International Conference on
Logic Programming ICLP 2008

Udine, Italy
9-13 December 2008

ICLP 2008 Workshop

ALPSWS 2008:
Applications of Logic Programming to the
(Semantic) Web and Web Services

12 December 2008

Proceedings

ALPSWS 08

2
T

FEditors:
J. de Bruijn, S. Heymans, D. Pearce, A. Polleres, and E. Ruckhaus

© Copyright 2008 front matter by the editors; individual papers by the individ-
ual authors. Copying permitted for private and scientific purposes. Re-publication of
material in this volume requires permission of the copyright owners.

ii

Preface

This volume contains the papers presented at the third international workshop
on Applications of Logic Programming to the (Semantic) Web and Web Services
(ALPSWS2008) held on the 12h of December 2008 in Udine, Italy, as part of

the 24%h International Conference on Logic Programming (ICLP 2008).

The advent of the Semantic Web promises machine readable semantics and a
machine-processable next generation of the Web. The first step in this direction
is the annotation of static data on the Web by machine processable information
about knowledge and its structure by means of Ontologies. The next step in this
direction is the annotation of dynamic applications and services invocable over
the Web in order to facilitate automation of discovery, selection and composition
of semantically described services and data sources on the Web by intelligent
methods; this is called Semantic Web Services.

Many workshops and conferences have been dedicated to these promising ar-
eas, mostly covering generic topics. The ALPSWS workshop series has a slightly
different goal. Rather that bringing together people from a wide variety of re-
search fields with different understandings of the topic, we have tried to focus on
the various application areas and approaches in this domain from the perspective
of declarative logic programming (LP).

The workshop provides a snapshot of the state of the art of the applications
of LP to the Semantic Web and to Semantic Web Services, with the following
main objectives and benefits:

— Bring together people from different sub-disciplines of LP to focus on tech-
nological solutions and applications from LP to the problems of the Web.
— Promote further research in this interesting application field.

The 2008 edition of ALPSWS includes work on the topic of integrating ontolo-
gies and rules, but also integration with machine learning. Furthermore, we can
see an interest in integration with database technology, a prerequisite for large-
scale adoption of Semantic Web technology. Then, two important challenges in
reasoning on the Web are addressed, namely combining open- and closed-world
reasoning and reasoning with large data sets. Finally, there is an application of
logic programming to service description and drug discovery.

November 2008 The Editors

iii

Workshop Organization

Organizing Committee

Jos de Bruijn
Stijn Heymans
Axel Polleres
David Pearce
Edna Ruckhaus

Programme Committee

Carlos Damasio
Thomas Eiter
Cristina Feier
Gopal Gupta
Claudio Gutierrez
Giovambattista Ianni
Uwe Keller

Markus Kroetzsch
Zoe Lacroix
Gergely Lukacsy
Wolfgang May
Enrico Pontelli
Hans Tompits
Alejandro Vaisman
Maria Esther Vidal
Gerd Wagner

Additional Reviewers
Aidan Hogan
Thomas Krennwallner

Francesco Ricca
Mantas Simkus

iv

Table of Contents

Full Papers

Upgrading Databases to Ontologies
Gisella Bennardo, Giovanni Grasso, Nicola Leone, and Francesco Ricca

A Sound and Complete Algorithm for Simple Conceptual Logic Programs
Cristina Feier and Stijn Heymans

Combining Logic Programming with Description Logics and Machine
Learning for the Semantic Web
Francesca Alessandra Lisi

A Semantic Stateless Service Description Language...............
Piero Bonatti and Luigi Sauro

Large scale reasoning on the Semantic Web
Baldzs Kdddr, Peter Szeredi and Gergely Lukdcsy

Reasoning on the Web with Open and Closed Predicates
Gerd Wagner, Adrian Giurca, Ion-Mircea Diaconescu, Grigoris Antoniou,
Anastasia Analyti and Carlos Damasio

Short Paper

A Preliminary Report on Answering Complex Queries related to Drug

Discovery using Answer Set Programming..........
Olivier Bodenreider, Zeynep Coban, Mahir Doganay, Esra Erdem and Hilal
Kosucu

Upgrading Databases to Ontologies*

Gisella Bennardo, Giovanni Grasso, Nicola Leone, Francesco Ricca

Department of Mathematics, University of Calabria, 87036 Rende (CS), Italy
{lastname}@mat.unical.it

Abstract. In this paper we propose a solution that combines the advan-
tages of an ontology specification language, having powerful rule-based rea-
soning capabilities, with the possibility to efficiently exploit large (and,
often already existent) enterprise databases. In particular, we allow to “up-
grade” existing databases to an ontology for building a unified view of the
enterprise information. Databases are kept and the existing applications
can still work on them, but the user can benefit of the new ontological view
of the data, and exploit powerful reasoning and information integration
services, including: problem-solving, consistency checking, and consistent
query answering. Importantly, powerful rule-based reasoning can be carried
out in mass-memory allowing to deal also with data-intensive applications.

Kewwords: Ontologies, Rules, Databases, Answer Set Programming,
Information Integration, Consistent Query Answering.

1 Introduction

In the last few years, the need for knowledge-based technologies is emerging in sev-
eral application areas and, in particular, both enterprises and large organizations
are looking for powerful instruments for knowledge-representation and reasoning.
In this field, ontologies [1] have been recognized to be a fundamental tool. Indeed,
they are well-suited formal tools that provide both a clean abstract model of a
given domain and powerful reasoning capabilities. In particular, they have been re-
cently exploited for specifying terms and definitions relevant to business enterprises,
obtaining the so-called enterprise/corporate ontologies. Enterprise/Corporate on-
tologies can be used to share/manipulate the information already present in a
company; in fact, they provide for a “conceptual view” expressing at the inten-
sional level complex relationships among the entities of enterprise domains. In this
way, they can offer a convenient access to the enterprise knowledge, simplifying the
retrieval of information and the discovery of new knowledge through powerful rea-
soning mechanisms. However, enterprise ontologies are not widely used yet, mainly
because of two major obstacles: (i) the specification of a real-world enterprise on-
tology is an hard task; and, (i7) usually, enterprises already store their relevant
information in large databases. As far as point (i) is concerned, it can be easily
seen that developing an enterprise ontology by scratch would be a time-consuming
and expensive task, requiring the cooperation of knowledge engineers with domain

* Supported by M.I.U.R. within projects “Potenziamento e Applicazioni della Program-
mazione Logica Disgiuntiva” and “Sistemi basati sulla logica per la rappresentazione
di conoscenza: estensioni e tecniche di ottimizzazione.”

experts. Moreover, (i7) the obtained specification must incorporate the knowledge
(mainly regarding concept instances) already present in the enterprise information
systems. This knowledge is often stored in large (relational) database systems, and
loading it again in the ontologies may be unpractical or even unfeasible. This hap-
pens because of the large amount of data to deal with, but also since databases
have to keep their autonomy (considering that many applications work on them).
In addition, when data residing in several autonomous sources are combined in a
unified view, inconsistency problems may arise [2,12] that cannot be easily fixed.

In this paper we describe a solution that combines the advantages of an ontol-
ogy representation language (i.e., high expressive power and clean representation
of data) having powerful rule-based reasoning features, with the capability to ef-
ficiently exploit large (and, often already existent) enterprise databases. Basically,
if we are given some existing databases, we can analyze their schema and try to
recognize both entities and relationships they store. This information is exploited
for “upgrading” the database to an ontology. Here, ontology instances are “virtu-
ally” specified (i.e. they are linked, not imported) by means of special logic rules
which define a mapping from the data in the database to the ontology. The re-
sult is a unified ontological specification of the enterprise information that can be
employed, for browsing, editing and advanced reasoning. Moreover, possible incon-
sistent information obtained by merging several databases is dealt with by adopting
data-integration techniques.

We developed these solutions in OntoDLV [3-5], a system that implements a
powerful logic-based ontology representation language, called OntoDLP, which is
an extension of (disjunctive) Answer Set Programming [6-8] (ASP) with all the
main ontology constructs including classes, inheritance, relations, and axioms.! On-
toDLP combines in a natural way the modeling power of ontologies with a power-
ful “rule-based” language allowing for disjunction in rule heads and nonmonotonic
negation in rule bodies. In general, disjunctive ASP, and thus OntoDLP, can rep-
resent every problem in the complexity class ¥ and II5 (under brave and cautious
reasoning, respectively) [9].

Summarizing, the main contributions of this paper are:

— an extension of OntoDLP by suitable constructs, called virtual class and virtual
relation, which allows one to specify the extensions of ontology concepts/relations
by using data from existing relational databases;

— the design of a rewriting technique for implementing Consistent Query Answer-
ing (CQA) [2,10-13] in OntoDLV. CQA allows for obtaining as much consistent
information as possible from queries, in case of global inconsistent information.

Moreover, we efficiently implemented the proposed extensions in the OntoDLV
system by allowing for the evaluation of queries in mass memory. In this way,
OntoDLV can seamlessly provide to the users both an integrated ontological view
of the enterprise knowledge and efficient query processing on existing data sources.

! The term “Answer Set Programming” was introduced by Vladimir Lifschitz in his
invited talk at ICLP’99 to denote the declarative programming paradigm originally
described in [6]. Since ASP is the most prominent branch of logic programming in
which rule heads may be disjunctive, the term Disjunctive Logic Programming (DLP)
refers explicitly to ASP. OntoDLP takes its name from ontologies plus DLP.

2 The OntoDLP language

In this section we briefly overview OntoDLP, an ontology representation and rea-
soning language which provides the most important ontological constructs and
combines them with the reasoning capabilities of ASP. For space limitations we
cannot include a detailed description of the language. The reader is referred to [4,
5] for details. Moreover, hereafter we assume the reader to be familiar with ASP
syntax and semantics, for further details refer to [6, 14].

More in detail, the OntoDLP language includes, the most common ontology
constructs, such as: classes, relations, (multiple) inheritance; and the concept
of modular programming by means of reasoning modules. A class can be thought
of as a collection of individuals. An individual, or object, is any identifiable entity
in the universe of discourse. Objects, also called class instances, are unambiguously
identified by their object-identifier (oid) and belong to a class. A class is defined by
a name (which is unique) and an ordered list of typed attributes, identifying the
properties of its instances. Classes can be organized in a specialization hierarchy
(or data-type taxonomy) using the built-in is-a relation (multiple inheritance). The
following are examples of both class and instance declarations:

class person(name: string, father : person, mother : person, birthplace : place).
class employee isa {person}(salary:integer, boss: person).
john : person(name: “John”, father : jack, mother: ann, birthplace : rome).

Relationships among objects are represented by means of relations, which, like
classes, are defined by a (unique) name and an ordered list of attributes. As in
ASP, logic programs are sets of logic rules and constraints. However, OntoDLP
extends the definition of logic atom by introducing class and relation predicates,
and complex terms (allowing for a direct access to object properties). Logic rules
can be exploited for defining classes and relations when their instances can be “de-
rived” (or inferred) from the information already stated in an ontology. This kind
of intensional constructs are called Collection classes and Intensional Relations.
Basically, collection classes collect instances defined by another class and perform
a re-classification based on some information which is already present in the ontol-
ogy; whereas, intentional relations are similar to (but more powerful of) database
views. Importantly, the programs (set of rules) defining collection classes (and in-
tensional relations) must be normal and stratified (see e.g., [15]). For instance, the
class richEmployee can be defined as follows:

collection class richEmployee(name: string){
E : richEmployee(name: N) :(— E : employee(name: N, salary:S),S > 1000000.}

Moreover, OntoDLP allows for special logic expressions called azioms modeling sen-
tences that are always true. Axioms provide a powerful mean for defining/checking
consistency of the specification (i.e., discard ontologies which are, somehow, con-
tradictory or not compliant with the domain’s intended perception). For example,
we may enforce that a person cannot be father of himself by writing: :— X :
person(father: X).

In addition to the ontology specification, OntoDLP provides powerful reasoning
and querying capabilities by means of the language components reasoning modules
and queries. In practice, a reasoning module is a disjunctive ASP program conceived
to reason about the data described in an ontology. Reasoning modules are identified
by a name and are defined by a set of (possibly disjunctive) logic rules and integrity

constraints; clearly, the rules of a module can access the information present in the
ontology.

An important feature of the language is the possibility of asking conjunctive
queries, that, in general, can involve both ontology entities and reasoning modules
predicates. As an example, we ask for persons whose father is born in Rome as
follows: X : person(father: person(birthplace : place(name: “Rome”)))?

3 Virtual Classes and Virtual Relations

In this section we show how an existing database can be “upgraded” to an OntoDLP
ontology. In particular, the new features of the language, called virtual classes and
virtual relations, are described by exploiting the following example.

Suppose that a Banking Enterprise asks for building an ontology of its domain
of interest. This request has the goal of obtaining a uniform view of the knowledge
stored in the enterprise information system that is shared among all the enterprise
branches.

[Table [Attributes
Branch branch-name, branch-city, assets
Customer customer-name, social-security, customer-street, customer-city
Depositor customer-social-sec , account-number, access-date

Saving-account |account-number, balance, interest-rate

Checking-account |account-number, balance,overdraft-amount

Toan loan-number , amount, branch-name
Borrower customer-social-sec, loan-number
Payment loan-number , payment-number, payment-date, payment-amount

Table 1. The Banking Enterprise Database.

The schema of the existing database of the enterprise is reported in Table 1.
The first step that must be done is to reconstruct the semantics of the data stored
in this database. It is worth noting that, in general, a database schema is the
product of a previously-done modeling step on the domain of interest. Usually,
the result of this conceptual-design phase is a semantic data model that describes
the structure of the entities stored in the database. Likely, the database engineers
exploited the Entity-Relationship Model (ER-model) [17], that consists of a set
of basic objects (called entities), and of relationships among these objects. The
ER-model underlying a database can be reconstructed by reverse-engineering? or
can be directly obtained from the documentation of the original project.

Suppose now that, we obtained the ER-model corresponding to the database
of Table 1. In particular, the corresponding ER diagram is shown in Figure 1.
From this diagram it is easy to recognize that the enterprise is organized into
branches, which are located into a given place and also have an asset and a unique
name. A bank customer is identified by its social-security number and, in addi-
tion, the bank stores information about customer’s name, street and living place.
Moreover, customers may have accounts and can take out loans. The bank offers
two types of accounts: saving-accounts with an interest-rate, and checking-accounts
with a overdraft-amount. To each account is assigned a unique account-number,
and maintains last access date. Moreover, accounts can be held by more than one

2 Note that, the reverse-engineering task is not trivial, and even automatic methods may
fail to reconstruct the original semantics [18].

branch-name

}

loan-number

social-security

customer-name

payment-date

Interest-rate

| savings-account | ‘checking-account

N

Fig. 1. The Banking Enterprise ER diagram

customer, and obviously one customer can have various accounts (depositors). Note
that, in the case of accounts, the ER-model exploits specialization/generalization
construct. A loan is identified by a unique loan-number and, as well as accounts,
can be held by several customers (borrowers). In addition, the bank keeps track
of the loan amount and payments and also of the branch at the loan originates.
For each payment the bank records the date and the amount; for a specific loan a
payment-number univocally identifies a particular payment.

All this information represents a good starting point for defining an ontology
that describes the banking enterprise domain.® As a matter of fact, we can easily
exploit it both for identifying ontology concepts and for detecting the database
tables which store data about ontology instances. In practice, we can “upgrade”
the banking database to a banking ontology by creating an OntoDLP (base) class,
with name ¢, for each concept ¢ in the domain; and by exploiting logic rules that
specify a mapping between class ¢ and its instances “stored” in the database. A
class ¢ defined by means of mapping rules is called wvirtual, because its instances
come from an external source; but, as far as reasoning and querying are concerned
they are like any other class directly specified in OntoDLP. More in detail, a virtual
class is defined by using the keywords virtual class followed by the class name,
and by the specification of class attributes; then, instances are defined by means
of rules containing special atoms that allows for accessing the source database.

First of all, external data sources are specified directly in OntoDLP, as instances
of the built-in class dbSource as follows:

db1 : dbSource(connectionURI : “hitp : //db.banking.com”, user: “myUser”,

password : “myPsw”).

Here, the object identifier db1 is used to identify the enterprise database. Note that
such a mechanism allows to build an ontology starting from one or more databases,
just specifying more dbSources; moreover, this source identification strategy is suf-
ficiently general to be (in the future) extended also to access other kind of sources

3 Note also that, our goal is not to provide a tool for reasoning on ER schemata; instead,
we allow the ontology engineer to design and “populate” an ontology that exploits data
about the instances that is stored in relational databases.

beside databases. Now, given the source identifier for the enterprise database, we
model the branch entity as follows:
virtual classbranch(name: string, city: string, assets : integer){
f(BN) : branch(name: BN, city: BC, assets: A) :—
branch@dbl(branch-name: BN, branch-city : BC, assets: A).}

The rule acts as mapping between the data contained in table branch and the
instances of class branch by exploiting a new type of atom, called sourced atom. A
sourced atoms consist of a name (branch), that identifies a table "at” (@) a specific
database source (db1), and a list of attributes (that match the table schema).
Attributes can be filled in by constants or variables.

Note that, whereas databases store values, ontologies manage instances (which
are not values) that are uniquely identified by oids.* We provided a specific so-
lution for facing with this problem, in which values appearing in the databases
are kept, someway, distinct from object identifiers appearing in the ontology. In
particular, functional object identifiers, suitably built from database values, are ex-
ploited for identifying ontology instaces. In our example, the head of the mapping
rule contains the functional term f(BN), that builds, for each instance of branch,
a functional object identifier composed of the functor f containing the value of the
name attribute stored in the table branch. In practice, if the branch table stores a
tuple (7Spagna”,” Rome”, 1000000), then the associated instance in the ontology
will be: f(”Spagna”) : branch(name:” Spagna”, city:” Rome”, assets: 1000000). In
this way, the functional object identifier f(”Spagna”) is built from the data value
”Spagna”; keeping the data alphabet distinct from the one of object identifiers.

Note that name is a key for table branch. Because object identifiers in On-
toDLP uniquely identify instances, it is preferable to exploit only keys for defining
functional object identifiers. This simple policy ensures that we will obtain an ad-
missible ontology whenever the source database is unique and consistent; whereas,
if more than one source database is exploited for defining ontology entities, some
admissibility constraint for the ontology schema (like e.g. referential integrity con-
straints, unicity of object identifiers, etc. see [3])) might be violated. To face with
this problem our system supports data integration features which are described in
Section 4. Clearly, in order to ensure the maximum flexibility, the responsibility of
writing a “right” ontology mapping is left to the ontology engineer.

