contextual attribute logic. in W. Tepfenhart, W. Cyre
(Eds) Conceptual Structures: Standards and Practices. LNAI 1640. Springer,
Heidelberg (1999) 337-338.

7. Priestley, H.A.: Representation of distributive lattices by means of ordered Stone
spaces. Bull. London Math. Soc. 2 (1970) 186-190.

8. Stone, M.H.: The theory of representations for Boolean algebras. Trans. Amer.
Math. Soc. 40 (1936) 37-111.

9. Wansing, H. (Ed.): Negation: a notion in focus. Perspectives in analytical philos-
ophy. 7 de Gruyter (1996).

10. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. in I. Rival (Ed.) Ordered Sets. Reidel (1982) 445-470.

228 Léonard Kwuida, Hajime Machida



11. Wille, R.: Restructuring mathematical logic: an approach based on Peirce’s prag-
matism. in Ursini, Aldo (Ed.) Logic and algebra Marcel Dekker. Lect. Notes Pure
Appl. Math. 180 (1996) 267-281.

12. Wille, R.: Boolean Concept Logic in B. Ganter & G.W. Mineau (Eds.) ICCS 2000
Conceptual Structures: Logical, Linguistic, and Computational Issues Springer
LNAI 1867 (2000) 317-331.

On the Isomorphism Problem of Concept Algebras 229





Factorization of Concept Lattices with Hedges by Means
of Factorization of Residuated Lattices

Michal Krupka

Dept. Computer Science,
Palacký University, Olomouc,

Tomkova 40,
CZ-779 00, Olomouc,

Czech Republic,
michal.krupka@upol.cz

Abstract. In the first part, we extend our results from a previous paper on fac-
torization of residuated lattices to residuated lattices with hedges. In the second
part, we show how this result can be applied to the problem of factorization of
fuzzy concept lattices with hedges. Our approach is that instead of factorizing
the original concept lattice with hedges we construct a new data table with fuzzy
values of attributes in a factorized residuated lattice with hedges and show that
the induced concept lattice is isomorphic to the factor concept lattice.

1 Introduction

Formal concept analysis (FCA) is a popular method for analysis of object-attribute data
[11], [9]. Its aim is to process data in a tabular form (describing objects and their at-
tributes) and extract interesting clusters, called formal concepts, which correspond to
maximal rectangles in the processed data table. These formal concepts form a concept
lattice, which represents the main output of the method.

In the case of formal concept analysis of data with fuzzy values of attributes the
domain for data can consist of more than two elements (representing degrees to which
particular objects can have particular attributes). Since the number of formal concepts
can be large in this case, several methods of reducing the size of resulting concept lattice
have been proposed. In this paper, we consider two of them: factorization and hedges.

The idea behind factorization of fuzzy concept lattices is that instead of consider-
ing the original concept lattice, which can be very large, we accept not to distinguish
between formal concepts which are sufficiently similar. This can be done by choosing
a degree of similarity of formal concepts and factorizing the concept lattice by the tol-
erance relation induced by this degree. As the result, we obtain a smaller lattice, whose
size depends on the prescribed degree. This parametrized size reduction method has
been introduced in [1] and further improved in [3], see also [2].

In [8], the notion of fuzzy concept lattice with hedges was introduced (see also [4],
[5]). It can be viewed as another tool for reducing size of concept lattices. It introduces
two additional parameters, called (truth-stressing) hedges, which are unary functions
on the scale of truth degrees and can be seen as truth functions of connectives “very

c© Radim Belohlavek, Sergei O. Kuznetsov (Eds.): CLA 2008, pp. 231–241,
ISBN 978–80–244–2111–7, Palacký University, Olomouc, 2008.



true”. Hedges can be used as parameters selecting “important attributes” and “important
objects”. Stronger hedges lead to smaller number of extracted concepts.

In [6], these two approaches (factorization and hedges) were combined and a method
of factorizing fuzzy concept lattices with hedges was introduced.

In [17], we dealt with residuated lattices, which are frequently used as structures of
truth values in fuzzy logic, and as such are also used in the above papers. We showed
(using results of [10] and [18]) that residuated lattices can be factorized by means of
a prescribed degree of similarity of truth values. We also stated a general idea of ap-
proximate size reduction of fuzzy systems by factorizing the underlying structure of
truth values (i.e., a residuated lattice) by a tolerance relation, induced by the user-
prescribed degree to which we allow different truth values to be non-distinguishable.
We also showed that this general idea is applicable to fuzzy concept lattices: factorized
fuzzy concept lattice is in fact isomorphic to another concept lattice, constructed from
a data table with values from factor residuated lattice.

In this paper, we first generalize our results from [17] to residuated lattices with
hedges. We show that any hedge on a residuated lattice induces a hedge on the factorized
residuated lattice. The only limitation is that the prescribed similarity degree must be a
fixpoint of the used hedge (similar condition appears also in [6]).

In the next part we show that factor fuzzy concept lattices with hedges can be again
described by means of factor residuated lattices with hedges. More precisely, we show
that each factor fuzzy concept lattice with hedges is isomorphic to a fuzzy concept lat-
tice with hedges built on a data table with values from the factorized residuated lattice.

This paper is organized as follows. In Section 2 we summarize basic known facts
on residuated lattices, fuzzy sets, factorization of residuated lattices and factorization of
concept lattices with hedges. In Section 3 we give our two main results on factorization
of residuated lattices with hedges and factorization of concept lattices with hedges.

2 Preliminaries

2.1 Residuated lattices and fuzzy sets

We use complete residuated lattices as structures of truth values. We recall only basic
facts here, for more detailed review, we refer the reader to [2], [12].

A complete residuated lattice is defined as an algebra L = 〈L,∧,∨,⊗,→,0,1〉 such
that 〈L,∧,∨,0,1〉 is a complete lattice with the least element 0 and the greatest element
1; 〈L,⊗,1〉 is a commutative monoid (i.e. ⊗ is commutative, associative, and a⊗ 1 =
1⊗a = a for each a ∈ L); ⊗ (product) and → (residuum) satisfy so-called adjointness
property: a⊗ b ≤ c iff a ≤ b → c for each a,b,c ∈ L. Elements of L are called truth
degrees. ⊗ and → are (truth functions of) “fuzzy conjunction” and “fuzzy implication”.

For each complete residuated lattice we consider a derived (truth function of) logical
connective↔ (“fuzzy equivalence”) defined by a↔ b = (a→ b)∧(b→ a).↔ is called
biresiduum and is used for measuring similarity of truth degrees.

A common choice of L is a structure with L = [0,1] (unit interval), ∧ and ∨ being
minimum and maximum, ⊗ being a left-continuous t-norm with the corresponding →.

232 Michal Krupka



Three most important pairs of adjoint operations on the unit interval are:

Łukasiewicz:
a⊗b = max(a+b−1,0),

a → b = min(1−a+b,1),
(1)

Gödel:
a⊗b = min(a,b),

a → b =
{

1 if a ≤ b,
b otherwise,

(2)

Goguen (product):
a⊗b = a ·b,

a → b =
{

1 if a ≤ b,
b
a otherwise.

(3)

Complete residuated lattices on [0,1] given by (1), (2), and (3) are called standard
Łukasiewicz, Gödel, Goguen (product) algebras, respectively.

The class of complete residuated lattices include finite structures as well. For in-
stance, we can put Ln+1 = {a0 = 0,a1, . . . ,an = 1} ⊆ [0,1], where a0 < · · · < an are
equidistant and ⊗ and → are restrictions of the operations from (1). In this case, the
residuated lattice Ln+1 = 〈Ln+1,min,max,⊗,→,0,1〉 is called an equidistant Łukasie-
wicz chain.

A special case of a complete residuated lattice is the two-element Boolean algebra
〈{0,1},∧,∨,⊗,→,0,1〉, denoted by 2, which is the structure of truth degrees of the
classical logic. That is, the operations ∧,∨,⊗,→ of 2 are the truth functions (interpre-
tations) of the corresponding logical connectives of the classical logic.

A hedge (or truth stresser) on residuated lattice L is a unary operation ∗ satisfying
(i) 1∗ = 1, (ii) a∗ ≤ a, (iii) (a→ b)∗ ≤ a∗→ b∗, (iv) a∗∗ = a∗, for a,b ∈ L. A hedge ∗ is
a (truth function of) logical connective “very true” [13].

Among all hedges on any residuated lattice, the greatest one is given by a∗ = a and
is called (obviously) identity. The smallest hedge is called globalization and is given by
1∗ = 1 and a∗ = 0 for a < 1. In Fig. 1 there are depicted all possible hedges on L5.

Theorem 8 Let I be an L-relation between X and Y , 〈↑,↓〉 be
a Galois connection with hedges ∗X and ∗Y . Then

(i) 〈↑I ,↓I 〉 is a Galois connection with hedges ∗X and ∗Y ;

(ii) I〈↑,↓〉 defined as in the proof of Lemma 7 is an L-relation
between X and Y and we have

(iii) 〈↑,↓〉= 〈↑I〈↑,↓〉 ,↓I〈↑,↓〉 〉 and I = I〈↑I ,↓I 〉.

Proof. By Theorem 3, Theorem 5, and Lemma 7 it suffices

to prove I = I〈↑I ,↓I 〉. We have

I〈↑I ,↓I 〉(x,y) = {1
/
x}↑I (y) =

=
^

z∈X
{1∗X

/
x}(z)→ I(z,y) = I(x,y).

!

2.4 Further topics

We now briefly comment on selected topics.

2.4.1 Structure of B (X∗X ,Y ∗Y , I)

The structure of ordinary concept lattices is described by the

so-called main theorem of concept lattices [11]. An analogy

in fuzzy setting describing the structure of B (X∗X ,Y ∗Y , I) is
provided in [7]. In [7], the main theorem for B (X∗X ,Y ∗Y , I)
was derived by showing that B (X∗X ,Y ∗Y , I) is isomorphic to
some ordinary concept lattice. Among other things, this “re-

duction” enables us to use algorithms for concept lattices for

the problem of computing B (X∗X ,Y ∗Y , I). A direct proof of
the main theorem for B (X∗X ,Y ∗Y , I) remains an open prob-
lem (an interesting one since it may suggest new insight).

2.4.2 Closure structures

Unlike the case of fuzzy Galois connections without hedges

(see [1]), the compositions of Galois connections with hedges

are not fuzzy closure operators. For instance, we have only

A∗X ⊆ A↑↓ and B∗Y ⊆ B↓↑, and not A ⊆ A↑↓ and B ⊆ B↓↑ in
general (see above). It remains an open problem to study map-

pings satisfying the properties of the composed mappings ↑↓

and ↓↑. Note that in the ordinary case, i.e. L = 2, mappings
of the form ↑↓ and ↓↑ are exactly all the closure operators on X
and Y , respectively.

2.4.3 Nesting of concept lattices

The following fact is remarkable and worth of further inves-

tigation. If we take ∗X equal the identity on L, and take

two hedges ∗1 and ∗2 such that ∗1 is stronger than ∗2 (i.e.
a∗1 ≤ a∗2 for each a∈ L) then B (X∗X ,Y ∗1 , I)⊆B (X∗X ,Y ∗2 , I)
(we omit proof). However, for ∗X other than the identity,
B (X∗X ,Y ∗1 , I)⊆ B (X∗X ,Y ∗2 , I) need not be the case.

glob. !L1 !L2 !L3

0

0.25

0.5

0.75

1

iden.