We say that a virtual class declared by means of sourced atoms is in logical
notation. We provided also an alternative notation for accessing database tables,
called SQL notation. In particular, the virtual class branch can be equivalently
defined as follows:

virtual classbranch(name: string, city: string, assets: integer){

f(BN) : branch(name: BN, city: BC, assets: A) :(—
[dbl,” SELECT branch-name AS BN, branch-city AS BC, assets AS A
FROM branch ™)}

Here, a special atom which contains an SQL query is used in the place of a
sourced one. Formally, a SQL atom consists of a pair [db object identifier, sql
query] enclosed in square brackets. The db object identifier picks out the database
on which the sql query will be performed.

Consider now the customer entity. Also here, we define a virtual class as follows:
* This is the well-known impedance mismatch problem [19, 20].

virtual class customer(ssn: string, name: string, street : string, city : string){
c¢(SSN) : customer(ssn:SSN,name: N, street: S, city: C) —
customer@Qdbl (social-security : SSN, customer-name : N, customer-street : S,
customer-city: C').}

The functional term ¢(SSN) is used here in order to assign to each instance a
suitable functional object identifier built on the social-security attribute value.
Note that, a fresh functor is used for each virtual class. In this way, functional
object identifiers belonging to different classes are kept distinct. In our example,
the customer and the branch class instances are made disjoint by using functor f
and c, respectively.

Following the same methodology, we define a virtual class for the loan entity:

virtual classloan(number :integer, loaner : branch, amount : integer){
I(N) : loan(number: N, loaner: f(L), amount: A) :—
loan@dbl(loan-number: N, branch-name: L, amount: A).}

Note that, the loan class has an attribute (loaner) of type branch. In this case,
functional terms are carefully employed in order to maintain referential integrity.
As shown above, the mapping uses the functional term f(L) to build values for
the loaner attribute. Basically, since the branch class use the functor f to build its
object identifiers, then we also use the same functor where an object identifier of
branch is expected.

In the following, we exploit the same idea to model the payment entity:

virtual class payment(ref-loan:loan, number : integer, payDate : date,
amount : integer){
p(L(L), N) : payment(ref-loan: (L), number: N, payDate: D, amount: A) :(—
paymentQ@dbl (loan-number : L, payment-number : N, payment-date: D,
payment-amount: A).}

Also in this case we deal with referential integrity constraints by using a proper
functional term I(L) where a loan object identifier is expected (ref-loan attribute);
moreover, since payments are identified by a pair (payment-number, relaive loan)
each instance of payment will be identified by a functional object identifier with
two arguments: one of these is a functional object identifier of type loan; and, the
other is the loan number.

As far as accounts are concerned, we know from the ER-model that they are
specialized in two types: saving-accounts and checking-accounts. This situation can
be easily dealt with by exploiting inheritance (see Section 2). Thus, we first define
a virtual class named account as follows:

virtual class account(number : integer, balance : integer).

and, then, we provide two wirtual classes, savingAccount and checkingAccount,
namely, which are declared to be both subclasses of account:

virtual class savingAccount isa {account}(interestRate: integer){
acc(N) : savingAccount(number: N, balance: B, interestRate: I) :(—
saving-account Qdbl(account-number: N, balance : L, interest-rate: I).}

virtual class checkingAccount isa {account}(overdraft:integer){
acc(N) : checkingAccount(number: N, balance: B, overdraft:I) :—
checking-account Qdbl(account-number: N, balance : L, overdraft-amount : T).}

In order to conclude our “upgrading” process, we have to model the relation-
ships holding among the concepts in the banking domain. To deal with this prob-
lem, OntoDLP allows for defining also wvirtual relations. For instance, the ER di-
agram of Figure 1 shows that customers and loans are in relationship through
borrower and depositor. Hence, we define two virtual relations as follows:

virtual relation borrower(cust: customer, loan : loan){
borrower(cust: c(C), loan:1(L)) :—
borrower@dbl (customer-social-sec: C, loan-number:).}
virtual relation depositor(cust: customer, account : account, , lastAccess: date){
depositor(cust: c¢(C), account : acc(A), lastAccess: D) i—
depositor@dbl(customer-social-sec: C', account-number: A, access-date: d).}

It is worth noting that a wvirtual relation differs from a wirtual class mainly
because tuples are not equipped with object identifiers.

4 Data Integration Features

In previous sections we showed how a existing database can be upgraded to an
OntoDLP ontology. Basically, the instances of ontology entities are virtually popu-
lated by means of special logic rules, which act as a mapping from the information
stored in database tables to ontology instances. In general, the ontology engineer
can obtain the data from several source databases, which are combined in a unified
ontological view. This is a typical data integration scenario [2] where either some
admissibility conditions on the ontology schema (e.g., referential integrity con-
straints, unicity of object identifiers, etc.), or some user-defined axioms might be
violated by the obtained ontology.? In order to face with this problem, a possibility
is to fix manually either the information in the sources or the ontology specifica-
tion; but, if the ontology engineer can/does not want to modify the sources, then
it would be very useful to single out as much consistent information as possible for
answering queries. In our framework, we support both possibilities by offering the
following data-integration features:

— Consistency checking: verify whether the obtained ontology is consistent or not,
and, in the latter case, precisely detect tuples that violate integrity constraints
or user defined axioms;

— Consistent Query Answering (CQA) [2,10-13]: compute answer to queries that
are true in every instance of the ontology that satisfies the constraints and
differs minimally from the original one.

In the field of data-integration several notions of CQA have been proposed (see [12]
for a survey), depending on whether the information in the database is assumed to
be correct and complete. Basically, the incompleteness assumption coincides with

5 It is easy to see that, our approach can be classified from a in data integration point
of view as GAV (Global As View) [2] integration system.

the open world assumption, where facts missing from the database are not assumed
to be false. Conversely, we assume that sources are complete. This choice, common
in data warehousing, is suitable in a framework like OntoDLP that is based on the
closed world assumption; and, as argued in [13], strengthen the notion of minimal
distance from the original information.® There are two important consequences
of this choice: integrity restoration can be obtained by only deleting tuples (note
that the empty model is always a repair [13]); and, computing CQA for conjunc-
tive queries remains decidable even when arbitrary sets of denial constraints and
inclusion dependencies are employed [13].

More formally, given an OntoDLP ontology schema X and a set A of axioms or
integrity constraints, let @ and O be two ontology instances’, we say that O" is a
repair [13] of O w.r.t. A, if O satisfies all the axioms in A and the instances in O"
are a maximal subset of the instances in O. Basically, given a conjunctive query @,
consistent answers are those query results that are not affected by axioms violations
and are true in any possible repair [13]. Thus, given and ontology instance O and a
set of axioms A, a conjunctive query @ is consistently true in O w.r.t. 4 if Q is true
in every repair of O w.r.t. A. Moreover, if) is non-ground, the consistent answers
to @ are all the tuples ¢ such that the ground query Q[t] obtained by replacing the
variables of) by constants in ¢ is consistently true in O w.r.t. A.

Note that, as shown in [13] the problem of computing consistent answers to
queries (CQA) in the case of denial constraints and inclusion dependencies (such
kind of constraints are suficient to model every admissibility condition on an On-
toDLP schemal3,4]) belongs to the IT¥ complexity class; thus, they can be imple-
mented by using disjunctive ASP.

In the next Section, we describe how the new features were implemented and
in particular we show how to build an ASP program that implements CQA for the
above mentioned kind of axtioms in the OntoDLV system.

5 Implementation

In this section, we first briefly describe the OntoDLV system [3]; and then, we
detail the implementation of the new features, namely: virtual classes/relations
and consistent query answering.

OntoDLV. OntoDLV is a complete framework that allows one to develop
ontology-based applications. Thanks to a user-friendly visual environment, on-
tology engineers can create, modify, navigate, query ontologies, as well as per-
form advanced reasoning on them. An advanced persistency manager allows one to
store ontologies transparently both in text files and internal relational databases;
while powerful type-cheking routines are able to analyze ontology specifications
and single out consistency problems. All the system features are made available to

5 It is worth noting that, in relevant cases like denial constraints, query results coincide
for both correct and complete information assumptions.

7 Here ontology instance refers to the unique set of ground instances modeled by an
ontology specification [3]. Note that, in our settingsOntoDLP axioms can model both
denial constraints (like functional dependencies) and inclusion dependencies (in the
latter case, negation as failure is exploited).

software developers trough an Application Programming Interface (API) that acts
as a facade for supporting the development of applications based on OntoDLP [21].
The core of OntoDLV is a rewriting procedure (see [4]) that translates ontologies,
axioms, reasoning modules and queries to an equivalent ASP program which, in
the general case, runs on state-of-the art ASP system DLV [14]. Importantly, if
the rewritten program is stratified and non disjunctive [6-8] (and the input ontol-
ogy resides in relational databases) the evaluation is carried out directly in mass
memory by exploiting a specialized version of the same system, called DLVP? [22].
Note that, since entity specifications are stratified and non-disjunctive, queries on
ontologies can always be evaluated in mass-memory (this is to say: “by exploit-
ing a DBMS”). This makes the evaluation process very efficient , and allows the
knowledge engineer to formulate queries in a language more expressive than SQL.
Clearly, more complex reasoning tasks (whose complexity is NP /co-NP, and up to
XP/IIF) are dealt with by exploiting the standard DLV system instead.

Virtual Classes and Virtual Relations. The implementation of virtual classes
and wvirtual relation has been carried out by properly improving the rewriting pro-
cedure and by extending the persistency manager in order to provide both storage
and manipulation facilities for virtual entities. More in detail, we implemented two
different usage modalities: off-line and on-line.

In the first, the relevant information is extracted from the sources by exploiting
SQL queries and, is stored into the internal data structures (basically, instances
are “imported” and stored by exploiting the persistency manager). In the latter,
queries are performed directly at the sources.

The off-line mode is preferable when one wants to migrate the database into
an ontology, or when parts of a proprietary database are one-time granted to third
parties. In fact, once the import is done, the source database can be disconnected,
since instances are stored into the OntoDLV persistency manager. Obviously, de-
pending on database size, the off-line modality could be time-consuming or even
unpractical. In addition, one may want to keep the information in the original
database (which is accessed by legacy applications), in order to deal with “fresh”
information. In those cases, the on-line mode is preferable.

In both on-line and off-line modes, queries on the ontology are performed di-
rectly on mass-memory by exploiting DLVPB [22]. To this end, we extended the
rewriter procedure in such a way that DLVP?Z mapping statements are properly
generated. Indeed, DLVPE takes as input both a logic program and a mapping
specification linking database tables to logic predicates.

Importantly, in order to avoid the materialization of the entire ontology for
evaluating an input query, an “unfolding” technique [2, 12] has also been integrated
into the Rewriter module. Basically, when we have a query ¢ on the ontology,
every predicate of ¢ is substituted with the corresponding query over the sources,
provided that suitable syntactic conditions are satisfied.

As an example, if we ask for the instances of virtual class branch of Section 3
the following mapping directive for DLVP® is generated by the rewriter procedure:

USEDB “hitp : //db.banking.com” :myUser:myPsw.
USE branch (branch-name, branch-city, assets)
MAPTO branchPredicate (varchar,varchar,integer).

10

The above directive specifies the database (USEDB) on which the SQL query
will be performed (may be the source database). Moreover, the listed attributes
of the table branch (USE) are mapped (MLAPTO) on the logic predicate branch-
Predicate. In this case, branchPredicate is the predicate name used internally to
rewrite in standard ASP the class branch.

Implementation of CQA. In order to implement consistent query answering
we developed a new procedure in the OntoDLV system. Given an ontology O, this
procedure takes as input a conjunctive query @, and a set of integrity constraints
A and builds both an ASP program II.4, and a query Qcqq, such that: @ is con-
sistently true in O w.r.t. A iff Q.44 is true in every answer set of I1,4,, in symbols:
II.40 e Qega (in other words Q.4 is cautious consequence of Il.4q).

Note that, this can be done in our settings since CQA belongs to the IIY
complexity class [13]. However, we decided to support in the implementation only
a family of constraints in such a way that complexity of CQA stays in co-NP. In
particular, we consider constraints of the form:

(1) == a1(t1), - an(tn),o(t1, ..., tn). (#) :— a1(t), not as(t).

where ¢; is a tuple and o(ty,...,t,) is a conjunction of comparison literals of the
form X0Y, with § € {<,>,=,#} and X and Y are variables occurring in ¢4, . .., t,.
In the database field constraints of type (i) are called denial constraints, whereas
constraints of type (ii) allow for modeling inclusion dependencies (see [23]).8 An
inclusion dependency is often denoted by Q[Y] C P[X] (where Q and P are rela-
tions) and it requires that all values of attribute Y in @ are also values of attribute
X in some instance of P. For example, if P and) are unary this can be ensured
in OntoDLP by writing :— Q(X), not P(X). In particular, we allow only acyclic?
inclusion dependencies, since this assumption is sufficient to guarantee that CQA
is in co-NP, see [13].

It is worth noting that, the algorithm that builds 11,4, is evaluated in OntoDLV
together with the ASP program produced by the OntoDLV rewriter. Since the
rewriting process suitably replaces OntoDLP atoms by standard ASP atoms [4],
without loss of generality we adopt in the following the standard ASP notation for
atoms. Given a query @), and a set of constraints A, Il.4, is built as follows:

1- for each constraints of the form (¢) in A, insert the following rule into Il ,,:
El(tl) Voo \/an(tn) — al(tl), BEIN an(tn),a(tl, - ,tn).

2- for each atom a(t) occurring in some axiom of A, insert into IT.q, a rule:
a*(t) :— a(t), not a.

3- for all constraints of the form (i) in A, insert the following rules in IT.4,:
ar(t) :— ai(t1), not ai(t).

4- for each a(t) occurring in some axiom of A insert into Il.q4, the following rules:
a”(t) :— a*, not @, not a.

8 Axioms of type (4i) can model inclusion dependencies under the assumption of complete
sources, where facts that are not in the ontology are considered to be false.

9 Informally, a set of inclusion dependencies is acyclic if no attribute of a relation R
transitively depends (w.r.t. inclusion dependencies) on an attribute of the same R.

11

Finally, Q¢qq is built from @ by replacing atoms a(t) by a”(t), whenever a(t) occurs
in both @ and some constraint in A. The disjunctive rules (step 1) guess atoms to
be cancelled (step 2) for satisfying denial constraints, and rules generated by step
3, remove atoms violating also referential integrity constraints; eventually, step 4
builds repaired relations. Note that the minimality of answer sets guarantees that
deletions are minimized.
As an example consider two relations m(code), and e(code,name). Suppose that
the axioms are :(— e(X,Y),e(X,Z2),Y <> Z., — e(X,Y),e(Z,Y),X <> Z. and
:— m(X), not code(X), where code(X) :— e(X,Y). requiring that both code and
name are keys for e and m[code] C e[code]. Suppose now that, the following facts are
true e(1,a),e(2,b),e(2,a),m(1), m(2); it can be easily verified that all the axioms
are violated and m(2) is consistently true. The program obtained by rewriting the
constraints is:

X, Y)VE(X, 2) — e(X,Y),e(X, 2),Y <> Z.

e(X,Y)Ve(Z)Y) :— e(X,Y),e(Z2,Y), X <> Z.

e’ (X,Y) :(— e(X,Y), not e(X,Y). m*(X) = m(X), not m(X).
code*(X) :— code(X), not code(X). m(M) :— m* (M), not code™ (M).

m”(X) :— m*(X), not m(X), not m(X).

e"(X,Y) :— e*(X,Y), not e(X,Y), not e(X,Y).
and the two answer sets of this program both contain m”(2), thus, m(2)? is derived
to be consistently true.

6 Related Work

As a matter of fact, the problem of linking ontology to databases is not new [2].
Most of the available ontology systems and tools are able to deal with several
sources of information by exploiting different ontology languages (see [24,25]).
Among them, the most closely related systems, which offer the possibility to import
relational databases into ontologies, are: the Ontobroker system [26,27], and the
Neon tookit!?. Both of them support a fragment of Flogic [28], and allows one to
link relational database to Flogic ontologies. Comparing our approach with the
above mentioned ones, we notice that, OntoDLV supports a rule-based language
(ASP programs under the answer sets semantics) that, is strictly more expressive in
the propositional case, and retains decidability in the general case (programs with
variables). This allows to directly exploit the obtained ontology specification for
solving complex reasoning tasks; moreover, the advanced data-integration features
supported by OntoDLV, like consistent query answering, are missing in the above
mentioned systems, which, instead, support also the integration of sources different
from databases.

Another related system is MASTRO [20], that allows for liking a set of pre-
existing data sources to ontologies specified in the description logic DL-Lite 4. In
this approach, a very similar solution for creating object identifiers form database
values is used and, query answering on the obtained ontology is very efficient /scalable;
it can be performed in LogSpace in the size of the original database [29,20]. In-
deed, satisfiability checking and query answering in DL-Lite 4 can be carried out

19 http:/ /www.neon-toolkit.org/

12

by exploiting unfolding [20], where queries on the ontology are replaced by equiv-
alent SQL specifications on the databases containing the A-Box. This makes the
solution proposed in [20] very effective when dealing with large databases, and
complexity-wise cheaper than our approach. However, the language of OntoDLV
is rule-based and, thus, allows for specifying more complex queries. Indeed, On-
toDLP combines (in a decidable framework) ontologies with recursive rules and
non-monotonic negation. Importantly, when the specified logic program is stratified
and non-disjunctive, queries are unfolded, and computation is performed in mass-
memory by exploiting DLVPE [22]. Note that, since the language of DLVP? [22]
is strictly more expressive than SQL (thanks to recursion and stratified negation),
OntoDLV allows for the execution of more sophisticated queries w.r.t. [20].

Finally, since OntoDLP can be seen as an extension of disjunctive datalog with
object-oriented constructs, our work is related also to the techniques proposed in
the field of object-oriented databases for mapping relational data to object-views
(see e.g. [30,31]).

7 Conclusion and Future Work

In this paper we proposed a solution that allows one to “upgrade” one or more
existing enterprice relational databases to an ontology. The result is the natural
combination of the advantages of an ontology language (clean high-level view of
the information and powerful reasoning capabilities) with the efficient exploitation
of large already-existent databases.

This was obtained by extending the OntoDLV language and system. In par-
ticular, we implemented virtual classes and virtual relations, two new modeling
constructs that allow the knowledge engineer to define the instances of an ontology
by means of special logic rules, which act as a mapping from the information stored
in database tables to concept instances. Moreover, in order to deal with consistency
problems that may arise when data residing in different sources are combined in
a unified ontological view [2], we developed in OntoDLV consistent query answer-
ing [2,10-13], so that the system is able to retrieve as much consistent information
as possible from the ontology.

Ongoing work concerns the analysis of performances of our system on real-life
and large scale databases.

References

1. Gruber, T. R..: A Translation Approach to Portable Ontology Specifications. Knowl-
edge Acquisition 5 (1993) 199-220”

2. Lenzerini, M.: Data integration: a theoretical perspective. In Popa, L., ed.: PODS
’02: Proc. of PODS, New York, USA, ACM (2002) 233-246

3. Ricca, F., Gallucci, L., Schindlauer, R., Dell’Armi, T., Grasso, G., Leone, N.: On-
toDLV: an ASP-based System for Enterprise Ontologies. JLC (2008) in print.