Figure 1: Truth stressers

small large far near

Mercury 1 0 0 1

Venus 0.75 0 0 1

Earth 0.75 0 0 0.75
Mars 1 0 0.5 0.75
Jupiter 0 1 0.75 0.5
Saturn 0 1 0.75 0.5
Uranus 0.25 0.5 1 0.25
Neptune 0.25 0.5 1 0

Pluto 1 0 1 0

Table 1: Data table with fuzzy attributes

2.4.4 Automatic generation of statements

In case of Galois connections with hedges, we often work with

assertions which are inequalities of the form A... ⊆ A... (and

dually for B), where “. . .” stand for sequences of ⇑, ⇓, and ∗.
We designed a computer program to find proofs of these as-

sertions automatically. A database of 375 assertions (with the

proofs attached) can be found at

http://vychodil.inf.upol.cz/res/devel/aureas.

The general inference engine is still under construction and

will be available soon at the same Internet address.

3 EXAMPLES AND EXPERIMENTS

Consider a five-element !ukasiewicz chain L such that L =
{0,0.25,0.5,0.75,1}, ⊗ and→ given by (6). For L, there are

five truth-stressing hedges satisfying (2)–(5). That is, except

for globalization and identity, there are three nontrivial hedges

which will be denoted by !1, !2, !3, see Fig. 1. The number

of truth-stressing hedges defined on a finite chain depends on

the chosen adjoint operations. For instance, for five-element

Gödel chain there are eight hedges satisfying (2)–(5).

80% gl. !1 !2 !3 id.

gl. 16 31 32 32 32

!1 85 120 121 121 180

!2 84 107 107 108 108

!3 299 337 337 338 501

id. 560 928 637 951 1512

55% gl. !1 !2 !3 id.

gl. 12 27 31 31 31

!1 53 89 92 93 150

!2 66 95 99 100 100

!3 146 186 190 191 410

id. 212 448 271 540 1148

30% gl. !1 !2 !3 id.

gl. 9 17 21 22 22

!1 26 48 52 53 78

!2 33 54 58 59 59

!3 48 72 77 77 181

id. 59 137 91 201 425

5% gl. !1 !2 !3 id.

gl. 4 7 7 8 8

!1 8 14 15 15 17

!2 9 15 16 16 16

!3 10 16 17 17 31

id. 11 21 18 32 52

Table 2: Average number of clusters

Fig. 1. All hedges on L5

Element a ∈ L is said to be a fixpoint of hedge ∗ if a∗ = a. For two fixpoints a1,a2
of ∗, the product a⊗b is also a fixpoint of ∗.

Recall that an L-set (or fuzzy set) A in universe X is a mapping A : X → L. For any
x ∈ X , A(x) is interpreted as the degree to which x belongs to A. For two such L-sets

Factorization of Concept Lattices with Hedges by Means of Factorization of
Residuated Lattices

233



A1,A2, the degree of their similarity A1 ≈X A2 ∈ L is defined by

A1 ≈X A2 =
∧
x∈X

A1(x)↔ A2(x). (4)

2.2 Factorization of residuated lattices

We use factorization of residuated lattices by compatible tolerances as the main tool
in this paper. Regarding factorization of (complete) ordinary lattices we use results of
Czédli [10] and Wille [18].

Recall that tolerance on a set X is a relation ∼ which is reflexive and symmetric.
Each tolerance induces a covering of its underlying set, called the factor set. This set
consists of all maximal blocks of the tolerance, i.e., the maximal subsets whose any two
elements are in∼. In the case of tolerance∼ on the set X , the factor set is denoted X/∼.

Compatible tolerance relation on a complete lattice L is a tolerance which preserves
suprema and infima, i.e., a tolerance ∼ on L is compatible if from a j ∼ b j for any j ∈ J
follows

∨
j∈J a j ∼

∨
j∈J b j and

∧
j∈J a j ∼

∧
j∈J b j.

For a ∈ L we denote

a∼ =
∨
{b ∈ L | a ∼ b}, a∼ =

∧
{b ∈ L | a ∼ b}, (5)

[a]∼ = [a∼,(a∼)∼], [a]∼ = [(a∼)∼,a∼] (6)

([a1,a2] denotes the interval {b ∈ L | a1 ≤ b ≤ a2}).
Maximal blocks of ∼ are exactly sets [a]∼ and [a]∼, i.e., it holds L/∼= {[a]∼ | a ∈

L}= {[a]∼ | a ∈ L}.
Ordering on the set L/∼ is introduced using suprema of maximal blocks and can be

equivalently introduced using infima. For blocks B1,B2 ∈ L/∼ we set

B1 ≤ B2 iff
∨

B1 ≤
∨

B2. (7)

The set L/∼ together with this ordering is a complete lattice, which is denoted by L/∼.
Now suppose that L is a residuated lattice. The following results can be found in [2],

[3], where a more general approach is presented, namely sets of fixpoints of L-closure
operators are considered in place of residuated lattice L.

For e ∈ L we denote the e-cut of biresiduum in L by ∼L
e or simply ∼e. By definition

of e-cuts of fuzzy relations, for any a1,a2 ∈ L, a1 ∼e a2 if and only if a1 ↔ a2 ≥ e. ∼e
is a compatible tolerance on L.

We introduce the following simplified notations: ae = a∼e , ae = a∼e , [a]e = [a]∼e ,
[a]e = [a]∼e . The factor lattice L/∼e will be denoted by L/e.

It holds for any a ∈ L, ae = e⊗ a, ae = e → a. As a consequence, we obtain the
following equalities, which hold for any maximal block B ∈ L/∼e:

∨
B = e →

∧
B,∧

B = e⊗
∨

B.
In [17] we introduced a structure of residuated lattice on the factor set L/e as fol-

lows. For B1,B2 ∈ L/e we set

B1⊗B2 =
[∨

B1⊗
∨

B2

]
e
, (8)

B1 → B2 =
[∨

B1 →
∨

B2

]
e
. (9)

234 Michal Krupka



Now the set L/e together with elements 0,1 ∈ L/e and operations ∧,∨ given by the
factor lattice structure and together with operations ⊗,→ introduced in (8) and (9) is a
complete residuated lattice, which is denoted by L/e. More formally, L/e is equal to
the tuple 〈L/e,∧,∨,⊗,→,0,1〉.

In the following lemma, we introduce some basic properties of factor residuated
lattices which will be needed later. For more systematic approach, the reader can refer
to [17].

Lemma 1. For any a1,a2 ∈ L, B1,B2 ∈ L/e it holds

[a1 → a2]e ≤ [a1]e → [a2]e, (10)
[a1 → (e → a2)]e = [a1]e → [e → a2]e, (11)∨

(B1 → B2) =
∨

B1 →
∨

B2. (12)

2.3 Fuzzy concept lattices with hedges

In this section, we recall some basic notions and notations and state some basic results
on fuzzy concept lattices with hedges and their factorization. We refer the reader to [2],
[6], [8] for details.

Let X , Y be nonempty sets, I : X ×Y → L an L-relation between X and Y . The
triple 〈X ,Y, I〉 is called a formal L-context, elements of X and Y are called objects and
attributes, respectively. 〈X ,Y, I〉 represents a data table which assigns to each x ∈ X and
y ∈ Y a truth degree I(x,y) ∈ L to which object x has the attribute y.

For a hedge ∗X on L and L-set A ∈ LX of objects we define an L-set A↑ ∈ LY of
attributes by

A↑(y) =
∧
x∈X

(A(x)∗X → I(x,y)) . (13)

Similarly, for any hedge ∗Y and L-set B of attributes we define an L-set B↓ of objects
by

B↓(x) =
∧
y∈Y

(B(y)∗Y → I(x,y)) . (14)

The following lemma summarizes basic properties of mappings ↑ and ↓ [4]:

Lemma 2. Mappings ↑ and ↓ defined by (13) and (14) satisfy the following properties:

1. A∗X ≤ A↑↓ and B∗Y ≤ B↓↑;
2. A1 ≤ A2 implies A↑2 ≤ A↑1, and B1 ≤ B2 implies B↓2 ≤ B↓1 (antitony);
3. A↑ = A∗X↑ and B↓ = B∗Y ↓;
4. A↑∗Y ≤ A↑↓↑ ≤ A∗X↑ and B↓∗X ≤ B↓↑↓ ≤ B∗Y ↓;
5. A↑↓ = A↑↓↑↓ and B↓↑ = B↓↑↓↑.

Next we set

B(X∗X ,Y ∗Y , I) = {〈A,B〉 ∈ LX ×LY | A↑ = B,B↓ = A}. (15)

We define a partial ordering on B(X ,Y, I) by

〈A1,B1〉 ≤ 〈A2,B2〉 iff A1 ≤ A2 (16)

Factorization of Concept Lattices with Hedges by Means of Factorization of
Residuated Lattices

235



(or, equivalently, B2 ≤ B1). B(X∗X ,Y ∗Y , I) with this ordering is a complete lattice,
called an L-concept lattice induced by 〈X ,Y, I〉 and hedges ∗X , ∗Y .

Elements 〈A,B〉 of B(X∗X ,Y ∗Y , I) are called formal concepts, for each formal con-
cept 〈A,B〉, A is called its extent, B intent. Formal concepts are interpreted as con-
cepts/clusters hidden in the data table. Namely, the conditions A↑ = B and B↓ = A say
that B is the collection of all attributes shared by all objects (for which it is very true
that they are) from A, and A is the collection of all objects sharing all attributes (for
which it is very true that they are) from B.

The main idea of adding hedges to fuzzy concept lattices is that using hedges, one
can affect the size of concept lattices. Namely, if we choose both ∗X , ∗Y to be identities,
we obtain an ordinary fuzzy concept lattice. Other choices lead to smaller concept lat-
tices. For example, if both ∗X , ∗Y are globalizations then the generated concept lattice
consists of so called crisply generated formal concepts [7]. If ∗X and ∗Y are globaliza-
tion and identity (respectively) then B(X∗X ,Y ∗Y , I) is isomorphic to so-called one-sided
concept lattice [15].

Now we recall the parametrized concept lattice factorization method, as introduced
in [1], and then mention its generalization to fuzzy concept lattices with hedges.

As we mentioned in Introduction, factorization represents another attempt to reduce
the size of fuzzy concept lattice. In this method, user choses a degree e ∈ L to which
he/she considers two different concepts to be similar. Factorizing-out similar concepts
by a tolerance relation induced by e a smaller lattice is obtained. This lattice do not
preserve information on differences between similar concepts. Reader can refer [6], [8]
for details on factorization of concept lattices and its generalization to concept lattices
with hedges.

We introduce a similarity relation ≈ on the set B(X ,Y, I) of all formal concepts of
〈X ,Y, I〉 by

〈A1,B1〉 ≈ 〈A2,B2〉= A1 ≈X A2 (17)

(see (4)).
〈A1,B1〉 ≈ 〈A2,B2〉 is called the degree of similarity of formal concepts 〈A1,B1〉 and

〈A2,B2〉. ≈ is known to be a fuzzy equivalence on B(X ,Y, I).
Since ≈ is a fuzzy equivalence on B(X ,Y, I) then, for any user-chosen threshold

e ∈ L, the e-cut e≈ is a (crisp) tolerance relation (“being similar to degree at least e”)
on B(X ,Y, I). This tolerance is compatible with the lattice structure on B(X ,Y, I).