4. Ricca, F., Leone, N.: Disjunctive Logic Programming with types and objects: The
DLV™ System. Journal of Applied Logics 5 (2007) 545-573

5. Del’Armi, T., Gallucci, L., Leone, N., Ricca, F., Schindlauer, R.: OntoDLV: an
ASP-based System for Enterprise Ontologies. In: Proceedings ASP07. (2007)

13

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.
32.

Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9 (1991) 365-385

Gelfond, M., Leone, N.: Logic Programming and Knowledge Representation — the
A-Prolog perspective . Artificial Intelligence 138 (2002) 3-38

Minker, J.: Overview of Disjunctive Logic Programming. Annals of Mathematics and
Artificial Intelligence 12 (1994) 1-24

Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on
Database Systems 22 (1997) 364-418

Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent Query Answers in Inconsistent
Databases. In Proceedings of PODS ’99), ACM Press (1999) 68-79

Lembo, D., Lenzerini, M., Rosati, R.: Source Inconsistency and Incompleteness in
Data Integration. In: Proc. of (KRDB-02), Toulouse France, CEUR Vol-54 (2002)
Bertossi, L.E., Hunter, A., Schaub, T., eds.: Inconsistency Tolerance. Volume 3300
of Lecture Notes in Computer Science. Springer (2005)

Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple
deletions. Information and Computation 197 (2005) 90-121

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV System for Knowledge Representation and Reasoning. ACM Transactions on
Computational Logic 7 (2006) 499-562

Apt, K.R., Blair, H.A., Walker, A.: Towards a Theory of Declarative Knowledge.
Morgan Kaufmann Publishers, Inc., Washington DC (1988) 89-148

Smith, M.K., Welty, C., McGuinness, D.L.: OWL web ontology language guide. W3C
Candidate Recommendation (2003) http://www.w3.org/TR/owl-guide/.

Chen, P.P.: The Entity-Relationship Model - Toward a Unified View of Data. ACM
Transactions on Database Systems 1 (1976) 9-36

Markowitz, V.M., Makowsky, J.A.: Identifying Extended Entity-Relationship Object
Structures in Relational Schemas. IEEE Trans. Softw. Eng. 16 (1990) 777-790
Hull, R.: A survey of theoretical research on typed complex database objects. 15
(1987) 193-261

Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati., R.:
Linking Ontologies to Data. Journal of Data Semantics (2008) 133-173

Gallucci, L., Ricca, F.: Visual Querying and Application Programming Interface for
an ASP-based Ontology Language. In Proc. of SEA’07, AZ, USA, (2007). 56-70
Giorgio, T., Leone, N., Vincenzino, L., Panetta, C.: Experimenting with recursive
queries in database and logic programming systems. TPLP 7 (2007) 1-37
Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
Duineveld, A., Stoter, R., Weiden, M., Kenepa, B., Benjamins, V.: Wonder Tools? A
Comparative Study of Ontological Engineering Tools. JHCS 1 (2000) 1111-1133
Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. Knowl.
Eng. Rev. 18 (2003) 1-31

Fensel, D., Decker, S., Erdmann, M., Studer, R.: Ontobroker: How to make the www
intelligent. In: In Proc. of (KAW98). (1998) 9-7

Sure, Y., Angele, J., Staab, S.: OntoEdit: Multifaceted Inferencing for Ontology
Engineering. Journal of Data Semantics 1 (2003) 128-152

Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-based
languages. Journal of the ACM 42 (1995) 741-843

Calvanese, D., Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable Rea-
soning and Efficient Query Answering in Description Logics: The DL-Lite Family.
Journal of Automated Reasoning 39 (2007) 385429

Bancilhon F., Delobel C., Kanellakis P. C.: Building an Object-oriented Database
System: The Story of O2. Morgan Kaufmann (1992)

Abiteboul S., Bonner A.: Objects and Views. ACM SIGMOD (1991) 238-247
ODMG: Object Data Management Group: http://www.odbms.org/.

14

A Sound and Complete Algorithm for Simple
Conceptual Logic Programs™*

Cristina Feier and Stijn Heymans

Knowledge-Based Systems Group, Institute of Information Systems
Vienna University of Technology
Favoritenstrasse 9-11, A-1040 Vienna, Austria
{feier,heymans}@kr.tuwien.ac.at

Abstract. Open Answer Set Programming (OASP) is a knowledge rep-
resentation paradigm that allows for a tight integration of Logic Pro-
gramming rules and Description Logic ontologies. Although several de-
cidable fragments of OASP exist, no reasoning procedures for such ex-
pressive fragments were identified so far. We provide an algorithm that
checks satisfiability in NEXPTIME for the fragment of EXPTIME-complete
sitmple conceptual logic programs.

1 Introduction

Integrating Description Logics (DLs) with rules for the Semantic Web has re-
ceived considerable attention over the past years with approaches such as De-
scription Logic Programs [10], DL-safe rules [16], DL+log [17], di-programs [5],
and Open Answer Set Programming (OASP) [13]. OASP combines attractive
features from both the DL and the Logic Programming (LP) world: an open do-
main semantics from the DL side allows for stating generic knowledge, without
mentioning actual constants, and a rule-based syntax from the LP side supports
nonmonotonic reasoning via negation as failure.

Decidable fragments for OASP satisfiability checking were identified as syn-
tactically restricted programs, that are still expressive enough for integrating
rule- and ontology-based knowledge, see, e.g., Conceptual Logic Programs [12]
or g-hybrid knowledge bases [11]. A shortcoming of those decidable fragments
of OASP is the lack of effective reasoning procedures. In this paper, we take
a first step in mending this by providing a sound and complete algorithm for
satisfiability checking in a particular fragment of Conceptual Logic Programs.

The major contributions of the paper can be summarized as follows:

— We identify a fragment of Conceptual Logic Programs (CoLPs), called sim-
ple CoLPs, that disallow for inverse predicates and inequality compared to
CoLPs, but are expressive enough to simulate the DL SH. We show that

* This work is partially supported by the Austrian Science Fund (FWF) under the
projects Distributed Open Answer Set Programming (FWFE P20305) and Reasoning
in Hybrid Knowledge Bases (FWF P20840).

15

satisfiability checking w.r.t. simple CoLPs is EXPTIME-complete (i.e., it has
the same complexity as CoLPs).

— We define a nondeterministic algorithm for deciding satisfiability, inspired
by tableaux-based methods from DLs, that constructs a finite representation
of an open answer set. We show that this algorithm is terminating, sound,
complete, and runs in NEXPTIME.

The algorithm is non-trivial from two perspectives: both the minimal model
semantics of OASP, compared to the model semantics of DLs, as well as the
open domain assumption, compared to the closed domain assumption of ASP,
pose specific challenges in constructing a finite representation that corresponds
to an open answer set. Detailed proofs and an extended example can be found
in [6].

2 Preliminaries

We recall the open answer set semantics from [13]. Constants a, b, c, . . ., variables
Z,Y,..., terms s,t,..., and atoms p(tq,...,t,) are defined as usual. A literal is
an atom p(ty,...,t,) or a naf-atom not p(ti,...,t,). For a set « of literals
or (possibly negated) predicates, a* = {l | | € «,l an atom or a predicate}
and o= = {l | not | € a,l an atom or a predicate}. For a set X of atoms,
not X = {not | |l € X}. For a set of (possibly negated) predicates a, we will
often write a(x) for {a(z) | a € a} and a(x,y) for {a(x,y) | a € a}.

A program is a countable set of rules a « (, where o« and (are finite sets
of literals. The set « is the head of the rule and represents a disjunction, while
3 is called the body and represents a conjunction. If a = (), the rule is called a

constraint. Free rules are rules q(x1,...,2,) V not q(z1,...,x,) < for variables
Z1,...,T,; they enable a choice for the inclusion of atoms. We call a predicate ¢
free in a program if there is a free rule ¢(z1, ..., 2,) V not g(x1,...,2,) < in the

program. Atoms, literals, rules, and programs that do not contain variables are
ground. For a rule or a program X, let cts(X) be the constants in X, vars(X) its
variables, and preds(X) its predicates with upreds(X) the unary and bpreds(X)
the binary predicates. A universe U for a program P is a non-empty countable
superset of the constants in P: cts(P) C U. We call Py the ground program
obtained from P by substituting every variable in P by every possible constant
in U. Let Bp (Lp) be the set of atoms (literals) that can be formed from a
ground program P.

An interpretation I of a ground P is any subset of Bp. We write I =
p(t1, ... tn) if p(t1,...,t,) € I and I |= not p(t1,...,t,) if T = p(t,... tn).
For a set of ground literals X, I = X if I =1 for every | € X. A ground rule
r: o« fis satisfied w.r.t. I, denoted I |=r, if T =1 for some | € o whenever
I E B. A ground constraint « (3 is satisfied w.r.t. I if I = 3. For a ground
program P without not, an interpretation I of P is a model of P if I satisfies
every rule in P; it is an answer set of P if it is a subset minimal model of P.
For ground programs P containing not, the GL-reduct [7] w.r.t. I is defined as

16

P!, where P! contains a™ « g+ fora«+ gin P, I =not 3~ and [= a~. [is
an answer set of a ground P if I is an answer set of P!,

In the following, a program is assumed to be a finite set of rules; infinite
programs only appear as byproducts of grounding a finite program with an
infinite universe. An open interpretation of a program P is a pair (U, M) where
U is a universe for P and M is an interpretation of Py. An open answer set of
P is an open interpretation (U, M) of P with M an answer set of Py. An n-ary
predicate p in P is satisfiable if there is an open answer set (U, M) of P and a
(z1,...,2n) € U™ such that p(xq,...,x,) € M.

We introduce some notations for trees as in [19]. For an z € Nj ! we denote
the concatenation of a number ¢ € Ny to x as z - ¢, or, abbreviated, as zc.
Formally, a (finite) tree T is a (finite) subset of N§ such that if x - ¢ € T for
x € Nj and ¢ € Ny, then x € T. Elements of T are called nodes and the empty
word ¢ is the root of T. For a node x € T we call sucer(x) = {x-c €T | ¢ € Ny},
successors of x. The arity of a tree is the maximum amount of successors any
node has in the tree. The set Ap = {(x,y) | z,y € T,3c € Ny : y = = - ¢} denotes
the set of edges of a tree T'. We define a partial order < on a tree T" such that for
x,y €T,z <yiff zis aprefix of y. Asusual, z < yif x < y and y £ x. A (finite)
path P in a tree T is a prefix-closed subset of T such that Vo # y € P : |z| # |y|.
We call pathr(z,y) a finite path in T with = the smallest element of the path
w.r.t. the order relation < and y the greatest element. The length of a finite path
is the number of elements of the path. Infinite paths have no greatest element
w.r.t. <. A branch B in a tree T is a maximal path (there is no path which
contains it) which contains the root of T

For programs containing only unary and binary predicates it makes sense to
define a tree model property: for a program P containing only unary and binary
predicates, if a unary predicate p € preds(P) is satisfiable w.r.t. P then p is tree
satisfiable w.r.t. P. A predicate p is tree satisfiable w.r.t. P if there exists

— an open answer set (U, M) of P such that U is a tree of bounded arity, and
— a labeling function ¢ : U — 2P7%(P) such that
e p € t(e) and #(¢) does not contain binary predicates, and
e z-i€U,i>0,iff there is some f(z,z-i) € M, and
e for y € U, q € upreds(P), f € bpreds(P),
x q(y) € M iff g € t(y), and
x fle,y) e Miffy=a-iAf€t(y).

We call such a (U, M) a tree model for p w.r.t. P.

3 Simple Conceptual Logic Programs

In [12], we defined Conceptual Logic Programs (CoLPs), a syntactical fragment
of logic programs for which satisfiability checking under the open answer set
semantics is decidable. We restrict this fragment by disallowing the occurrence of
inequalities and inverse predicates, resulting in simple conceptual logic programs.

! By Ny we denote the set of natural numbers excluding 0, and by Njj the set of finite
sequences over Ny.

17

Definition 1. A simple conceptual logic program (simple CoLP) is a program
with only unary and binary predicates, without constants, and such that any rule
is a free rule, a unary rule

a(z) « B(z), ('Vm(mayM)»dm(ym»]SmSk (1)
where for all m, v # 0, or a binary rule

f(z,y) < B(z),(z,y),6(y) (2)
with v+ # 0.

Intuitively, the free rules allow for a free introduction of atoms (in a first-order
way) in answer sets, unary rules consist of a root atom a(x) that is motivated
by a syntactically tree-shaped body, and binary rules motivate a f(z,y) for a x
and its ‘successor’ y by a body that only considers atoms involving x and y.

Simple CoLPs can simulate constraints «— 3(z), (ym (2, Ym), 5M(ym))1gmgk’
where Vm : ;5 # (), i.e., constraints have a body that has the same form as a
body of a unary rule. Indeed, such constraints « body can be replaced by simple
CoLP rules of the form constr(z) <« not constr(z), body, for a new predicate
constr.

As simple CoLPs are CoLLPs and the latter have the tree model property [12],
simple CoLLPs have the tree model property as well.

Proposition 1. Simple CoLPs have the tree model property.

For CoLPs this tree model property was important to ensure that a tree
automaton [19] could be constructed that accepts tree models in order to show
decidability. The presented algorithm for simple CoLPs relies as well heavily on
this tree model property.

As satisfiability checking of CoLPs is EXPTIME-complete [12], checking satis-
fiability of simple CoLLPs is in EXPTIME.

In [12], it was shown that CoLPs are expressive enough to simulate satisfia-
bility checking w.r.t to SHZQ knowledge bases, where SHZ Q is the Description
Logic (DL) extending ALC with transitive roles (S), support for role hierarchies
(H), inverse roles (Z), and qualified number restrictions (Q). For an overview of
DLs, we refer the reader to [1].

Using a restriction of this simulation, one can show that satisfiability check-
ing of SH concepts (i.e., SHZQ without inverse roles and quantified number
restrictions) w.r.t. a SH TBox can be reduced to satisfiability checking of a
unary predicate w.r.t. a simple CoLP. Intuitively, simple CoLPs cannot handle
inverse roles (as they do not allow for inverse predicates) neither can they han-
dle number restrictions (as they do not allow for inequality). As satisfiability
checking of ALC concepts w.r.t. an ALC TBox (note that ALC is a fragment
of SH) is EXPTIME-complete ([1, Chapter 3]), we have EXPTIME-hardness for
simple CoLLPs as well.

Proposition 2. Satisfiability checking w.r.t. simple CoL Ps is EXPTIME-complete.

18

4 An Algorithm for Simple Conceptual Logic Programs

In this section, we define a sound, complete, and terminating algorithm for sat-
isfiability checking w.r.t. simple CoLPs.

For every non-free predicate ¢ and a simple CoLP P, let P, be the rules of
P that have ¢ as a head predicate. For a predicate p, £p denotes p or not p,
whereby multiple occurrences of £p in the same context will refer to the same
symbol (either p or not p). The negation of +p is Fp, that is, Fp = not p if
+p =pand Fp =p if £p = not p.

For a unary rule r of the form (1), we define degree(r) = [{m | vm # 0}|.
For every non-free rule r : a «+— (8 € P, we assume that there exists an injective
function i, : 5 — {0, ..., ||} which defines a total order over the literals in 5 and
an inverse function I, : {0,...,|8|} — B which returns the literal with the given
index in 3. For a rule r which has body variables x,y;,...,yr we introduce a
function wvarset, : {x,y1,. .., Yk, (€, 1), - - ., (x,yx)} — 210181} which for every
variable or pair of variables which appears in at least one literal in a rule returns
the set of indices of the literals formed with the corresponding variable(s).

The basic data structure for our algorithm is a completion structure.

Definition 2 (completion structure). A completion structure for a simple
CoLP P is a tuple (T, G, CT, ST, RL, SG, NJy, NJ3), where T is a tree which
together with the labeling functions CT, ST, RL, SG, NJy, and NJg, represents a
tentative tree model and G = (V, E) is a directed graph with nodes V- C Bp, and
edges E C Bp, x Bp, which is keeps track of dependencies between elements of
the constructed model. The labeling functions are defined as following:

— The content function CT : T'U Ap — 2preds(P)Unot (preds(P)) 05 g node of
the tree to a set of (possibly negated) unary predicates and an edge of the tree
to a set of (possibly negated) binary predicates such that cT(x) C upreds(P)U
not(upreds(P)) ifx € T, and cT(x) C bpreds(P)Unot(bpreds(P)) if x € Arp.

— The status function ST : {(z,+q) | £¢ € ¢T(z),2 € TUAr} — {exp, unexp}
attaches to every (possibly negated) predicate which appears in the content
of a node/edge x a status value which indicates whether the predicate has
already been expanded in that node/edge.

— The rule function RL : {(x,q) | x € TU Ar,q € cT(x)} — P associates with
every node/edge x of T and every positive predicate q € CT(x) a rule which
has q as a head predicate: RL(z, q) € P,.

— The segment function sG : {(z,q,7) | « € T,not ¢ € cT(z),r € P;} — N
indicates which part of v justifies having not q in CT(x).

— The negative justification for unary predicates function NJy : {(z,q,7r) | z €
T,not q € c1(z),r € P} — 2M"%T indicates by means of tuples (n,z) € NxT
which literal 1,.(n) from r is used to justify not q in CT(x) in a node z € T,
or edge (x,z) € Ar.

— The negative justification for binary predicates function NJg : {(z,q,7) | = €
Ap,not g € c1(z),r € Py} — N gives the index of the literal from r that is
used to justify not q € CT(x).

19

An initial completion structure for checking the satisfiability of a unary
predicate p w.r.t. a simple CoLP P is a completion structure with T = {e},
V ={p(e)}, E =0, and ct(e) = {p}, sT(e,p) = unexp, and the other labeling
functions undefined for every input.

We clarify the definition of a completion structure by means of an example.
Take the program P :

r f(z,y) Vnot f(z,y) «—
To @ a(m) <—f($7y1)aa(y1>7f($7y2)
g : b(z) « not a(x)

A possible completion structure for this program P is as follows. Take a tree
T = {e,el}, i.e., a tree with root £ and successor €1, and take cT(g) = {b, not a},
cT(e,el) = {f}, and c1(el) = {not a,b}. Intuitively, we lay out the structure
of our tree model.

We take RL(g,b) = r3 indicating that r3 is responsible for motivating the
occurrence of b in €, set ST(g,b) = exp, and keep the status undefined for all
other nodes and edges in T'.

In general, justifying a negative unary literal not ¢ € cT(z) (or in other
words, the absence of ¢(z) in the corresponding open interpretation) implies
that every rule which defines ¢ has to be refuted (otherwise ¢ would have to be
present), thus at least one body literal from every rule in P, has to be refuted.
A certain rule r € P, can either be locally refuted (via a literal which can be
formed using = and some +a € CT(x)) or it has to be refuted in every successor
of x. In the latter case, if has more than one successor, it can be shown that
the same segment of the rule has to be refuted in all the successors, whereby
a segment of a rule is one of {3, (Vm U dm)1<m<k} for unary rules (1). In the
example, in order to have not a € CT(g), we need that for all successors yi, ya,
either f € cT(e,y1),a € cT(y1) does not hold, or f € cT(e,y2)) does not hold;
as y1 is not appearing in the second segment (and vice versa for y9), either for
all successors y, f € CT(e,y),a € CT(y) does not hold, or for all successors v,
f € ct(e,y) does not hold, such that in our case sG(z,a,r2) = 1 (the segment
f(x,y1),a(y1)): the function sSG picks up such a segment to be refuted, where
segments are referred to by the numbers 0 for 3, and m for 7, Ud,,, 1 <m < k.

After picking a segment to refute a negative unary predicate, we need means
to indicate which literal in the segment, per successor, can be used to justify this
negative unary predicate. This can be per successor a different literal from the
segment such that NJy(z,q,r) is a set of tuples (n,z) where z is the particular
successor (or x itself in case the negative unary predicate can be justified locally)
and n the position of the literal in the rule r. In the example, NJy(z,a,72) =
{(1,e1)}, i.e., the literal a(y;) as not a € cT(cl). Note that if z = x the set
NJy(z, q,r) would be a singleton set as no successors are needed to justify not q.

Rules that can deduce negated binary predicates are always local in the sense
that to justify a not ¢ € cT(z) for x € Ar one only needs to consider z.

In the following, we will show how to expand the initial completion structure
in order to prove satisfiability of a predicate, how to determine when no more

20

expansion is needed (blocking), and under what circumstances a clash occurs.
In particular, expansion rules will expand an initial completion structure to a
complete clash-free structure that corresponds to a finite representation of an
open answer set; applicability rules state the necessary conditions such that those
expansion rules can be applied.

4.1 Expansion Rules

The expansion rules will need to update the completion structure whenever in
the process of justifying a literal [in the current model a new literal +p(z) has
to be considered. This means that +p has to be inserted in the content of z in
case it is not already there and marked as unexpanded, and in case £p(z) is
an atom, it has to be ensured that it is a node in G and furthermore, in case
[is also an atom, a new arc from [to +p(z) should be created to capture the
dependencies between the two elements of the model. More formally:

— if +p ¢ ¢1(2), then cT(2) = cT(2) U {£p} and sT(2, £p) = unezp,
—if+tp=pand £p(z) ¢ V, then V =V U {£p(z)},
— ifl € Bp, and £p = p, then E = EU {(I, £p(2))}.

As a shorthand, we denote this sequence of operations as update(l, £p, z); more
general, update(l, 3, z) for a set of (possibly negated) predicates /3, denotes V+a €
B, update(l, +a, z).

In the following, let © € T and (z,y) € Ar be the node, respectively edge,
under consideration.

(i) Expand unary positive. For a unary positive predicate (non-free) p €
cT(x) such that ST(z,p) = unezp,

— nondeterministically choose a rule r € P, of the form (1) that will motivate
this predicate: set RL(x,p) = r,

— for the 8 in the body of this r, update(p(x), 5, x),

— for each y,,,1 < m < k, from r, nondeterministically choose a y € succr(x)
orlet y =x-s, where s € Nj s.t. - s ¢ sucer(x) already. In the latter case,
add y as a new successor of x in T: T'= T'U {y}. Take a new constant ¢ € C
st. Vz €T : ¢ ¢ t(z) and update the label ¢ for the newly created node:
t(y) = c2. Next, update(p(),Ym, (x,y)) and update(p(x), 6m,y)-

— set ST(z,p) = exp.

(ii) Expand unary negative. For a unary negative predicate (non-free) not p €
cT(z) and either
2 These constants keep track of the names of nodes in the tree, and will be useful

in constructing the corresponding open answer set in the proofs of soundness and
completeness; they have no role in the algorithm in itself

21

1. sT(x, not p) = unexp, then for every rule r € P, of the form (1) nondeter-
ministically choose a segment m,0 < m < k: sG(z,p,r) = m.

— If m = 0, choose a +a € (3, and update(not p(z), Fa,z), NJy(z,p,r) =
{(ir(£a(X)), 2)}.

— If m > 0, for every y € succr(x), () choose a £a, € Vi U 0,y and set
NIy(@,p, 1) = {(ir(£ay(X,Ym)),y) | £ay € ym} U {(ir(£ay(Yim)),y) |
+a, € 6, }. Next, update(not p(x), Fay, (z,y)) if £a, € v, and
update(not p(x), Fay,y) if £a, € dp,.

After every rule has been processed set sST(x, not p) = exp.

2. ST(z, not p) = exp and for some r € P,, SG(z,p,r) # 0, and NJy(z,p,7) = S
with |S| < |sucer(x)], i.e., not p has already been expanded, but for some
rule r it did not receive a local justification (at x), and meanwhile new
successors of have been introduced. Thus, one has to justify not p in the
new successors as well.

For every r € P, of the form (1) such that sG(z,p,r) = m # 0 and for
every y € succy(x) which has not been yet considered previously, repeat the
operations in (}) as above.

(iii) Expand binary positive. For a binary positive predicate symbol (non-
free) p in cT(x,y) such that sT((x,y),p) = unexp: nondeterministically choose
a rule r € P, of the form (2) that motivates p by setting RL((z,y),p) = r, and
update(p(z,), ,), update(p(z,y), (z,y)), and update(p(z,y),5,y). Finally,
set sT((z,y),p) = exp.

(iv) Expand binary negative. For a binary negative predicate symbol (non-
free) not p in CT(x,y) such that sT((x,y), not p) = unexp, nondeterministically
choose for every rule r € P, of the form (2) an s from varset,(X), varset,(X,Y)
or varset,(Y) and let NJg((z,y),p,) = s.

— If s € varset(X) and +a(X) = 1,.(s), update(not p(x,y), Fa,x),

— If s e varset(X,Y) and +f(X,Y) = I,(s), update(not p(z,y), Ff, (z,v)),

— If s e varset(Y) and xa(Y) = I,.(s), update(not p(x,y), Fa,y)).

Finally, set sT((x,y), not p) = exp.

(v) Choose a unary predicate. There is an x € T for which none of +a €
cT(z) can be expanded with rules (i-ii), and for all (x,y) € Ar, none of £f €
CT(z,y) can be expanded with rules (iii-iv), and there is a p € upreds(P) such
that p ¢ cT(x) and not p ¢ cT(x). Then, add p to cT(x) with ST(z,p) = unexp
or add not p to cT(x) with sST(x, not p) = unexp.

(vi) Choose a binary predicate. There is an © € T for which none of
+a € cT(z) can be expanded with rules (i-ii), and for all (x,y) € Ap none of
+f € cT(z,y) can be expanded with rules (iii-iv), and there is a (z,y) € Ar
and a p € bpreds(P) such that p ¢ cT(z,y) and not p ¢ CcT(x,y). Then,
add p to cT(x,y) with sT((z,y),p) = unexp or add not p to CT(x,y) with
sT((z,y), not p) = unexp.

22

4.2 Applicability Rules

For a simple CoLP P, a universe U for P, a graph G = (V, E) with nodes
V € Bp, and E € Bp, x Bp,, and a set of constants C C U we denote by G(C)
the graph obtained from G by considering only those nodes V(C) C V which
have an element from C as a first argument (remember that nodes are unary
or binary literals) and the edges F(C) which already existed between the nodes
from V(C) in the initial graph. Formally, V(C) = {£p(z) | £p(z) € V Az €
CrU{xp(z,y) | £p(z,y) € V Az € C} and E(C) = EN(V(C) x V(C)). When
U is a tree and C is a path in U, C = pathy (z,y), G(C) will contain those nodes
from G which have as arguments nodes from C or outgoing arcs in U from nodes
in C.

A second set of rules is not updating the completion structure under consid-
eration, but restricts the use of the expansion rules:

(vii) Saturation We will call a node z € T saturated if

— for all p € upreds(P) we have p € cT(z) or not p € ¢T(x) and none of
+a € ¢T(z) can be expanded according to the rules (i-ii) or (v),

— for all (z,y) € Ar and p € bpreds(P), p € cT(z,y) or not p € cT(z,y) and
none of +f € ¢T(x,y) can be expanded according to the rules (iii-iv) or (vi).

We impose that no expansions (i-vi) can be performed on a node from 7" until
its predecessor is saturated.

(viii) Blocking We call a node x € T blocked if

— its predecessor is saturated,
— there are two ancestors y, z such that y < z < z, and cT(z) = cT(y), and
— Gy = (V(pathr(y, z)), E(pathr(y, z))U{(a(2),a(y)) | a € cT(2)}) is acyclic.

Note that ancestors y, z are saturated as well, by rule (vii).

Intuitively, if there is a pair of ancestor nodes that have equal content, and
if by adding connections from atoms formed using the lower node in the pair
to atoms formed using the higher node in the pair and the same predicate, no
cycles are created in a subgraph of G which has as nodes all nodes which have
as arguments nodes from the path or outgoing arcs from these nodes (the rest
of G is not relevant in this context), the current node can be blocked: one can
show that provided that the content of the higher node in the pair is justified,
the content of the lower node in the pair can be justified also without further
expansions. We call (y, z) a blocking pair and say that y blocks z; if no confusion
is possible with the blocked node z, we will usually also refer to z as a blocked
node and to y as the blocking node for a blocking pair (y,z). We impose that
no expansions (i-vi) can be performed on a blocked node from 7.

23

(ix) Cyclic We call a node z € T cyclic if

— its predecessor is saturated,
— there are two ancestors y, z such that y < z < z, and cT(2) = cT(y), and
— Gy, contains a cycle.

The intuition is similar as with blocking, however, instead of being able to
reuse the justification of the higher node for the lower node, the presence of a
cycle in G, . is indicating that we would create an infinitely positive path in G
to motivate the higher node, when reusing the justification, which is, due to the
minimal model semantics, not allowed. We call (y, z) a cyclic pair, and, when no
confusion can arise, we designate z as a cyclic node as well. We impose that no
expansions (i-vi) can be performed on any node in 7' if it contains a cyclic node.

(x) Caching We call a node x € T' cached if

— its predecessor is saturated,

— there are two nodes y, z such that z < x and z € y and y £ z (i.e., z is not
an ancestor of y nor is y an ancestor of z), and CT(z) = CT(y); we call the
pair (y, z) a caching pair and we say that y caches z; usually, if no confusion
is possible, we will also refer to z as a cached node and to y as the caching
node. Furthermore, there exists no caching pair (u,y).

We impose that no expansions can be performed on a cached node from T
Intuitively, x is not further expanded, as one can reuse the (cached) justification
for y when dealing with z. The condition that there is no caching pair (u,y)
ensures that we do not replace the justification of z with that one of a node y
which at its turn is reusing the justification of some other node u. In particular,
this precludes a situation like y caches z and z caches y.

4.3 Termination, Soundness, and Completion

We call a completion structure contradictory, if for some x € T and a € upreds(P),
{a,not a} C ctr(z) or for some (x,y) € Ar and f € bpreds(P), {f,not f} C
cT(z,y). A complete completion structure for a simple CoLP P and a p €
upreds(P), is a completion structure that results from applying the expansion
rules to the initial completion structure for p and P, taking into account the
applicability rules, such that no expansion rules can be further applied. Further-
more, a complete completion structure CS = (T, G, CT, ST, RL, SG, NJy, NJg) is
clash-free if (1) CS is not contradictory, (2) ¢ does not contain cyclic nodes, and
(3) G does not contain cycles.

We show that an initial completion structure for a unary predicate p and
a simple CoLP P can always be expanded to a complete completion structure
(termination), that, if p is satisfiable w.r.t. P, there is a clash-free complete com-
pletion structure (soundness), and, finally, that, if there is a clash-free complete
completion structure, p is satisfiable w.r.t. P (completeness).

24

Proposition 3 (termination). Let P be a simple CoLP and p € upreds(P).
Then, one can construct a finite complete completion structure by a finite number
of applications of the expansion rules to the initial completion structure for p and
P, taking into account the applicability rules.

Proof Sketch. Assume one cannot construct a complete completion structure
by a finite number of applications of the expansion rules, taking into account the
applicability rules. Clearly, if one has a finite completion structure that is not
complete, a finite application of expansion rules would complete it unless succes-
sors are introduced. However, one cannot introduce infinitely many successors:
every infinite path in the tree will eventually contain two saturated nodes with
equal content and thus either a blocked or a cyclic pair, such that no expansion
rules can be applied to successor nodes of the blocked or cyclic node in the pair.
Furthermore, the arity of the tree in the completion structure is bound by the
predicates in P and the degrees of the rules. ad

Proposition 4 (soundness). Let P be a simple CoLP and p € upreds(P). If
there exists a clash-free complete completion structure for p w.r.t. P, then p is
satisfiable w.r.t. P.

Proof Sketch. From a complete clash-free completion structure for p and
P we can construct an open answer set of P that satisfies p by unfolding the
completion structure. Intuitively, blocking pairs represent a state where the open
answer set contains some infinitely repeating pattern that consists of a finite
motivation for the literals in the blocking pair: the definition of a blocking pair
is such that when we replace the motivation for the blocked node (i.e., the subtree
below this node) by the subtree that motivates the blocking node in the pair, no
infinite positive path arises. As the subtree of the blocked node is a subtree of
the subtree of the blocking node, we need to repeat such a replacement infinitely.
Furthermore, cached nodes represent the situation that a motivation for a node
is being repeated elsewhere, such that also cached pairs will be removed by a
substitution of subtrees. One can show that such a construction results in a tree
model for the program. O

Proposition 5 (completeness). Let P be a simple CoLP and p € upreds(P).
If p is satisfiable w.r.t. P, then there exists a clash-free complete completion
structure for p w.r.t. P.

Proof Sketch. 1f p is satisfiable w.r.t. P then p is tree satisfiable w.r.t. P
(Proposition 1), such that there must be a tree model (U, M) for p w.r.t. P.

One can construct a clash-free complete completion structure for p w.r.t. P,
by guiding the nondeterministic application of the expansion rules by (U, M)
and taking into account the constraints imposed by the saturation, blocking,
caching, and clash rules.

Tt is worth noting that the naive application of the rules according to (U, M)
does not work: the tree model might contain cyclic patterns that would result in
cyclic nodes in the completion structure. However, such patterns cannot occur

25

infinitely (this would contradict the minimality of an open answer set), such that
we can choose those expansion rules that bypass the cyclicity and immediately
choose the finite motivation for a certain node. O

4.4 Complexity Results

Let CS = (T, G, CT, ST, RL, SG, NJy, NJg) be a completion structure and CS’
the completion structure constructed from CS by removing from T all subtrees
with roots y where (z,y) is some blocked, cyclic, or caching pair. The size of
each of these subtrees is at most k£ + 1, where k is bound by the amount n of
unary predicates ¢ in P and the degrees of the rules P,. Moreover, there are at
most mk such subtrees, where m is the amount of nodes in CS’.

Assume CS’ has more than 2" nodes, then there must be two nodes = # y
such that ¢T(x) = cT(y). lf © < y or y < x, either (z,y) or (y,x) is a blocked or
cyclic pair, which contradicts the construction of CS". If z £ y and y &£ z, (x,v)
or (y,x) is a caching pair, again a contradiction. Thus, CS’ contains at most 2"
nodes, so m < 27. Since CS’ resulted from CS by removing at most mk subtrees
of maximal size k41 each, the amount of nodes in CS is m+m(k+1) < (k+2)2",
i.e., exponential in the size of P, such that the algorithm has to visit a number
of nodes that is exponential in the size of P.

The graph G has as well a number of nodes that is exponential in the size of
P. Since checking for cycles in a directed graph can be done in linear time, the
algorithm runs in NEXPTIME, a nondeterministic level higher than the worst-case
complexity characterization (Proposition 2).

Note that such an increase in complexity is expected. For example, although
satisfiability checking in SHZQ is EXPTIME-complete, practical algorithms run
in 2-NEXPTIME [18]. Thanks to caching, however, we only have an increase to
NEXPTIME.

5 Related Work

Description Logic Programs [10] represent the common subset of OWL-DL on-
tologies and Horn logic programs (programs without negation as failure or dis-
junction). As such, reasoning can be reduced to normal LP reasoning.

In [16], a clever translation of SHZQ(D) (SHZQ with data types) combined
with DL-safe rules (a rule is DL-safe if each variable in the rule appears in a
non-DL-atom, where a DL-atom is an atom with the predicate corresponding
to a DL-concept or DL-role) to disjunctive Datalog is provided. The translation
relies on a translation to clauses and subsequently applying techniques from
basic superposition theory.

Reasoning in DL+1og [17] does not use a translation to other approaches,
but defines a specific algorithm based on a partial grounding of the program
and a test for containment of conjunctive queries over the DL knowledge bases.
Note that [17] has a standard names assumption as well as a unique names
assumption - all interpretations are over some fixed, countably infinite domain,

26

different constants are interpreted as different elements in that domain, and
constants are in one-to-one correspondence with that domain.

dl-programs [5] have a more loosely coupled take on integrating DL knowledge
bases and logic programs by allowing the program to query the DL knowledge
base while as well having the possibility to send (controlled) input to the DL
knowledge base. Reasoning is done via a stable model computation of the logic
program, interwoven with queries that are oracles to the DL part.

Description Logic Rules[14] are defined as decidable fragments of SWRL. The
rules have a tree-like structure similar to the structure of simple CoLLPs rules.
Depending on the underlying DL, one can distinguish between SROZQ rules
(these do not actually extend SROZQ, they are just syntactic sugar on top of
the language), EL1T rules, DLP rules, and ELP rules [15]. The latter can be
seen as an extension of both ££7F rules and DLP rules, hence their name.

The algorithm presented in Section 4 can be seen as a procedure that con-
structs a tableau (as is common in most DL reasoning procedures), representing
the possibly infinite open answer set by a finite structure. There are several
DL-based approaches which adopt a minimal-style semantics. Among this are
autoepistemic[4], default[2] and circumscriptive extensions of DL[3][9]. The first
two extensions are restricted to reasoning with explicitly named individuals only,
while [9] allows for defeats to be based on the existence of unknown individuals.
A tableau-based method for reasoning with the DL ALCO in the circumscriptive
case has been introduced in [8]. A special preference clash condition is introduced
there to distinguish between minimal and non-minimal models which is based on
constructing a new classical DL knowledge base and checking its satisfiability.
It would be interesting to explore the connections between our algorithm and
the algorithm described there, in particular between our graph-cycle based clash
condition and the preference clash condition.

6 Conclusions and Outlook

We identified a decidable class of programs, simple CoLLPs, and provided a non-
deterministic algorithm for checking satisfiability under the open answer set
semantics that runs in NEXPTIME.