Maximal blocks of e≈ are exactly intervals [〈A,B〉]e≈ (or, equivalently, intervals
[〈A,B〉]e≈, see (6)), and the factor set B(X ,Y, I)/e≈ together with the ordering given
by (7) is a complete lattice.

This result can also be generalized to fuzzy concept lattices with hedges. First we
show some properties of the fuzzy equivalence ≈X (resp. ≈Y ) on LX (resp. LY ) with
connection to functions ↑ and ↓ [6]:

Lemma 3. For A1,A2 ∈ LX and B1,B2 ∈ LY we have (A1 ≈X A2)∗X ≤ A↑1 ≈Y A↑2 and
(B1 ≈Y B2)∗Y ≤ B↓1 ≈X B↓2.

For a concept lattice B(X∗X ,Y ∗Y , I), similarity of concepts is defined as above, as
well as its e-cut, used for factorization. The factor set B(X∗X ,Y ∗Y , I)/e≈ together with

236 Michal Krupka



the ordering given by (7) is again a complete lattice. The structure of maximal blocks
of e≈ on B(X∗X ,Y ∗Y , I) is given by the following lemma.

Lemma 4. For 〈A,B〉 ∈B(X ,Y, I) we have

1. 〈A,B〉e≈ = 〈(e → A)↑↓,(e⊗B)↓↑〉,
2. 〈A,B〉e≈ = 〈(e⊗A)↑↓,(e → B)↓↑〉,
3. 〈A,B〉e≈ = ((〈A,B〉e≈)e≈)

e≈,
4. 〈A,B〉e≈ = ((〈A,B〉e≈)

e≈)e≈.

3 Results

3.1 Factorization of residuated lattices with hedges

The first main result of this paper concerns introducing a hedge on the factor residuated
lattice L/e induced by a hedge on the original residuated lattice L.

Suppose that ∗ is a hedge on residuated lattice L and e∈ L is its fixpoint, i.e., e∗ = e.
We define a new unary operation ∗e (or, simply, ∗ if e and underlying residuated lattice
are obvious) on L/e by setting for any B ∈ L/e,

B∗
e
=

[(∨
B
)∗]

e
. (18)

We have the following result for the new operation ∗e:

Theorem 1. If e∈ L is a fixpoint of the hedge ∗ then the operation ∗e on L/e is a hedge.

Proof. Let 1 ∈ L and 1 ∈ L/e be unite elements. We have 1 = [1]e and

1∗
e
= ([1]e)∗

e
= [1∗]e = 1,

which proves condition (i) for hedges.
Now let B ∈ L/e. Then

B∗
e
=

[(∨
B
)∗]

e
≤

[∨
B
]

e
= B,

which proves condition (ii).
To prove condition (iii) we use Lemma 1 and obtain for B1,B2 ∈ L/e,

(B1 → B2)∗
e
=

[(∨
(B1 → B2)

)∗]
e
=

[(∨
B1 →

∨
B2

)∗]
e
≤

≤
[(∨

B1

)∗
→

(∨
B2

)∗]
e
≤

[(∨
B1

)∗]
e
→

[(∨
B2

)∗]
e
=

= B∗
e

1 → B∗
e

2 .

Let B ∈ L/e. To prove the equality B∗
e
= B∗

e∗e
we show that infima of both sides

are equal. Denote
∨

B = a. We have
∧

B∗
e
= e⊗ a∗ and

∧
B∗

e∗e
= e⊗ (e → e⊗ a∗)∗.

Now, from condition (iii) for hedges and from the fact that e⊗a∗ is a fixpoint of ∗ (both
e and a∗ are fixpoints) we obtain∧

B∗
e∗e ≤ e⊗ (e∗ → (e⊗a∗)∗) = e⊗ (e → e⊗a∗) =

∧
B∗

e
.

The opposite inequality
∧

B∗
e ≤

∧
B∗

e∗e
follows from (e → e⊗ a∗)∗ ≤ e → e⊗ a∗ by

multiplying both sides by e. This proves the remaining condition (iv) for hedges.

Factorization of Concept Lattices with Hedges by Means of Factorization of
Residuated Lattices

237



3.2 Factorization of fuzzy concept lattices with hedges

In this section, we present our second main result: the factorized L-concept lattice
B(X∗X ,Y ∗Y , I)/e≈ is isomorphic to an L/e-concept lattice, constructed from a formal
L/e-context, which is easily computable from the original formal L-context 〈X ,Y, I〉.

For any L-set A ∈ LX we shall use the symbols Ae, Ae, [A]e, [A]e as before, where e
is identified with the constant mapping x 7→ e. We have Ae,Ae ∈LX , [A]e, [A]e ∈ (LX )/e.

In what follows, we shall not distinguish between sets LX/e and (L/e)X and their
elements. For example, we can consider [A]e as an element of (L/e)X , having [A(x)]e =
[A]e(x) ∈ L/e, for any x ∈ X (see [17] for details).

For a formal context 〈X ,Y, I〉, the L-relation I is a mapping I : X ×Y → L. Using
results from [17], we define an L/e-relation [I]e : X ×Y → L/e by

[I]e(x,y) = [I(x,y)]e (19)

(like before, we do not distinguish between elements of (L/e)X×Y and LX×Y /e).
Let 〈X ,Y, I〉 be a formal context, ∗X , ∗Y hedges, e∈ L a fixed threshold. We consider

a new formal L/e-context 〈X ,Y, [I]e〉. Using results of previous section, we introduce
two thresholds ∗e

X , ∗e
Y on the factor residuated lattice L/e such that e is their common

fixpoint. Then we construct the concept lattice B(X∗e
X ,Y ∗e

Y , [I]e).
When the underlying residuated lattice and e are obvious, we also denote the thresh-

olds ∗e
X , ∗e

Y simply by ∗X , ∗Y . Since there will be no possibility of confusion, we also de-
note the formal-context-defining operators with respect to the formal context 〈X ,Y, [I]e〉
and hedges ∗e

X , ∗e
Y again by ↑, and ↓.