The presented algorithm is the first step in reasoning under an open answer
set semantics. We intend to extend the algorithm such that it can handle the
inverse predicates and inequalities of CoLPs, as well as constants. The latter
would enable combined reasoning with the DL SHOZ Q (closely related to OWL-
DL) and expressive rules.

References

1. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, 2003.

27

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

F. Baader and B. Hollunder. Embedding defaults into terminological representation
systems. J. of Automated Reasoning, 14(2):149-180, 1995.

P. Bonatti, C. Lutz, and F. Wolter. Expressive non-monotonic description logics
based on circumscription. In Proc. of 10th Int. Conf. on Principles of Knowledge
Repr. and Reasoning (KR’06), pages 400-410, 2006.

F. M. Donini, D. Nardia, and R.Rosati. Description logics of minimal knowledge
and negation as failure. ACM Transactions on Comput. Logic, 3(2):177-225, 2002.
T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining
answer set programming with description logics for the semantic web. Artificial
Intelligence, 172(12-13):1495-1539, 2008.

C. Feier and S. Heymans. A sound and complete algorithm for sim-
ple conceptual logic programs. Technical Report INFSYS RESEARCH
REPORT 184-08-10, KBS Group, Technical University Vienna, Austria,
October 2008. http://www.kr.tuwien.ac.at/staff/heymans/priv/projects/fwf-
doasp/alpsws2008-tr.pdf.

M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming.
In Proc. of ICLP’88, pages 1070-1080, Cambridge, Massachusetts, 1988.

S. Grimm and P. Hitzler. Reasoning in circumscriptive ALCO. Technical report,
FZI at University of Karlsruhe, Germany, September 2007.

S. Grimm and P. Hitzler. Defeasible inference with circumscriptive OWL ontolo-
gies. In Workshop on Advancing Reasoning on the Web: Scalability and Common-
sense, 2008.

B. N. Grosof, 1. Horrocks, R. Volz, and S. Decker. Description logic programs:
combining logic programs with description logic. In Proc. of the World Wide Web
Conf., pages 48-57. ACM, 2003.

S. Heymans, J. de Bruijn, L. Predoiu, C. Feier, and D. Van Nieuwenborgh. Guarded
hybrid knowledge bases. Theory and Practice of Logic Programming, 8(3):411-429,
2008.

S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Conceptual logic programs.
Annals of Mathematics and Artificial Intelligence (Special Issue on Answer Set
Programming), 47(1-2):103-137, June 2006.

S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Open answer set programming
with guarded programs. ACM Transactions on Computational Logic (TOCL), 9(4),
October 2008.

M. Krétzsch, S. Rudolph, and P. Hitzler. Description logic rules. In Proc. 18th
European Conf. on Artificial Intelligence(ECAI-08), pages 80-84. I0S Press, 2008.
M. Krétzsch, S. Rudolph, and P. Hitzler. ELP: Tractable rules for OWL 2. In
Proc. Tth Int. Semantic Web Conf. (ISWC-08), 2008.

B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL with rules.
Journal of Web Semantics: Science, Services and Agents on the World Wide Web,
3(1):41-60, July 2005.

R. Rosati. DL+log: Tight integration of description logics and disjunctive datalog.
In Proc. of the Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR), pages 6878, 2006.

S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, LuFG Theoretical Computer Science, RWTH-Aachen,
Germany, 2001.

M. Y. Vardi. Reasoning about the past with two-way automata. In Proc. 25th Int.
Colloquium on Automata, Languages and Programming, pages 628—641. Springer-
Verlag, 1998.

28

Combining Logic Programming with
Description Logics and Machine Learning
for the Semantic Web

Francesca A. Lisi and Floriana Esposito

Dipartimento di Informatica, Universita degli Studi di Bari
Via E. Orabona 4, 70125 Bari, Italy
{lisi, esposito}@di.uniba.it

Abstract. In this paper we consider an extension of Logic Programming
that tackles the Semantic Web challenge of acquiring rules combined with
ontologies. To face this bottleneck problem we propose a framework that
resorts to the expressive and deductive power of DL+log and adopts the
methodological apparatus of Inductive Logic Programming.

1 Introduction

Combining rules and ontologies is a hot topic in the (Semantic) Web area as
testified by the intense activity and the standardization efforts of the Rules
Interchange Format working group at W3C. Yet the debate around a unified
language for (Semantic) Web rules is still open. Indeed, combining rules and
ontologies raises several issues in Knowledge Representation (KR) due to the
many differences between the underlying logics, Clausal Logics (CLs) [17] and
Description Logics (DLs) [1] respectively. Among the many recent KR proposals,
DL+log [23] is a very powerful framework that allows for the tight integration
of DLs and disjunctive DATALOG with negation (DATALOG™) [7]. A point in
favour of DL+log is its decidability for many DLs, notably for SHZ Q [12]. Since
the design of OWL has been based on the SH family of very expressive DLs [11],
SHZQ+log is a good candidate for investigation in the Semantic Web context.

The upcoming standard rule language for the Semantic Web, if well-founded
from the KR viewpoint, will be equipped with reasoning algorithms. In KR
tradition deductive reasoning is the most widely studied. Yet, other forms of
reasoning will become necessary. E.g., acquiring and maintaining Semantic Web
rules is very demanding and can be automated though partially by applying Ma-
chine Learning algorithms. In this paper, we consider a decidable instantiation
of DL+log obtained by choosing SHZQ for the DL part and DATALOG™ for the
CL part, and face the problem of defining inductive reasoning mechanisms on it.
To solve the problem, we propose to resort to the methodological apparatus of
that form of Machine Learning known under the name of Inductive Logic Pro-
gramming (ILP) [19]. We extend some known ILP techniques to SHZQ + LOG™
and illustrate them with examples relevant to the Semantic Web context.

29

The paper is organized as follows. Section 2 briefly introduces hybrid DL-CL
formalisms and ILP. Section 3 introduces the KR framework of DL+log. Section
4 defines the ILP framework for inducing SHZ Q+log™ rules. Section 5 provides
a comparative analysis of our proposal with related work. Section 6 concludes
the paper with final remarks.

2 Background

2.1 Logic Programming and Description Logics

Description Logics (DLs) are a family of KR formalims that allow for the spec-
ification of knowledge in terms of classes (concepts), binary relations between
classes (roles), and instances (individuals) [1]. Complex concepts can be defined
from atomic concepts and roles by means of constructors (see Table 1). E.g.,
concept descriptions in the basic DL AL are formed according to only the con-
structors of atomic negation, concept conjunction, value restriction, and limited
existential restriction. The DLs ALC and ALN are members of the AL fam-
ily. The former extends AL with (arbitrary) concept negation (or complement),
whereas the latter with number restriction. The DL ALCNR adds to the con-
structors inherited from ALC and ALN a further one: role intersection (see
Table 1). Conversely, in the DL SHZQ [12] it is allowed to invert roles and to
express qualified number restrictions of the form > nS.C' and < nS.C where S
is a simple role (see Table 1).

A DL knowledge base (KB) can state both is-a relations between concepts
(azioms) and instance-of relations between individuals (resp. couples of individu-
als) and concepts (resp. roles) (assertions). Concepts and axioms form the TBox
whereas individuals and assertions form the ABox. A SHZQ KB encompasses
also a RBox which consists of axioms concerning abstract roles. The semantics
of DLs is usually defined through a mapping to First Order Logic (FOL) [2]. An
interpretation T = (A%,-T) for a DL KB consists of a non-empty domain A%
and a mapping function -Z. In particular, individuals are mapped to elements of
AT such that a® # b7 if a # b (Unique Names Assumption (UNA) [21]). Yet in
SHZQ UNA does not hold by default [10]. Thus individual equality (inequality)
assertions may appear in a SHZQ KB (see Table 1). Also the KB represents
many different interpretations, i.e. all its models. This is coherent with the Open
World Assumption (OWA) that holds in FOL semantics. The main reasoning
task for a DL KB is the consistency check that is performed by applying decision
procedures based on tableau calculus. Decidability of reasoning is crucial in DLs.

The integration of DLs and Logic Programming follows the tradition of KR
research on hybrid systems, i.e. those systems which are constituted by two or
more subsystems dealing with distinct portions of a single KB by performing
specific reasoning procedures [8], and gives raise to KR systems that will be
referred to as DL-CL hybrid systems in the rest of the paper. The motivation
for investigating and developing such systems is to improve on representational
adequacy and deductive power by preserving decidability. In particular, combin-
ing DLs with CLs can easily yield to undecidability if the interface between

30

Table 1. Syntax and semantics of DLs.

bottom (resp. top) concept L (resp. T) @ (resp. A7)

atomic concept A AT C AT
(abstract) role R RT C AT x AT
(abstract) inverse role R~ (R%)~
(abstract) individual a atf e AT
concept negation -C AT\ C*

concept intersection Ci M Cs C’lI al CQI
concept union CiUC, CTuct
value restriction VR.C {x € AT | Yy (z,y) € RF —yc CF}
existential restriction 3R.C {zx € AT |y (z,y) € RF Ay € CT}
at least number restriction ~ >nR {z € AT | {y|(z,y) € RT}| > n}
at most number restriction <nR {z € AT | {y|(z,y) € RT}| < n}
at least qualif. number restriction > nS.C {z € AT | |{y € CF|(z,y) € ST}| > n}
at most qualif. number restriction < nS.C {z € AT | |{y € C¥|(z,y) € ST}| < n}
role intersection RiMR; RINRE

concept equivalence axiom C;=Cy Cf =C%
concept subsumption axiom Cj C Cy Clz - sz

role equivalence axiom R=S RT =57
role inclusion axiom RCS RTC st

concept assertion a:C at et

role assertion {(a,b): R (a*,b%) € R*
individual equality assertion a=b at =b*
individual inequality assertion a®b at #b*

them is not reduced. In [14] the family CARIN of languages combining any DL
and HCL is presented. Among the many important results of this study, it is
proved that query answering in a logic obtained by extending ALCN 'R with non-
recursive DATALOG rules, where both concepts and roles can occur in rule bodies,
is decidable. Query answering is decided using constrained SLD-resolution, i.e.
an extension of SLD-resolution with a modified version of tableau calculus. An-
other DL-CL hybrid system is .AL-log [6] that integrates ALC [26] and DATALOG
[4] by constraining the variables occurring in the body of rules with ALC con-
cept assertions. Constrained SLD-resolution for AL-log is decidable and offers a
complete and sound method for answering ground queries by refutation. Besides
decidability, another relevant issue is DL-safeness of hybrid DL-CL systems [22].
A safe interaction between the DL and the CL part of an hybrid KB allows to
solve the semantic mismatch between DLs and CLs due to the different inferences
that can be made under OWA and CWA respectively. In this respect, AL-log is
DL-safe whereas CARIN is not.

31

2.2 Logic Programming and Machine Learning

The research area born at the intersection of Logic Programming and Machine
Learning, more precisely Concept Learning [18], is known under the name of
Inductive Logic Programming (ILP) [19]. From Logic Programming ILP has
borrowed the KR framework, i.e. Horn Clausal Logic (HCL). From Concept
Learning it has inherited the inferential mechanisms for induction, the most
prominent of which is generalization characterized as search through a partially
ordered space of hypotheses. According to this vision, in ILP a hypothesis is
a clausal theory (i.e., a set of rules) and the induction of a single clause (rule)
requires (i) structuring, (ii) searching and (iii) bounding the space of hypotheses.
First we focus on (i) by clarifying the notion of ordering for clauses. An ordering
allows for determining which one, between two clauses, is more general than
the other. Actually quasi-orders are considered, therefore uncomparable pairs
of clauses are admitted. One such ordering is 8-subsumption [20]: Given two
clauses C' and D, we say that C' #-subsumes D if there exists a substitution
0, such that C# C D. Given the usefulness of Background Knowledge (BK) in
ILP, orders have been proposed that reckon with it, e.g. Buntine’s generalized
subsumption [3]. Generalized subsumption only applies to definite clauses and
the BK should be a definite program. Once structured, the space of hypotheses
can be searched (ii) by means of refinement operators. A refinement operator is
a function which computes a set of specializations or generalizations of a clause
according to whether a top-down or a bottom-up search is performed. The two
kinds of refinement operator have been therefore called downward and upward,
respectively. The definition of refinement operators presupposes the investigation
of the properties of the various quasi-orders and is usually coupled with the
specification of a declarative bias for bounding the space of clauses (iii). Bias
concerns anything which constrains the search for theories, e.g. a language bias
specifies syntactic constraints on the clauses in the search space.

Induction with ILP generalizes from individual instances/observations in the
presence of BK, finding valid hypotheses. Validity depends on the underlying set-
ting. At present, there exist several formalizations of induction in clausal logic
that can be classified according to the following two orthogonal dimensions: the
scope of induction (discrimination vs characterization) and the representation of
observations (ground definite clauses vs ground unit clauses) [5]. Discriminant
induction aims at inducing hypotheses with discriminant power as required in
tasks such as classification. In classification, observations encompass both posi-
tive and negative examples. Characteristic induction is more suitable for finding
regularities in a data set. This corresponds to learning from positive examples
only. The second dimension affects the notion of coverage, i.e. the condition un-
der which a hypothesis explains an observation. In learning from entailment (or
from implications), hypotheses are clausal theories, observations are ground def-
inite clauses, and a hypothesis covers an observation if the hypothesis logically
entails the observation. In learning from interpretations, hypotheses are clausal
theories, observations are Herbrand interpretations (ground unit clauses) and a
hypothesis covers an observation if the observation is a model for the hypothesis.

32

3 Combining LP and DLs with DL+log

The KR framework of DL+log [23] allows for the tight integration of DLs [1]
and DATALOG Y [7]. More precisely, it allows a DL KB to be extended with
weakly-safe DATALOG ™" rules. The condition of weak safeness allows to overcome
the main representational limits of the approaches based on the DL-safeness
condition, e.g. the possibility of expressing conjunctive queries (CQ) and unions
of conjunctive queries (UCQ)?, by keeping the integration scheme still decidable.
To a certain extent, DL+log is between AL-log [6] and CARIN [14].

3.1 Syntax

Formulas in DL+]log are built upon three mutually disjoint predicate alphabets:
an alphabet of concept names Pg, an alphabet of role names Pg, and an alphabet
of DATALOG predicates Pp. We call a predicate p a DL-predicate if either p € Po
or p € Pgr. Then, we denote by C a countably infinite alphabet of constant names.
An atom is an expression of the form p(X), where p is a predicate of arity n
and X is a n-tuple of variables and constants. If no variable symbol occurs in X,
then p(X) is called a ground atom (or fact). If p € Pc U Pg, the atom is called
a DL-atom, while if p € Pp, it is called a DATALOG atom.

Given a description logic DL, a DL+log KB B is a pair (X, IT), where X is
a DL KB and IT is a set of DATALOG ™V rules, where each rule R has the form

p1(X1) V... Vpu(Xn) —
Tl(Yl), e ,’I”m(Ym), .‘51(Z1)7 e ,Sk(Zk), —|U1(W1), ey —\uh(Wh)

with n,m, k,h > 0, each p;(X;), r;(Y5), si(Z1), ur(Wy) is an atom and:

— each p; is either a DL-predicate or a DATALOG predicate;

— each 7;, uy is a DATALOG predicate;

— each s; is a DL-predicate;

— (DATALOG safeness) every variable occurring in R must appear in at least
one of the atoms 71 (Y1), ..., "m(Ym), $1(Z1),. .., sk(Zg);

— (weak safeness) every head variable of R must appear in at least one of the
atoms 71 (Y1), ..., " (Yom)-

We remark that the above notion of weak safeness allows for the presence
of variables that only occur in DL-atoms in the body of R. On the other hand,
the notion of DL-safeness can be expressed as follows: every variable of R must
appear in at least one of the atoms r1(Y1),...,7m(Ym). Therefore, DL-safeness
forces every variable of R to occur also in the DATALOG atoms in the body of
R, while weak safeness allows for the presence of variables that only occur in
DL-atoms in the body of R. Without loss of generality, we can assume that in a
DL+log KB (X, IT) all constants occurring in X also occur in I7.

LA Boolean UCQ over a predicate alphabet P is a first-order sentence of the form
IX.conji(X) V...V conjn(X), where X is a tuple of variable symbols and each
conj;(X) is a set of atoms whose predicates are in P and whose arguments are either
constants or variables from X. A Boolean CQ corresponds to a Boolean UCQ in the
case when n = 1.

33

Ezample 1. Let us consider a DL+log KB B (adapted from [23]) integrating the
following DL-KB X (ontology about persons)

Al
A2

[PERSON C J FATHER™ .MALE
[

(43

[

MALE C PERSON
FEMALE C PERSON
FEMALE C —MALE
MALE (Bob)

PERSON (Mary)
PERSON (Paul)
FATHER (John,Paul)

A4

and the following DATALOG ™ program IT (rules about students):

[R1] boy (X) < enrolled(X,cl,bsc), PERSON(X), —girl(X)
[R2] girl(X) « enrolled(X,c2,msc), PERSON(X)
[R3] boy (X)V girl(X) « enrolled(X,c3,phd), PERSON(X)
[R4] FEMALE(X) « girl(X)
[R5] MALE(X) < boy (X)
[R6] man(X) < enrolled(X,c3,phd), FATHER(X,Y)
enrolled(Paul,cl,bsc)
enrolled(Mary,cl,bsc)
enrolled(Mary,c2,msc)
enrolled(Bob,c3,phd)
enrolled(John,c3,phd)

Note that the rules mix DL-literals and DATALOG-literals. Notice that the vari-
able Y in rule R6 is weakly-safe but not DL-safe, since Y does not occur in any
DATALOG predicate in R6.

3.2 Semantics

For DL+1og two semantics have been defined: a first-order logic (FOL) semantics
and a nonmonotonic (NM) semantics. In particular, the latter extends the stable
model semantics of DATALOG ™" [9]. According to it, DL-predicates are still
interpreted under OWA, while DATALOG predicates are interpreted under CWA.
Notice that, under both semantics, entailment can be reduced to satisfiability. In
a similar way, it can be seen that CQ answering can be reduced to satisfiability
in DL+]og. Consequently, Rosati [23] concentrates on the satisfiability problem
in DL+log KBs. It has been shown that, when the rules are positive disjunctive,
the above two semantics are equivalent with respect to the satisfiability problem.
In particular, FOL-satisfiability can always be reduced (in linear time) to NM-
satisfiability. Hence, the satisfiability problem under the NM semantics is in the
focus of interest.

Ezxample 2. With reference to Example 1, it can be easily verified that all NM-
models for B satisfy the following ground atoms:

34

— boy(Paul) (since rule R1 is always applicable for {X/Paul} and R1 acts like
a default rule, which can be read as follows: if X is a person enrolled in course
c1, then X is a boy, unless we know for sure that X is a girl);

— girl(Mary) (since rule R2 is always applicable for {X/Mary});

— boy(Bob) (since rule R3 is always applicable for {X/Bob}, and, by rule R4,
the conclusion girl(Bob) is inconsistent with X);

— MALE(Paul) (due to rule R5);

— FEMALE(Mary) (due to rule R4).

Notice that B |=xnpFEMALE(Mary), while X £por FEMALE(Mary). In other
words, adding rules has indeed an effect on the conclusions one can draw about
DL-predicates. Moreover, such an effect also holds under the FOL semantics of
DL+1log-KBs, since it can be verified that B =po FEMALE (Mary) in this case.

3.3 Reasoning

The problem statement of satisfiability for finite DL+log KBs relies on the fol-
lowing problem known as the Boolean CQ/UCQ containment problem? in DLs:
Given a DL-TBox 7, a Boolean CQ @; and a Boolean UCQ Q2 over the alpha-
bet PoUPg, Q1 is contained in Q2 with respect to 7, denoted by 7 = Q1 C Qo
iff, for every model Z of 7, if @)1 is satisfied in Z then Q5 is satisfied in Z. The
algorithm NMSAT-DL+log for deciding NM-satisfiability of DL+log KBs looks
for a guess (Gp,Gn) of the Boolean CQs in the DL-grounding of I, denoted
as grp(II), that is consistent with the DL-KB X (Boolean CQ/UCQ contain-
ment problem) and such that the DATALOG ™" program I1(G p, G) has a stable
model. Details of how obtaining gr,(IT) and II(Gp,Gx) can be found in [23].
The decidability of reasoning in DL+log, thus of ground query answering, de-
pends on the decidability of the Boolean CQ/UCQ containment problem in DL.
Consequently, ground queries can be answered by applying NMSAT-DL+log.

Theorem 1 [23] For every description logic DL, satisfiability of DL+log-KBs
(both under FOL semantics and under NM semantics) is decidable iff Boolean
CQ/UCQ containment is decidable in DL.

Corollary 1. Given a DL+log KB (X,II) and a ground atom «, (X,1I) E «
iff (2,11 U{— a}) is unsatisfiable.

From Theorem 1 and from previous results on query answering and query con-
tainment in DLs, it follows the decidability of reasoning in several instantia-
tions of DL+log. Since SHZQ is the most expressive DL for which the Boolean
CQ/UCQ containment is decidable [10], we consider SHZQ+log™ (i.e. SHZQ
extended with weakly-safe DATALOG™ rules) as the KR framework in our study
of ILP for the Semantic Web.

2 This problem was called ezistential entailment in [14].

35

4 Inducing SHZ Q-+log™ Rules with ILP

We consider the task of inducing new SHZ Q+log™ rules from an already existing
SHZIO+log™ KB. At this stage of work the scope of induction does not matter.
Therefore the term ’observation’ is to be preferred to the term ’example’. We
choose to work within the setting of learning from interpretations which requires
an observation to be represented as a set of ground unit clauses.

We assume that the data are represented as a SHZQ+log™ KB B where the
intensional part K (i.e., the TBox 7 plus the set ITg of rules) plays the role of
background knowledge and the extensional part (i.e., the ABox A plus the set
ITg of facts) contributes to the definition of observations. Therefore ontologies
may appear as input to the learning problem of interest.

Ezample 3. Suppose we have a SHZ Q+log™ KB (adapted from [23]) consisting
of the following intensional knowledge K:

[A1] RICHMUNMARRIED C 3 WANTS-TO-MARRY . T
[R1] RICH(X) « famous(X), - scientist(X)

and the following extensional knowledge F:

UNMARRIED (Mary)
UNMARRIED (Joe)
famous (Mary)
famous (Paul)
famous (Joe)
scientist(Joe)

that can be split into Fj,e = {UNMARRIED (Joe), famous(Joe), scientist (Joe)},
Fuary = {UNMARRIED (Mary), famous (Mary) }, and Fpay1 = {famous (Paul) }.

The language £ of hypotheses must allow for the generation of SHZ Q+log™
rules starting from three disjoint alphabets Po(L) C Po(B), Pr(L) C Pgr(B),
and Pp(L) C Pp(B). More precisely, we consider linked® and range-restricted?
weakly-safe DATALOG™ clauses of the form

p(X) —ri(Y1),.. oy (Ym), $1(Z1), ..., sk(Zk), ~ur(W1), ..., —up(Wh)

where the unique literal p(X) in the head represents the target predicate, de-
noted as c if p is a DATALOG-predicate and as C' if p is a SHZ Q-predicate. In
the following we provide examples for these two cases of rule learning, one aimed
at inducing ¢(X) < rules and the other C'(X) « rules. The former kind of rule
will enrich the DATALOG part of the KB, whereas the latter will extend the DL
part (i.e., the input ontology).

3 A clause H is linked if each literal I; € H is linked. A literal [; € H is linked if at least
one of its terms is linked. A term ¢ in some literal [; € H is linked with linking-chain
of length 0, if ¢ occurs in head(H), and with linking-chain of length d + 1, if some
other term in [; is linked with linking-chain of length d. The link-depth of a term ¢
in l; is the length of the shortest linking-chain of ¢.

* A clause H is range-restricted if each variable occurring in head(H) also occur in

body(H).

36

Example 4. Suppose that the DATALOG-predicate happy is the target predicate
and the set Pp(LPPY) U P (LPPPY) U Pr(L@PPY) = {famous/1} U {RICH/1} U
{WANTS-TO-MARRY/2,LIKES/2} provides the building blocks for the language
L8Py The following SHZ Q+log™ rules

H2PPY happy (X) «— RICH(X)
H;appy happy (X) « famous(X)
HE#PPY happy (X) « famous(X), WANTS-TO-MARRY (Y,X)

belonging to £P¥PPY can be considered hypotheses for the target predicate happy.
Note that Hy* is weakly-safe.

Ezxample 5. Suppose now that the target predicate is the DL-predicate LONER.
If LLONER s defined over Pp(LMNER) U Po(LM0VER) = {famous/1,scientist/1} U
{UNMARRIED/1}, then the following SHZ Q+log™ rules

H}ONER LONER(X) «+ scientist(X)

HLONER LONER(X) < scientist(X), UNMARRIED (X)

HLONER LONER(X) + —famous (X)

belong to LXNER and represent hypotheses for the target predicate LONER.

In order to support with ILP techniques the induction of SHZ Q+log™ rules,
the language £ of hypotheses needs to be equipped with a generality order >,
and a coverage relation covers so that (£, =) is a search space and covers defines
the mappings from (£, >) to the set O of observations. The next subsections are
devoted to these issues.

4.1 The hypothesis ordering

The definition of a generality order for hypotheses in £ can disregard neither the
peculiarities of SHZ Q+log™ nor the methodological apparatus of ILP. One issue
arises from the presence of NAF literals (i.e., negated DATALOG literals) both in
the background knowledge and in the language of hypotheses. As pointed out in
[25], rules in normal logic programs are syntactically regarded as Horn clauses
by viewing the NAF-literal —p(X) as an atom not_p(X) with the new predicate
not_p. Then any result obtained on Horn logic programs is directly carried over
to normal logic programs. Assuming one such treatment of NAF literals, we
propose to adapt generalized subsumption [3] to the case of SHZ Q+log™ rules.
The resulting generality relation will be called K-subsumption, briefly >, from
now on. We provide a characterization of >, that relies on the reasoning tasks
known for DL+log and from which a test procedure can be derived.

Definition 1. Let Hy, Hy € L be two hypotheses standardized apart, K a back-
ground knowledge, and o a Skolem substitution for Hy with respect to {Hy} UK.
We say that Hy =i Hs iff there exists a ground substitution 6 for Hy such that
(i) head(H)0 = head(Hs)o and (ii) K U body(Hs)o |= body(Hy)0.

37

Note that condition (ii) is a variant of the Boolean CQ/UCQ containment
problem because body(Hz)o and body(H;)0 are both Boolean CQs. The differ-
ence between (ii) and the original formulation of the problem is that X encom-
passes not only a TBox but also a set of rules. Nonetheless this variant can
be reduced to the satisfiability problem for finite SHZ Q+log™ KBs. Indeed the
skolemization of body(Hz) allows to reduce the Boolean CQ/UCQ containment
problem to a CQ answering problem®. Due to the aforementioned link between
CQ answering and satisfiability, checking (ii) can be reformulated as proving
that the KB (7, IIg Ubody(Hz)o U {«— body(H;)0}) is unsatisfiable. Once refor-
mulated this way, (ii) can be solved by applying the algorithm NMSAT-DL+]og.

Ezxample 6. Let us consider the hypotheses

Hfappy happy (A) < RICH(A)
H;appy happy (X) « famous(X)

reported in Example 4 up to variable renaming. We want to check whether
H®PPY e H3® holds. Let o = {X/a} a Skolem substitution for Hy* with
respect to K U H{*™ and # = {A/a} a ground substitution for H;**™. The
condition (i) is immediately verified. The condition (ii) K U {famous(a)} =
RICH(a) is nothing else that a ground query answering problem in SHZ Q+log.
It can be proved that the query RICH(a) can not be satisfied because the rule
R1 is not applicable for a. Thus, Hy™ #x H3* . Since Hy™ % H® the
two hypotheses are incomparable under K-subsumption. Conversely, it can be
proved that H;appy = H. gappy but not viceversa.

Ezxample 7. Let us consider the hypotheses

HLOVER LONER(A) « scientist(A)
HLONER LONER(X) « scientist(X) ,UNMARRIED (X)

reported in Example 5 up to variable renaming. We want to check whether
HIOMER o HEOMNER holds. Let o = {X/a} a Skolem substitution for H3™® with
respect to K U HI™ER and § = {A/a} a ground substitution for HIOER. The
condition (i) is immediately verified. The condition

(ii) KU {scientist(a),UNMARRIED(a) } = {scientist(a)}

is a ground query answering problem in SHZ Q+log. It can be easily proved that
all NM-models for K U {scientist(a), UNMARRIED(a)} satisfy scientist(a).
Thus, HY™MER =) HEMER The viceversa does not hold. Also it can be proved that
HE™ER js incomparable with both HENER and HEMER under K-subsumption.

It is straightforward to see that the decidability of K-subsumption follows from
the decidability of SHZ Q+log™. It can be proved that > is a quasi-order (i.e. it
is a reflexive and transitive relation) for SHZ Q+log™ rules, therefore the space
of hypotheses can be searched by refinement operators.

® Since UNA does not necessarily hold in SHZQ, the (Boolean) CQ/UCQ containment
problem for SHZQ boils down to the (Boolean) CQ/UCQ answering problem.

38

4.2 The hypothesis coverage of observations

The definition of a coverage relation depends on the representation choice for
observations. An observation o; € O is represented as a couple (p(a;), F;) where
F; is a set containing ground facts concerning the tuple of individuals a;. We
assume K N O = .

Definition 2. Let H € L be a hypothesis, K a background knowledge and o; €
O an observation. We say that H covers o; under interpretations w.r.t. IC iff

KUF,UH }:p(ai).

Note that the coverage test can be reduced to query answering in SHZQ+log™
KBs which in its turn can be reformulated as a satisfiability problem of the KB.

Ezxample 8. The hypothesis H. gappy mentioned in Example 4 covers the observa-
tion Oyary = (happy (Mary), Fuary) because ICU Fyary U H;appy = happy (Mary).
Indeed, all NM-models for B = K U Fyary U H. gappy satisfy:

— famous (Mary) (triviall);

— 3 WANTS-TO-MARRY™.T (Mary), due to the axiom Al and to the fact that
both RICH(Mary) and UNMARRIED (Mary) hold in every model of B;

— happy (Mary), due to the above conclusions and to the rule R1. Indeed, since
JWANTS-TO-MARRY ™. T (Mary) holds in every model of B, it follows that in
every model there exists a constant x such that WANTS-TO-MARRY (x,Mary)
holds in the model, consequently from rule R1 it follows that happy (Mary)
also holds in the model.

Note that Hgappy does not cover the observations 03, = (happy(Joe), Fioe) and
Opan1 = (happy (Paul), Fpau1). More precisely, K U Fioe U Hgappy b~ happy (Joe)
because scientist(Joe) holds in every model of B = K U Fjoe U H;‘appy, thus
making the rule R1 not applicable for {X/Joe}, therefore RICH(Joe) not deriv-
able. Finally, K U Fpau1 U H;;appy £ happy(Paul) because UNMARRIED (Paul)
is not forced to hold in every model of B = K U Fpau1 U Hgappy, therefore
JWANTS-TO-MARRY . T (Paul) is not forced by Al to hold in every such model.

It can be proved that H ?appy COVETS Opary and Opay1, while H;‘appy all the three
observations.

Ezample 9. With reference to Example 5, the hypothesis Hy™E® does not cover
the observation owery = (LONER(Mary), Fuary) because all NM-models for B =
K U Fuary U HF™* do satisfy famous(Mary). Note that it does not cover the
observations opsy1 = (LONER(Paul), Fpay1) and 03, = (LONER(Joe), Fioe) for
analogous reasons. It can be proved that HS™® covers oyary and 0j. while
HIPNER all three observations.

5 Related Work

Two ILP frameworks have been proposed so far that adopt a hybrid DL-CL
representation for both hypotheses and background knowledge. The framework

39

proposed in [24] focuses on discriminant induction and adopts the ILP setting
of learning from interpretations. Hypotheses are represented as CARIN-ALN
non-recursive rules with a Horn literal in the head that plays the role of tar-
get concept. The coverage relation of hypotheses against examples adapts the
usual one in learning from interpretations to the case of hybrid CARIN-ALN
BK. The generality relation between two hypotheses is defined as an extension
of generalized subsumption. Procedures for testing both the coverage relation
and the generality relation are based on the existential entailment algorithm
of CARIN. Following [24], Kietz studies the learnability of CARIN-ALN, thus
providing a pre-processing method which enables ILP systems to learn CARIN-
ALN rules [13]. In [15], the representation and reasoning means come from
AL-log. Hypotheses are represented as constrained DATALOG clauses. Note that
this framework is general, meaning that it is valid whatever the scope of induc-
tion is. The generality relation for one such hypothesis language is an adapta-
tion of generalized subsumption to the AL-log KR framework. It gives raise to a
quasi-order and can be checked with a decidable procedure based on constrained
SLD-resolution. Coverage relations for both ILP settings of learning from inter-
pretations and learning from entailment have been defined on the basis of query
answering in AL-log. As opposite to [24], the framework has been partially im-
plemented in an ILP system [16] that supports a variant of frequent pattern
discovery where rich prior conceptual knowledge is taken into account in order
to find patterns at multiple levels of description granularity.

Table 2. Comparison between ILP frameworks for DL-CL systems.

|Learning in Carin-ALN [24] |Learning in AL-log [15] |Learning in SHZQ+log™
prior knowledge |CARN-ALN KB AL-log KB SHIQ+log™ KB
ontology lang. |ALN ALC SHIQ
rule lang. |Horn clauses DATALOG clauses DaraLoc™ clauses
hypothesis lang. |CARIN-ALN non-recursive rules |constrained DATALOG clauses SHZIQ+log ' non-recursive rules
target predicate |Horn literal DATALOG literal SHZQ /DATALOG literal

observations
induction

interpretations
predictive

interpretations/implications
predictive/descriptive

interpretations
predictive/descriptive

generality order |extension of [3] to CARIN-ALN |extension of [3] to AL-log |extension of [3] to SHIQ+log™
coverage test |CARIN-ALN query answering AL-log query answering SHIQ+log™ query answering
ref. operators |no downward no

no
no

implementation no

application

partially
yes

no

The ILP framework presented in this paper differs from [24] and [15] in several
respects as summarized in Table 2, notably the following ones. First, it relies on a
more expressive DL, i.e. SHZ Q. Second, it allows for inducing definitions for new
DL concepts, i.e. rules with a SHZ Q literal in the head. Third, it relies on a more
expressive yet decidable CL, i.e. DATALOG . Forth, it adopts a tighter form of
integration between the DL and the CL part, i.e. the weakly-safe one. Similarities
also emerge from Table 2 such as the use of a semantic ordering for hypotheses
in order to accommodate ontologies in ILP. Note that generalized subsumption

40

is chosen for adaptation in all three ILP frameworks because definite clauses,
though enriched with DL and NAF literals, are still used.

6 Final Remarks

In this paper, we have proposed an ILP framework built upon SHZ Q+log™. In-
deed, well-known ILP techniques for induction have been reformulated in terms
of the deductive reasoning mechanims of DL+log. Notably, we have defined a de-
cidable generality ordering, K-subsumption, for SHZQ+log™ rules on the basis
of the decidable algorithm NMSAT-SHZ Q+log. We would like to point out that
the ILP framework proposed is suitable for inductive reasoning in the context of
the Semantic Web for two main reasons. First, it adopts the DL which was the
starting point for the design of the Web ontology language OWL. Second, it can
deal with incomplete knowledge, thus coping with a more plausible scenario of
the Web. Though the work presented in this paper can be considered as a fea-
sibility study, it provides the principles for inductive reasoning in SHZ Q+log™.
We would like to emphasize that they will be still valid for any other upcoming
decidable instantiation of DL+log, provided that DATALOG™ is still considered
for the CL part.

The Semantic Web offers several use cases for rules among which we can
choose in order to see our ILP framework at work. As next step towards any
practice, we plan to define ILP algorithms starting from the ingredients identified
in this paper. Tractable cases, e.g. the instantiation of DL+log with DL-Lite
(subset of SHZQ), will be of major interest. Also we would like to investigate
the impact of having DATALOG ™Y both in the language of hypotheses and in the
language for the background theory. The inclusion of the nonmonotonic features
of SHZOQ+log full will strengthen the ability of our ILP framework to deal
with incomplete knowledge by performing an inductive form of commonsense
reasoning. One such ability can turn out to be useful in the Semantic Web, and
complementary to reasoning with uncertainty and under inconsistency. Finally,
we would like to study the complexity of K-subsumption.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P.F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2003.

2. A. Borgida. On the relative expressiveness of description logics and predicate
logics. Artificial Intelligence, 82(1-2):353-367, 1996.

3. W. Buntine. Generalized subsumption and its application to induction and redun-
dancy. Artificial Intelligence, 36(2):149-176, 1988.

4. S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about datalog
(and never dared to ask). IEEE Transactions on Knowledge and Data Engineering,
1(1):146-166, 1989.

5. L. De Raedt and L. Dehaspe. Clausal Discovery. Machine Learning, 26(2-3):99—
146, 1997.

41

10.

11.

12.

13.

14.

15.

16.
17.
18.
19.
20.
21.

22.

23.

24.

25.

26.

. F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating Datalog

and Description Logics. Journal of Intelligent Information Systems, 10(3):227-252,
1998.

. T. Eiter, G. Gottlob, and H. Mannila. Disjunctive DATALOG. ACM Transactions

on Database Systems, 22(3):364-418, 1997.