Lemma 5. For any Ā ∈ LX/e with A =
∨

Ā it holds Ā↑ = [A↑]e. For any B̄ ∈ LY /e with
B =

∨
B̄ it holds B̄↓ = [B↓]e.

Proof. From basic properties of blocks of compatible tolerances in residuated lattices
and from (11) we obtain

Ā↑(y) =
∧
x∈X

Ā∗
e
X (x)→ [I]e(x,y) =

=
∧
x∈X

Ā∗
e
X (x)→ [e → I(x,y)]e =

=
∧
x∈X

[A∗X (x)]e → [e → I(x,y)]e =

=
∧
x∈X

[A∗X (x)→ (e → I(x,y))]e =

=
∧
x∈X

[e → (A∗X (x)→ I(x,y))]e =

=
∧
x∈X

[A∗X (x)→ I(x,y)]e =

=

[ ∧
x∈X

(A∗X (x)→ I(x,y))

]e

=

= [A↑(y)]e.

238 Michal Krupka



The second statement follows by duality.

Lemma 6. For any Ā ∈ LX/e, if A ∈ Ā then A↑ ∈ Ā↑. For any B̄ ∈ LY /e, if B ∈ B̄ then
B↓ ∈ B̄↓.

Proof. This is a simple consequence of Lemma 5. If A∈ Ā then A≤
∨

Ā and A≈X ∨
Ā≥

e. Hence A↑ ≥ (
∨

Ā)↑ (Lemma 2, part 2) and A↑ ≈Y (
∨

Ā)↑ ≥ e∗X = e (Lemma 3). Thus,
A↑ ∈ [(

∨
Ā)↑]e = Ā↑ (Lemma 5). The second statement can be proved similarly.

Lemma 7. For 〈Ā, B̄〉 ∈B(X∗X ,Y ∗Y , [I]e), (
∨

B̄)↓ is the least fixpoint of ↑↓ in Ā.

Proof. Denote B0 =
∨

B̄, A0 = B↓0. First we show that A0 is a fixpoint of ↑↓. The element
A↑0 is a fixpoint of ↓↑ (Lemma 2, part 5). We have B∗Y

0 ≤ A↑0 (Lemma 2, part 1) and
A↑0 ≤ B0 (Lemma 6, applied twice). Hence for fixpoint A↑↓0 of ↑↓ we obtain (using
Lemma 2, part 2), B↓0 ≤ A↑↓0 ≤ B∗Y ↓

0 . But from Lemma 2, part 3, we have B↓0 = B∗Y ↓
0 ,

which shows that A0 is a fixpoint of ↑↓.
Now from antitony of ↑ and ↓ (Lemma 2, part 2) we have for any fixpoint A ∈ Ā:

A ≥
∧

Ā, A↑ ≤ (
∧

Ā)↑ ≤ B0 (Lemma 6), which leads to A0 ≤ A↑↓ = A.

Lemma 8. For every 〈Ā, B̄〉 ∈ B(X∗X ,Y ∗Y , [I]e), the set F(〈Ā, B̄〉) of all 〈A,B〉 from
B(X∗X ,Y ∗Y , I) such that A ∈ Ā, is a maximal block of e≈ (i.e., F(〈Ā, B̄〉) belongs to
B(X∗X ,Y ∗Y , I)/e≈).

Proof. According to Lemma 7, A0 = (
∨

B̄)↓ is the least fixpoint of ↑↓ in Ā. From
Lemma 5 we have e→ A0 =

∨
Ā and (e→ A0)↑↓ = A1, where A1 is the greatest fixpoint

of ↑↓ in Ā. According to Lemma 6, A1 ∈ Ā.
It remains to be shown (Lemma 4) that A0 = (e⊗A1)↑↓ ∈ Ā. We have (

∨
Ā)∗X ≤

A1 ≤
∨

Ā (Lemma 2, part 1) and from Lemma 2, parts 2, 3, the intent B1 = A↑1 is equal
to (

∨
Ā)↑. Hence,

∨
B̄ = e → B1 (Lemma 5) and (e → B1)↓↑ is the greatest intent of

B(X∗X ,Y ∗Y , I) from B̄. According to Lemma 4, the corresponding extent is equal to A0.
Applying Lemma 6 now completes the proof.

Lemma 9. For any maximal block K = [〈A0,B0〉,〈A1,B1〉] ∈B(X∗X ,Y ∗Y , I)/e≈ there
is exactly one formal concept G(K) = 〈Ā, B̄〉 ∈ B(X∗X ,Y ∗Y , [I]e) such that

∧
Ā ≤ A0,

A1 ≤
∨

Ā. It holds Ā = [A0]e.

Proof. Since A0
e≈ A1 then there exists a maximal block A′ ∈ LX/e such that A0 ∈ A′,

A1 ∈ A′. From Lemma 6 we have A0 ∈ A′↑↓, A1 ∈ A′↑↓. This gives existence of at least
one 〈Ā, B̄〉 with desired properties.

Now suppose that 〈Ā, B̄〉 ∈ B(X∗X ,Y ∗Y , [I]e) is such that
∧

Ā ≤ A0, A1 ≤
∨

Ā. The
element (

∨
B̄)↓ is the least fixpoint of ↑↓ in Ā (Lemma 7). Hence, (

∨
B̄)↓ = A0 (K is a

maximal block). From Lemma 5 we have Ā = [A0]e which proves the uniqueness of Ā
as well as the desired equality.