. A.M. Frisch and A.G. Cohn. Thoughts and afterthoughts on the 1988 workshop

on principles of hybrid reasoning. AI Magazine, 11(5):84-87, 1991.

. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive

databases. New Generation Computing, 9(3/4):365-386, 1991.

B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive query answering for
the description logic SHZQ. Journal of Artificial Intelligence Research, 31:151—
198, 2008.

I. Horrocks, P.F. Patel-Schneider, and F. van Harmelen. From SHZQ and RDF
to OWL: The making of a web ontology language. Journal of Web Semantics,
1(1):7-26, 2003.

I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for very expressive
description logics. Logic Journal of the IGPL, 8(3):239-263, 2000.

J.-U. Kietz. Learnability of description logic programs. In S. Matwin and C. Sam-
mut, editors, Inductive Logic Programming, volume 2583 of Lecture Notes in Arti-
ficial Intelligence, pages 117-132. Springer, 2003.

AY. Levy and M.-C. Rousset. Combining Horn rules and description logics in
CARIN. Artificial Intelligence, 104:165-209, 1998.

F.A. Lisi. Building Rules on Top of Ontologies for the Semantic Web with Inductive
Logic Programming. Theory and Practice of Logic Programming, 8(03):271-300,
2008.

F.A. Lisi and D. Malerba. Inducing Multi-Level Association Rules from Multiple
Relations. Machine Learning, 55:175-210, 2004.

J.W. Lloyd. Foundations of Logic Programming. Springer, 2nd edition, 1987.
T.M. Mitchell. Generalization as search. Artificial Intelligence, 18:203-226, 1982.
S.-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Program-
ming, volume 1228 of Lecture Notes in Artificial Intelligence. Springer, 1997.
G.D. Plotkin. A note on inductive generalization. Machine Intelligence, 5:153-163,
1970.

R. Reiter. Equality and domain closure in first order databases. Journal of ACM,
27:235-249, 1980.

R. Rosati. Semantic and computational advantages of the safe integration of on-
tologies and rules. In F. Fages and S. Soliman, editors, Principles and Practice
of Semantic Web Reasoning, volume 3703 of Lecture Notes in Computer Science,
pages 50-64. Springer, 2005.

R. Rosati. DL+log: Tight integration of description logics and disjunctive datalog.
In P. Doherty, J. Mylopoulos, and C.A. Welty, editors, Proc. of Tenth International
Conference on Principles of Knowledge Representation and Reasoning, pages 68—
78. AAAI Press, 2006.

C. Rouveirol and V. Ventos. Towards Learning in CARIN-ALA . In J. Cussens
and A. Frisch, editors, Inductive Logic Programming, volume 1866 of Lecture Notes
in Artificial Intelligence, pages 191-208. Springer, 2000.

C. Sakama. Nonmonotonic inductive logic programming. In T. Eiter, W. Faber,
and M. Truszczynski, editors, Logic Programming and Nonmonotonic Reasoning,
volume 2173 of Lecture Notes in Computer Science, pages 62—-80. Springer, 2001.
M. Schmidt-Schauss and G. Smolka. Attributive concept descriptions with com-
plements. Artificial Intelligence, 48(1):1-26, 1991.

42

A semantic stateless service description language

P. A. Bonatti and L. Sauro

Universita di Napoli Federico II

Abstract. Complexity issues and the requirements on semantic web application
in the Life Science domains recently motivated a few works on stateless service
description languages [1, 5]. With stateless services, it is possible to reason about
the semantic relationships between inputs and outputs, while keeping matchmaking
and composition decidable. In this paper we extend the languages introduced in [1]
and [5] with more general forms of composition and other constructs. We provide
formal syntax and semantics and some preliminary results on the complexity of
service comparison. These complexity results rely on hybrid formalisms involving
both logic programming rules and description logics.

1 Introduction

The area of semantic web services is concerned with the declarative, knowledge based
specification of web service semantics applied to service matchmaking (i.e., finding a ser-
vice that matches a given specification), verification and automated composition. There
is a conspicuous literature on the topic, enriched by several competing standards, such as
OWL-S, WSMO, and WSDL-S.

When the semantic description involves dynamic behavioral aspects such as itera-
tions, the tasks of matchmaking and composition easily become undecidable. This mo-
tivated a few works on stateless services [1, 5], that behave like functions or database
queries. With stateless services, it is possible to move beyond a mere description of input
and output types and capture the relationships between inputs and outputs, while keeping
matchmaking and composition decidable. Stateless services are interesting because they
are common in the domain of Life Sciences [5]. Moreover, they can be paired with a
workflow language supporting procedural constructs like BPEL4WS with the purpose of
supporting the dynamic binding of atomic activities.

In this paper we extend the languages introduced in [1] and [5] with more general
forms of composition and other constructs. We provide formal syntax and semantics and
some preliminary results on the complexity of service comparison, a basic reasoning
task that underlies both matchmaking and composition (cf. [1]). These complexity re-
sults rely on hybrid formalisms involving both rules and description logics. The language
we adopt admits a graphic presentation (that may be appreciated by users with limited
programming skills) as well as textual representation that resembles relational query and
programming languages enough to be familiar to programmers.

We start with some examples (Sec. 2) followed by a brief summary of description
logic notions (Sec. 3). Then we formalize our service description logic language SD L,
(Sec. 4). Service comparison is reduced to an intermediate logic programming formula-
tion and then to queries against description logic knowledge bases in Sec. 5, which allow
to derive complexity results (Sec.6).

43

2 A running example

Services receive input messages and return output messages. Such messages are struc-
tured objects (as in WSDL), consisting of a set of attribute-value pairs, such as

{street="Via Toledo", numb=128}.

Following [1], we assume that services can be like queries, that is, a single input message
may be mapped onto a set of homogeneously structured output messages. Formally this
means that a service can be abstracted by any set of pairs (mi,, Moyt), With multiple pairs
sharing the same M.

Now assume an underlying ontology defines the concepts Place, Map, Coord, and
Address, and that every P1ace has the attributes hasAddr, hasMap, hasCoord. In
turn each address has the attributes hasCity, hasStr and hasNum. Consider a service
Mapservice that takes input messages with attributes city and st reet, and returns the
map of the surrounding area in a message with the single field result. Mapservice can
be described in our language with the following expression:

select result:=hasMap fromall Place

with hasAddr.hasCity =city, hasAddr.hasStr =street.

This description can be easily adapted to describe similar services. For example, a
specialized map service that works only for southern cities can be described by defining
a concept SouthernCity in the underlying ontology and restricting Mapservice with
the expression:

Mapservice restricted to SouthernCity (city) .

Portals can be described with unions. Given two map services for Europe and China,
called Euromap and Chinamap, a portal that covers both areas can be described by:

union (Euromap, Chinamap).

Intersections are supported, too. Now suppose that Euromap is more reliable than the
generic Mapservice, then it may be preferable to use Euromap when possible. This can be
done with conditionals (temporarily assume that Euromap and Chinamap have the same
input message type as Mapservice, with the city field):

if EuropeanCity (city) then Euromap else Mapservice .

A relevant task is composition, our framework supports composition through dataflow
graphs by which the output of some services can be fed as input to other services. For
example, let Addr2coor be a service that takes city and street and returns the as-
sociated coordinates 1at and 1lon; then let Coor2map be a service that returns the map
associated to the given coordinates, called 1atitude and latitude by this service.
The composition of these two services can be specified with the dataflow graph in Fig. 1.
We support also a textual representation:

CompoundMap:

incity, street

out result

C :=Addr2coor(in)

out := Coor2map(latitude:=C.lat, longitude:=C.lon).

In order to combine different services it may be necessary to adapt and restructure
their inputs and outputs (e.g. consider the above example for conditionals when Euromap
and Chinamap have different input message types). Here is an example of a variant of

44

return

Fig. 1. A dataflow graph

Mapservice whose input city is forced to be Naples (a constant in the knowledge base),
and whose output is renamed:

RestructuredMapServ:

in street

out map

C := Mapservice (street :=in.street, city:=Naples)
out .map:=C.result.

In general we allow a message element to be fed as an input to multiple other services,
so dataflow graphs can be arbitrary DAGs. This was not allowed in [1]

Our framework allows to reason about different specifications. The basic reasoning
task is service comparison, that given two service descriptions .S; and S5 checks whether
all the input-output message pairs in the semantics of S; are also in the semantics of So;
in that case we write S1 Cxp 5 S2, where KB is the underlying ontology and X' con-
tains the service definitions. By comparing services one may look for stronger or weaker
services (cf. [1]). If Addr2coor and Coor2map are correctly specified (say, with select
expressions), then our framework can verify that CompoundMap C kg 5; Mapservice and
Mapservice Egp 5; CompoundMap, thereby concluding that in the absence of a direct
implementation of Mapservice, an equivalent service can be obtained by composing the
implementations of Addr2coor and Coor2map as specified by CompoundMap (dynamic
service replacement). Service comparison can also be a basis for automated composition
that, however, lies beyond the scope of this paper.

Syntactically speaking, the service description language illustrated above lies some-
where in between relational algebra and a programming language. A major difference
with respect to both is that descriptions are linked to an ontology, so it is possible to
distinguish—say—a hash table that associates people with their age from another hash
table (with the same implementation) that associates people with their credit card num-
ber. Clearly, such differences are crucial for tasks such as service discovery and dynamic
binding of workflow activities to services. Procedural constructs cover assignments and
conditionals; only iterations are not supported, and this has a few advantages: (i) the
main reasoning tasks are decidable, (ii) the language is easier to use for people with no
programming background.

3 Preliminaries

The vocabulary of the description logics we deal with in this paper consists of the fol-
lowing pairwise disjoint countable sets of symbols: a set of atomic concepts At, a set of
individual names In, and a set of atomic roles Agr, with a distinguished subset of names
Air C Ag denoting transitive roles.

45

A role is either an expression P or P, where P € Ar. Let R range over roles. The
set of concepts is the smallest superset of At such that if C, D are concepts, then T, =C,
C N D,3.C, and 35" R.C are concepts.

Semantics is based on interpretations of the form Z = (A%, -7) where AZ is a set of
individuals and T is an interpretation function mapping each A € At on some A7 C AZ,
each a € In on some aZ € AZ, and each R € Ag on some RZ C AT x AZ. Moreover,
if R € A, then R7 is transitive. The meaning of inverse roles is (R7)% = {(y,z) |
(z,y) € RT} . Next we define the meaning of compound concepts. By # S we denote the
cardinality of S.

AT = AT (AeA) Ti=A%
(—C) = AT\ CF (CnD): = ¢InD;
GR.C); = {z|3y.(z,y) e R" AyeCT}
(3="R.C); = {z|t{y|(z,y) e R" AyeCy} <n}.

Other standard constructs (VR.C, L, L) can be derived from the above concepts.

A general concept inclusion (GCI) is an expression C' = D where C' and D are
concepts. A role inclusion is an expression Ry T Ry where Ry and R are roles. An
assertion is an atom like A(a) or P(a,b) where A € At, R € Ag, and {a,b} € In. A
TBox is a set of GCls; a role hierarchy is a set of role inclusions; an ABox is a set of
assertions. Finally, a DL knowledge base (DL KB) is a triple (7, H, .A) consisting of a
TBox, a role hierarchy and an ABox.

An interpretation Z satisfies a (concept or role) inclusion £y T Ejy iff Elz - E2I .
Moreover 7 satisfies an assertion A(a) (resp. P(a, b)) iff aZ € AZ (resp. (a®,b%) € PT).
A model of a DL KB is any 7 that satisfies all the inclusions and the assertions of the KB.

The above description logic is known as SHZ Qg . By disallowing transitive roles
we get SHZ Q. By disallowing 3=" R.C, transitive roles and role hierarchies one gets the
logic ALCZ. ALC is obtained by further dropping inverse roles. The logic £L supports
only M, 3R.T, and GClIs built from these constructs.

Moreover, there exists a rather different extension of ALC called DLR, supporting
n-ary relations (n > 2) that we will mention in the following but we do not report here
due to space limitations. Its definition and relevant results can be found in [3].

4 Syntax and semantics of SDL,;

Our service description language, called SDLy,;;, extends the DL vocabulary with an in-
finite supply of constants N, service names N, and message attribute names N,. SD Ly,
describes functional and knowledge-based aspects of web-services. Therefore, as usual
functional programming languages, it does not define a service as a set of state variables
and a sequence of statements which update them, but as the functional composition of
stateless expressions that have to be evaluated.

Definition 1. The language of service expressions is the least set Expr containing:

— (service calls) all S € Ng;
— (set operators) all expressions op(Ex, ..., Ey,) such that {E1, ..., E,} C Expr and
op € {union, intersection};

46

— (conditionals) all expressions if L then F;[else Es] (the else clause is optional)
such that
e {Fy, Ey} C Expr, and
e L is a list of conditions of the form t = u, t # u, A(t), or —A(t), where
{t,u} CNcUN,
— (selections) all expressions selectay :=1711,...ay, := 1, fromall Dwith L, such
that
e a; €N, (1<i<n);
e 1; is a role path (in the language of the underlying ontology) (1 <i <n);
e D is a concept (in the language of the underlying ontology);
e L is a list of bindings p; = t; (1 < i < m) where each p; is a role path (in the
language of the underlying ontology), and t; € Nc U N,;
— (message restructuring) all expressions a1 := t1,...ay := t, such that a; € N, and
tiGNaUNC(lgign);
— (restrictions) all expressions F restricted to L such that L is a list of conditions
(see conditionals above).

A service consists of a dataflow graph which evaluates data by means of functional
nodes. Each functional node represents a stateless expression which may have multiple
inputs and outputs denoted by parameter names. Edges in a dataflow graph are used to
connect the output of a functional node with the inputs of (possibly many) other func-
tional nodes. In order to specify which output is connected to which input, edges are also
labeled with attribute names and, as the inputs and the outputs of different expressions
may be labeled with different parameter names, edges do not connect directly two func-
tional nodes, but connect functional nodes with parameter nodes that are intended to fix
name mismatches.

Dataflow graphs are defined as follows:

Definition 2. A dataflow graph with name S is a tuple (S, Ng, Es, nameg, exprg) where

- S €Ny

— Ng is a finite set of nodes, partitioned into functional and parameter nodes, denoted
by fun(Ng) and par(Ng), respectively;

- Eg is a finite set of edges; Es C (fun(Ng) x par(Ng)) U (par(Ng) x fun(Ng));

- nameg : par(Ng) U Eg — N, is a labelling function;

- exprg : fun(Ng) — Expr is a labelling function.

Moreover, dataflow graphs are required to be directed acyclic graphs (DAGs).

The parameter nodes with no incoming edges (resp. no outgoing edges) will be called the
input nodes (resp. output nodes) of the graph. In Fig. 1, ovals and small circles represent
functional and parameter nodes, respectively; input and output nodes are colored in gray.

The dependency graph of a set of dataflow graphs X is (X, E'), where E is the set of
all pairs (G1, G2) such that the name of G occurs in the label of some functional node
in G1. We say that X is acyclic if its dependency graph is.

Definition 3. A service specification X is a finite, acyclic set of dataflow graphs with
mutually different names.

47

Edge labels should match the input/output message attributes of the service expres-
sions labeling functional nodes. This requirement is formalized in terms of typing. In this
paper we only deal with a structural form of typing (centred around message attribute
names); the problem of ensuring—say—that the connected input/output attributes lat
and latitude in Fig. 1 belong respectively to two “compatible” concepts C; and Cy
such that C; C C5 has already been tackled in the literature (including [5]). We will deal
with it in the full paper.

Definition 4. A (message) type is a finite set T C N,

Definition 5. The input type of a dataflow graph G = (S, Ng, Eg, nameg, exprg) with
respect to a specification X is the set

iny;(G) = {nameg(n) | n is an input node of G} .

The output type of a dataflow graph G = (S, Ng, Eg, namesg, exprg) with respect to a
specification X is the set

outx(G) = {nameg(n) | n is an output node of G} .

Definition 6. The input type of a service expression E with respect to a specification X,
denoted by inx,(E), is recursively specified as follows:

if E =S5 €N, then ing (E) equals inx(G) where G has name S;

- ing(op(E1, E2)) =ing(E1) Uing(E2);

— ing(if C'then F) else Fs) = ing(F1) Uing(Esy) U{a € N, | a occurs in C};
- mZ(selectAfrom all Dwith R) = {a € N, | a occurs in R};

- mE(al —tl, .—t)—N ﬂ{tl,...tn}.

The output type of a service expression E with respect to a specification X, denoted
by outx; (E), is recursively specified as follows:

- if E =5 € N, then outx(E) equals outs,(G) where G has name S;

- outx(op(E1, Es)) = outx(E7) Noutx(Es);

— outy(if C'then F else Fs) = outx(E;) Nouts(FEs);

- outyx(selectay :=71,...a, :=r,fromall Dwith R) = {a1,...an};
- outg(ay :=t1,...an :=t,) ={a1,...an}

About the above definition: Intuitively, all input parameters have to be supplied in order
to call a service; therefore if the components of a compound service have different input
types, then the compound service must take their union to be sure that all component
services can be invoked. Symmetrically, the only outputs one can count on are those
returned by all the component services; this is why intersection is used here.

Definition 7. A specification X' is well-typed iff for all dataflow graphs (S, Ng, Eg,
nameg, exprg) € X, and for all functional nodes k € fun(Ng),

— in(k) equals the set of labels of the incoming edges of k;
— out(k) contains the set of labels of the outgoing edges of k.

48

From now on we assume that all service specifications are well-typed unless stated oth-
erwise.

The semantics of service expressions and dataflow graphs is defined in terms of
worlds that specify the extension of concepts and roles, as well as the behavior of each
service. From a semantic perspective, a message is a partial function defined over the
message’s attributes, that returns for each attribute its value.

Definition 8. A A-message is a partial function m : N, — A.

The message’s range A will sometimes be omitted when irrelevant or obvious.

Now a world is simply a combination of a DL interpretation (that interprets the terms
defined in the underlying ontology) plus an interpretation of service names (i.e. atomic
services).

Definition 9. A world is a tuple W = (AW W [-]"V) such that

— (AW, W) is an interpretation of the knowledge base;
— ['I"Y maps every service name S € Ng on a set [S]"V of AW-message pairs.

To ensure that service name evaluation reflects the given service specification, we have
to specify the semantics of the terms and expressions used in dataflow graph labels.

Definition 10. The evaluation t"Y(m) of a term t € N U N, with respect to a world VW
and a message m, is m(t) if t € N, and t" otherwise.