Lemmas 8 and 9 give us mapping F : B(X∗X ,Y ∗Y , [I]e) → B(X∗X ,Y ∗Y , I)/e≈ and
mapping G : B(X∗X ,Y ∗Y , I)/e≈→B(X∗X ,Y ∗Y , [I]e) which are obviously mutually in-
verse. Using mapping F , we state our main result:

Factorization of Concept Lattices with Hedges by Means of Factorization of
Residuated Lattices

239



Theorem 2. Mapping F is an isomorphism of lattices.

Proof. It remains to be shown that F and G are morphisms of ordered sets. For two
elements 〈Ā, B̄〉,〈C̄, D̄〉 ∈B(X∗X ,Y ∗Y , [I]e), denote F(〈Ā, B̄〉) = [〈A0,B0〉,〈A1,B1〉] and,
similarly, F(〈C̄, D̄〉) = [〈C0,D0〉,〈C1,D1〉] (intervals taken in B(X∗X ,Y ∗Y , I)).

If 〈Ā, B̄〉 ≤ 〈C̄, D̄〉 then
∨

Ā ≤
∨

C̄, from which and from Lemma 7 it follows B1 =
(
∨

Ā)↑ ≥ (
∨

C̄)↑ = D1. This means [〈A0,B0〉,〈A1,B1〉]≤ [〈C0,D0〉,〈C1,D1〉].
To prove the opposite we start with A0 ≤ C0. This and Lemma 5 give

∨
Ā = e →

A0 ≤ e →C0 =
∨

C̄, which finishes the proof.

4 Conclusion

The two main results of this paper can be interpreted as follows. If we are trying to
reduce the complexity of some concept lattice with hedges by factorization, then we are,
in fact, constructing another concept lattice with hedges, which is built over a data table
with values in some factorized residuated lattice. Thus, the problem of factorization of
concept lattice by similarity is replaced with the problem of factorization of the used
set of truth degrees (residuated lattice) which indicate the similarity levels.

This paper extends our previous results from [17], where we considered residuated
lattices and fuzzy concept lattices without hedges.

There is even more general approach (“Generalized concept lattice”, [16]), which
contains the notion of fuzzy concept lattice with hedges as a special case [14]. There
arises a question whether the method of factorization of concept lattices can be gen-
eralized to this case. This question is open; the main obstacle seems to be that in this
general framework there is no known natural notion of similarity of concepts.

References

1. Belohlavek, R.: Similarity relations in concept lattices. J. Logic Comput., 10 (6), 823–845
(2000)

2. Belohlavek, R.: Fuzzy Relational Systems, Foundations and Principles. Kluwer, New York
(2002)

3. Belohlavek, R. et al.: Fast factorization by similarity in formal concept analysis of data with
fuzzy attributes. J. Comput. Syst. Sci., 73 (6), 1012–1022 (2007)

4. Belohlavek, R., Funiokova, T., Vychodil, V.: Galois connections with hedges. In: Yingming
Liu, Guoqing Chen, Mingsheng Ying (Eds.): Fuzzy Logic, Soft Computing & Computational
Intelligence: Eleventh International Fuzzy Systems Association World Congress (Vol. II),
2005, pp. 1250–1255. Tsinghua University Press and Springer, ISBN 7–302–11377–7.

5. Belohlavek, R., Outrata, J. and Vychodil, V.: Thresholds and shifted attributes in formal con-
cept analysis of data with fuzzy attributes. In: Schärfe, H., Hitzler, P., Øhrstrøm, P. (eds.) Lec-
ture Notes in Artificial Intelligence, 4068, pp. 117–130. Springer, Berlin/Heidelberg (2006)

6. Belohlavek, R., Outrata, J., Vychodil, V.: Fast Factorization by Similarity of Fuzzy Concept
Lattices with Hedges. Int. J. Found. Comput. Sci. 19(2): 255-269 (2008)

7. Belohlavek, R., Sklenář, V., Zacpal, J.: Crisply generated fuzzy concepts. In: B. Ganter and
R. Godin (Eds.): ICFCA 2005, Lecture Notes in Computer Science 3403, pp. 268–283,
Springer-Verlag, Berlin/Heidelberg, 2005.

240 Michal Krupka



8. Belohlavek, R., Vychodil, V.: Reducing the size of fuzzy concept lattices by hedges. In:
FUZZ-IEEE 2005, The IEEE International Conference on Fuzzy Systems, May 22–25, 2005,
Reno (Nevada, USA), pp. 663–668.

9. Carpineto, C., Romano, G.: Concept Data Analysis. Theory and Applications. J. Wiley
(2004).

10. Czédli, G.: Factor lattices by tolerances. Acta Sci. Math., 44, 35–42 (1982)
11. Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Founda- tions. Springer-

Verlag, Berlin (1999).
12. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)
13. Hájek, P.: On very true. Fuzzy sets and systems 124(2001), 329–333.
14. Krajči, S.: Every concept lattice with hedges is isomorphic to some generalized concept lat-

tice. In: R. Belohlavek, V. Snasel (Eds.), Proceedings of CLA 2005: The 3rd international
conference on Concept Lattices and Their Applications, Olomouc, Czech Republic, Septem-
ber 2005, pp. 1–9

15. Krajči, S.: Cluster based efficient generation of fuzzy concepts. Neural Network World
5(2003), 521–530.

16. Krajči, S.: The basic theorem on generalized concept lattice. In: R. Belohlavek, V. Snasel
(eds.), CLA 2004, Ostrava, Proceedings of the 2nd international workshop, pp. 25–33

17. Krupka, M.: Factorization of residuated lattices with application to concept lattices. In:
R.Trappl (ed.) Cybernetics and Systems 2008, pp. 21–25. Austrian Society for Cybernetic
Studies, Vienna (2008)

18. Wille, R.: Complete tolerance relations of concept lattices. In: G. Eigenthaler et al. Contri-
butions to General Algebra, Vol. 3, pp. 397–415, Hölder-Pichler-Tempsky, Wien (1985)

Factorization of Concept Lattices with Hedges by Means of Factorization of
Residuated Lattices

241





Author Index

Alonso-Jiménez, José Antonio, 121
Aranda-Corral, Gonzalo A., 121

Bartl, Eduard, 59
Belohlavek, Radim, 59
Ben Yahia, Sadok, 145
Bertet, Karell, 193
Borrego-Dı́az, Joaqúın, 121

Dolques, Xavier, 109

Endres, Dominik, 181

Földiák, Peter, 181
Falleri, Jean-Rémy, 109
Fernández-Lebrón, M. Magdalena, 121

Ganter, Bernhard, 1
Girard, Nathalie, 193
Girault, Thomas, 35
Godin, Robert, 47
Guillas, Stéphanie, 193

Hájek, Petr, 3
Hamrouni, Tarek, 145
Hidalgo-Doblado, M. José, 121
Huchard, Marianne, 109

Ignatov, Dmitry I., 157

Kaiser, Tim B., 23
Karypis, George, 5
Konecny Jan, 59
Kŕıdlo, Ondrej, 83

Krajči, Stanislav, 83
Krajca, Petr, 71
Krupka, Michal, 231
Kuznetsov, Sergei O., 157
Kwuida, Léonard, 217

Machida, Hajime, 217
Martinek, Pavel, 207
Mephu Nguifo, Engelbert, 145
Mitáš, Josef, 97

Napoli, Amedeo, 47
Nebut, Clémentine, 109

Ogier, Jean-Marc, 193
Outrata, Jan, 71

Priss, Uta, 133, 181

Schlemmer, Tobias, 9
Schmidt, Stefan E., 9
Sigmund, Erik, 97
Sklenář, Vladimı́r, 97
Ślȩzak, Dominik, 7
Szathmary, Laszlo, 47

Valtchev, Petko, 47
Visani, Muriel, 193
Vychodil, Vilem, 71

Wille, Rudolf, 167
Wille-Henning, Renate, 167

Zacpal, Jǐŕı, 97



Editors: Radim Belohlavek, Sergei O. Kuznetsov

Publisher & Print: Palacký University, Olomouc
Kř́ıžkovského 8, 771 47 Olomouc
Czech Republic

Title: CLA 2008, Proceedings of the Sixth International Con-
ference on Concept Lattices and Their Applications

Place, year, edition: Olomouc, 2008, 1st

Page count: xii+243

Impression: 70

Not for sale

ISBN 978–80–244–2111–7


	Table of Contents
	Preface
	Recent Interfaces for Formal Concept Analysis
	Bernhard Ganter
	The GUHA Method and its Meaning for Data Mining
	Petr Hájek
	Biclustering Methods Meets Formal Concept Analysis
	George Karypis
	Rough Sets and Formal Concept Analysis: Foundations and the Case Studies of Feature Subset Selection and Knowledge Structure Formation
	Dominik Slezak
	A Formal Concept Analysis of Harmonic Forms and Interval Structures
	Tobias Schlemmer, Stefan E. Schmidt
	Connecting Many-valued Contexts to General Geometric Structures
	Tim B. Kaiser
	Concept Lattice Mining for Unsupervised Named Entity Annotation
	Thomas Girault
	An Efficient Hybrid Algorithm for Mining Frequent Closures and Generators
	Laszlo Szathmary, Petko Valtchev, Amedeo Napoli, Robert Godin
	Optimal Decompositions of Matrices with Grades into Binary and Graded Matrices
	Eduard Bartl, Radim Belohlavek, Jan Konecny
	Parallel Recursive Algorithm for FCA
	Petr Krajca, Jan Outrata, Vilem Vychodil
	Proto-fuzzy Concepts, their Retrieval and Usage
	Ondrej Krídlo, Stanislav Krajci
	Application of the Formal Concept Analysis in Evaluation of Results of ANEWS Questionnaire and Physical Activity of the Czech Regional Centers
	Jirí Zacpal, Erik Sigmund, Josef Mitáš, Vladimír Sklenár
	A Model-driven Engineering Based RCA Process for Bi-level Models Elements / Meta-elements: Application to Description Logics
	Xavier Dolques, Jean-Rémy Falleri, Marianne Huchard, Clémentine Nebut
	Extending Attribute Exploration by Means of Boolean Derivatives
	José Antonio Alonso-Jiménez, Gonzalo A. Aranda-Corral, Joaquín Borrego-Díaz, M. Magdalena Fernández-Lebrón, M. José Hidalgo-Doblado
	FCA Software Interoperability
	Uta Priss
	GARM: Generalized Association Rule Mining
	Tarek Hamrouni, Sadok Ben Yahia, Engelbert Mephu Nguifo
	Concept-based Recommendations for Internet Advertisement
	Dmitry I. Ignatov, Sergei O. Kuznetsov
	The Mathematical in Music Thinking
	Rudolf Wille, Renate Wille-Henning
	An Application of Formal Concept Analysis to Neural Decoding
	Dominik Endres, Peter Földiák, Uta Priss
	Some Links Between Decision Tree and Dichotomic Lattice
	Stéphanie Guillas, Karell Bertet, Muriel Visani, Jean-Marc Ogier, Nathalie Girard
	On Generalization of Fuzzy Concept Lattices Based on Change of Underlying Fuzzy Order
	Pavel Martinek
	On the Isomorphism Problem of Concept Algebras
	Léonard Kwuida, Hajime Machida
	Factorization of Concept Lattices with Hedges by Means of Factorization of Residuated Lattices
	Michal Krupka
	Author Index