Definition 11. The evaluation EYY (m) of a service expression E with respect to a world
W and a message m is recursively defined as follows:

- if E =5 €N, then EYY(m) = {m/ | (m,m) € [S]"};
— union(Ey, E2)YW(m) = EYY(m) U E}¥(m);
- intersection(Eq, E2)Y(m) = EYY(m) N EV(m);
- (if Cthen F; else Ex)W(m) = EYV(m) if CVW(m) is true, EYY(m) otherwise;
moreover, YV (m) is true iff
e forallt ®uinC, t"(m)®u"Y(m) holds (® € {=,#}),
e and for all literals A(t) and —B(u) in C, ¥ (m) € AW and v’V (m) ¢ B";
- (selectay :=rq,...a, :=r, fromall Dwith R)"Y(m) is the set of all m' such
that, for some x € DY,
e forallr ®tin R there exists y € m"V(x) such that y © t"Y(m) holds (® € {=

71

- (a1 :==t1,...ap =
m/(a;) =m(t;) (1 <i<n).

The evaluation of service compositions (i.e. dataflow graphs) is defined in a declar-
ative way: each parameter node must be assigned a value (an element of A"V) in a way
that is compatible with the input-output behavior of each functional node:

Definition 12. The evaluation [G]" of a graph G = (S, Ns, Es, names, exprg) w.rt.
W is the set of all Aw—message pairs (M, Moye) such that for some function o :
par(Ns) — AW, the following conditions hold:

49

— for all input nodes n € Ng, m;,(nameg(n)) = o(n);
— for all output nodes n € Ng, m oy (nameg(n)) = o(n);
— Myn and Moyt are undefined for every other attribute name;
— for all n € fun(Ng), it must hold that m?,, € exprg(n)™V(m?2,), where m?, and
mb,; are defined as follows: for all a € N,,
e if there exists an edge (n',n) with names(n’,n) = a, let m%, (a) = a(n’),
o ifthere exists an edge (n,n"") with nameg(n,n”) = a, let m?,,(a) = o(n”),
e my and ml,, are undefined for all other inputs.

Definition 13. A world VV is a model of a specification X' with respect to a knowledge
base KB iff

1. (A WY is a model of KB;
2. for all names S of a dataflow graphs G € X, [S]"” = [G]™.

If W is a model of X, then it is not hard to see that since X' is acyclic (by definition),
[-]"” is uniquely determined by (A", -W) (i.e. service specifications are deterministic).

The next definition specifies when a service S is a weakening of So (equivalently, S
is a strengthening of S7) [1]. These relations are the basis for service comparison.

Definition 14. S; Cxp 5 So iff for all models W of X w.rt. KB, [S1]"Y C [S2]"V.

Roughly speaking, if S5 is a strengthening of Sp, then for any given input, Ss returns
more answers than S;. See [1] for a discussion of the different applications of strength-
ening and weakening in our reference scenarios.

S Service comparison

Definition 15. The service comparison problem is defined as follows: given KB, X, and
two service names S1 and So, decide whether S1 Ckp 5; So.

By translating service specifications into logic programming rules, service subsump-
tion checking can be reduced to containment of unions of conjunctive queries (UCQ)
against DL knowledge bases. In turn, this problem can be reduced to the evaluation of
UCQs against DL knowledge bases.

5.1 Rules and queries

Consider rules like A « Lq,..., L, where A is a logical atom, each L; is a literal (i.e.
either an atom or a negated atom), possibly of the form ¢ = u or t # u. As usual, let
head(r) = A and body(r) = {L1,..., Ly,}. We restrict our attention to function-free

rules only: terms will be restricted to constants in In and variables.

The predicates in body(r) may be defined in a DL knowledge base, i.e. unary and
binary predicates may belong to At and Ag, respectively. If all the predicates occurring in
body(r) belong to At and Ag and body(r) contains no occurrences of —, then we call r a
conjunctive query (CQ). A union of conjunctive queries (UCQ) is a set of CQs having the
same predicate name in the head. We add superscripts #, — if the corresponding symbol

50

may occur in body(r); for example UCQ™ denotes the unions of conjunctive queries that
may contain negative literals in the body.

Let P be a set of rules and Z be an interpretation. Let an Z-substitution be a sub-
stitution that replaces each constant a by a”, and each variable with an element of AZ.
T-substitutions are a useful tool for defining the semantics of rules and queries.

Usually queries are evaluated against a knowledge base, and the answer is restricted
to the individual constants that explicitly occur in the ABox (e.g. see [8]). In particular, a
tuple c of constants is a certain answer of a CQ r against a DL KB IC iff

— the constants in ¢ occur in ; moreover, for some substitution o defined on the vari-
ables of head(r),
- head(ro) has the form p(c);
— for all models Z of I, there exists an Z-substitution 6 such that every literal in
body(rcf) is satisfied by Z, that is,
e for all A(d) (resp. =A(d)) in body(r'cf), d € AT (resp. d ¢ AT);
e forall P(d,e) (resp. =P(d, ¢)) in body(r'cf), (d,e) € PZ (tesp. (d,e) ¢ PT);
e all literals d = e and d # e in body(r'c0) are true.

The set of all certain answers of a CQ r against K will be denoted by c_ans(r, K). For a
UCQ Q, let c_ans(r, K) = UTGQ c_ans(r, K).

In this paper, we will also query the models of a knowledge base and introduce what
we call unrestricted answers, that are built from the domain elements of the models.!
This definition applies to all sets of rules (not only CQs and UCQs).

The Z-reduct of P, PZ is the set of all rules r such that for some 7/ € P and some
Z-substitution o,

— all literals belonging to body(r’c) whose predicate is in At U Ag U {=, #} are satis-
fied by Z;

- ris obtained from 7’c by removing from body(r’c) all the literals whose predicate
isin At UAR U {=, #}.

Note that the Z-reduct of a UCQ is always a set of facts.
We will denote by Im(P7) the least Herbrand model of PZ. The unrestricted answer
10 a predicate p in P against Z is u_ans(p, P,) = {c | p(c) € Im(P%)}.

5.2 The reduction

We proceed by illustrating the tranlation of service specifications into logic programs.
Syntactically, such programs are like queries, but have the unrestricted semantics, like our
service descriptions; so they provide a nice intermediate step for the complete reduction
of service comparison to certain answers. In order to simplify the presentation, we assume
that service specifications are normalized by replacing subexpressions with new services,

! This notion differs from the many hybrid combinations of rules and DLs (see [7] for a survey).
The latter are still rather close to querying DL KBs and their answers are restricted to the con-
stants occurring in the rules or in the KB. Moreover, the purpose is different: those combination
are supposed to be knowledge representation formalisms, while our semantics is merely a tech-
nical device to link service comparison to query answering against DL KBs.

51

so that no constructs are nested (all subexpressions are service names). We use further
service names to guarantee that if a dataflow graph has more than one functional node,
then all nodes are labelled with service names only. Finally, we assume that message
attributes are renamed so that different functional nodes never share any message attribute
name. Clearly, the above normalizations take polynomial time.

Then for each service name S defined in the specification, we define an atom
ps(Xp, . s Xy, Yy, ..., Yy,), where pg is a fresh predicate symbol, and fi, ..., fn,
(resp. g1,-..,9xs) is the lexicografic ordering of in(S) (resp. out(S)). We denote the
above atom by Hg.

Now each service S whose dataflow graph has multiple functional nodes with labels
S1,...,Sn, can be translated into one rule (Hg < Hg,, ..., Hg,)o, where the substitu-
tion o unifies all variables Y, and X, such that some parameter node has an incoming
edge labelled with g; and an outgoing edge labelled f;.

Next consider an S whose dataflow has a single functional node labelled E. If E
is union(Si,...,S,) then S can be translated into n rules Hg «— Hg, (1 < i < n).
Symmetrically, if £ = intersection(Sy,...,Sy) then S can be translated into one
rule HS — H517' .. ,HS".

When £ = ifecq,...,c,then S| else Sy, S is translated into the rules Hg «+
[e1], .-, [en), S1 and Hg «— [¢;],52 (1 < i < n). Here each ¢; is a condition and
[¢;] denotes its tranlation; ¢; denotes the complement of ¢;, e.g. if ¢; is * = y then ¢;
isx # y; if ¢; = A(z) then ¢; = —A(x). The translation [¢;] consists in turning each
message attribute f into the corresponding variable X ¢.

The translation of selecta; := ry,...,a, := r,fromall Awithp, = tq,...
Pm = tm 18 Hg — A(Z),[a1 :=1r1],...,[an == 1], [p1 = t1],- .., [Pm = tm], Where
Z is a fresh variable. Each [a; := r;] consists of the translation of the role path r; into

a conjunction of binary atoms (using fresh variables at the intermediate steps), plus the
atom Y,, = V, where V is the last variable introduced in the translation of r;. Similarly,
each [p; = t;] consists of the translation of the role path p; plus w = V, where V is the
last variable introduced in the translation of p;, and u = t; if t; € N, otherwise (i.e. if
t; € Na)uthi.

Example 1. In our running example, a condition like hasAddr.hasStr=street is
translated into hasAddr(Z, V), hasStr(V1,Va), Xstreet = Vo, where Vi, Vs, are
new variables.

Due to space limitations we omit the (straightforward) translation of message restructur-
ing and restrictions.

Let us denote the translation of a specification ' with Pyx. The above translation is
pretty natural and it is not hard to see that it preserves the meaning of the given normal
specification under unrestricted query evaluation, as stated by the following theorem.

Theorem 1. Let X' be a normalized service specification and let Py, be its translation.
Let S be the name of a graph G € X and f1,..., fm (resp. g1, ..., gn) be the lexico-
graphic ordering of in(S) (resp. out(S5)).

Then for all models W of ¥ w.r.t. KB, (t1,...,tm,u1,...,u,) € u_ans(psg, Ps, W)
iff for some message pair (m,m’) € [S]"Y, m(f;) = ti and m/(g;) = u; (1 < i <
m, 1 <j<n).

52

The above result can be reformulated in terms similar to query containment. For
all predicates ps, and ps,, let ps, Ckp,» ps, iff for all models W of X' w.rt. KB,
u-ans(ps,, P, W) C u_ans(ps,, Ps, W).

Corollary 1. For all normalized specifications 2, S1 Cxp. s S2 iff Ds, CkB.5 Ds,-

6 Complexity results

In this section we exploit Theorem 1 and the many recent complexity results on certain
query answers against DL knowledge bases to derive a preliminary set of complexity
bounds for our service description language.

In order to illustrate decidable cases and complexity sources, we introduce a uniform
notation for the fragments of our service description language SDLy,;:

— SD restricts the language by forbidding union, else, negative conditions (such as
r # t and —A(t)), and equality within conditions (equality is allowed in the with
clause of selections);

— superscripts v and e stand for union and else, respectively; when they are present,
the language supports the corresponding constructs;

— similarly, superscripts =, # and — stand for conditions with equalities, disequalities
and concept complements, respectively;

— the superscript £ imposes that the maximum nesting level of union and else is
bounded by a constant k.

For example, SD™7 stands for the sublanguage of SDL full SUpporting union and condi-
tions with disequalities, but neither else nor negative conditions like ~A(t). By SD"*7
we denote a similar language, where the nesting level of union is bounded by a constant
k.

In this preliminary paper, we adopt the following reduction to obtain a first set of
decidability results and complexity upper bounds:

1. Service comparison in X' is reduced to unrestricted answer containment in Py by
Theorem 1; note that Py, can be constructed in polynomial time from X;

2. unrestricted answer containment is further reduced to unrestricted containment of
CQ™#/UCQ™7 by unfolding Ps; unfolding means that whenever an atom B in the
body of some rule r unifies with the head of some rule 7/, then B is replaced with
body(r’) (as in SLD resolution); the process is exhaustively repeated; if multiple
rules 71, ..., r, unify with B, then r is replaced with all n possible rewritings; since
Ps is acyclic (because X is), the unfolding process terminates, however it may in-
crease the size of Py exponentially when some predicates are defined by multiple
rules;

3. finally, if (the unfolding of) Px is positive (i.e., it contains no negations nor any
disequality), then unrestricted answer containment in the unfolded version of P is
reduced to certain answering of CQs/UCQs against DL knowledge bases, see Theo-
rem 2 below.

Theorem 2 says that there exists a PTIME reduction of unrestricted CQ (resp. UCQ)
containment to the evaluation of certain answers of CQs (resp. UCQs) against DL knowl-
edge bases.

53

Theorem 2. Let 3 be a normalized specification and let Pg be the unfolding of Px. For
i = 1,2, let Q; be the definition of ps,, i.e. the set of rules r € PY with pg, in head(r)
(where Sy and Sy are the names of two graphs in X)).

If Ps; is positive, then checking whether ps, Ckp,x ps, can be reduced in poly-
nomial time to evaluating for all ¢ € Q1 an answer c_ans(Q2, KB,), where KB is
obtained from KB by binding the variables in q to fresh constants, and adding the in-
stantiated body to KB’s ABox as a set of assertions.

More precisely, for each ¢ € (91, one has to check whether the tuple of fresh constants
assigned to the variables in head(q) belongs to c_ans(Q)2, KB). Basically, the reduction
is centred around a form of skolemization.

Note that this result is slightly different from the known relationships between query
answering and query containment, since ps, Ckp,x Ps, is based on a nonstandard (un-
restricted) notion of evaluation, similar to the one used for service comparison.

The above reduction suffices to derive complexity bounds for positive Ps;. Note that
Ps; is positive when else, #, and — are not supported, that is, in SD* and its fragments.
When X is formulated in SD", then the unfolding of Py, may be exponentially larger, as
the translation of unions into rules introduces predicates defined by multiple rules. It is
not hard to see, however, that SD*" specifications lead to unfoldings that are only poly-
nomially larger than Ps. Then the above reduction steps tell us that complexity of service
comparison within SD¥* and its fragments is bounded by the complexity of computing
certain answers against DL KBs; for SD" there is a further exponential explosion due to
unfolding.

The complexity of query answering is NP-complete for €L [9], EXPTIME-complete
for DLR [3], and co3ANEXPTIME complete for SHZ Q (cf. [6]). Moreover, query con-
tainment w.r.t. empty knowledge bases is NP-hard [4], and it is not difficult to see that
the complexity of the standard reasoning tasks in ALC with general TBoxes (EXPTIME-
complete) provides a lower bound to CQ answering against ALC KBs, so the upper
bounds for £L and ALC are strict. These observations support the following theorem:

Theorem 3. The complexity of service comparison in SD(X) and SD**(X) is

— NP-complete for X = EL;
— EXPTIME-complete for X ranging from ALC to DLR;
— in co3NEXPTIME for X = SHZQ.

If the underlying description logic supports unrestricted negation (or equivalently,
atomic negation and GCI), then negative literals in rule and query bodies (if any) can be
internalized in the KB in a simple way: just replace each literal ~A(t) with A(t) where
A is a fresh atom, and extend the TBox with the axioms A C —A and = A C A. Internal-
ization makes it possible to support constructs such as negated conditions, disequalities,
and else, that introduces negation implicitly through the translations [¢;]. After remov-
ing negation from Py via internalization, we can exploit the available complexity results
for the extensions of ALC (that allow internalization).

Theorem 4. The complexity of service comparison in SD”(X), and between SD"°(X)
and SDF*47(X) is

— in EXPTIME for X = EL;

54

— EXPTIME-complete for X ranging from ALC to DLR;
— in co3ANEXPTIME for X = SHIQ.

Remark 1. €L does not support negation, therefore internalization is not possible. In the
above theorem we inherit the upper bound for ALC, but whether this is a tight bound is
still an open question.

From the above results, we derive upper complexity bounds for more general logics,
without any nesting bounds. In the absence of nesting bounds and in the presence of dis-
junctive constructs like unions and conditionals, the unfolding of Py, may be exponential.

Theorem 5. The complexity of service comparison in SD*“*7(X) is

— in 2-EXPTIME for X = EL;
— in 2-EXPTIME for X ranging from ALC to DLR;
— in 4-EXPTIME for X = SHIQ.

Also in this case, whether these bounds are tight is still an open question.

Currently, we do not know whether SDLy,;; or even its fragment SD7 are decidable.
There exist some undecidability results for CQs and UCQs with disequalities, and we
conjecture they can be carried over to service comparison. This will be a subject for
future work.

EL ALc
DLR SHIQ

SD, SDF*[| NP-complete |[EXPTIME-completein co3NEXPTIME

SD|[(in EXPTIME) |EXPTIME-complete|in co3ANEXPTIME

SDFe, SDF 7| (in EXPTIME) [EXPTIME-complete|in coSNEXPTIME

Ska,u,e’ SDk,u,e,ﬁ

SD%, SD°, SD%*||(in 2-EXPTIME)| in 2-EXPTIME | in 4-EXPTIME

SD%™, SD*™, SDWe”

Table 1. Some complexity results for decidable cases

7 Related work

The language introduced in [1], SDL(X'), was based on an embedding of service compar-
ison into subsumption in an expressive description logic, 1. ALCZO. With the reduction
to query containment we adopt here, it is possible to support service intersection and
dataflow graphs, even if they violate the quasi-forest structure of . ALCZO. Moreover,
we provide an articulated complexity analysis not available in [1].

The idea of formalizing services as queries has been first introduced in [5]. The lan-
guage adopted there is simpler than ours: only one construct combining our selection
and restriction, and a form of composition where output and input messages must per-
fectly match. The semantics of services in [5] is restricted to the constants occurring in a

55

KB rather than domain elements. Furthermore, all upper bounds provided there are EX-
PTIME or beyond. Currently our NP bounds for ££ identify the most efficient service
description logics in the literature. Moreover, even in the hardest cases, our language is
never more complex than [5].

In OWL-S, services are described by means of preconditions, postconditions, and
add/delete lists. Pre- and postconditions are like ABoxes; add/delete lists specify the side
effects of the services. The same mechanism can describe functional services. WSMO is
built upon an articulated model, including user roles and goals, that lead to a planning-
like view of service composition. In WSDL-S, WSDL service specifications (that are
basically type definitions) are bound to concepts defined in an underlying ontology. No
good computational results are currently available for any of the above standards.

8 Conclusions and future work

SDLyyuy and its fragments are rich service description languages that—however—enjoy
numerous decidability results (reported in Table 1), and in some case (SD’“’“(E L)) ser-
vice comparison is significantly less complex than in previous competing logics. Encour-
aging experimental results are available for an analogous problem [2]. We are planning
an experimental implementation based on the same technology.

Many issues need further work, here we mention just the main open problems. Au-
tomated service composition needs efficient heuristics for quickly selecting promising
candidate dataflows. The bounds for £L reported in parentheses in Table 1 are simply
inherited from more complex logic and it is not obvious whether they are tight. Dise-
qualities and negation over roles would be helpful, but the undecidability results of [8]
warn that some restrictions may be needed. It would also be interesting to check whether
service comparison can be in NP also for other low-complexity logics such as the DL-lite
family.

References

1. Piero A. Bonatti. Towards service description logics. In JELIA, LNCS 2424, pages 74-85.
Springer, 2002.

2. Piero A. Bonatti and F. Mogavero. Comparing rule-based policies. In 9¢th IEEE Int. Work. on
Policies for Distributed Systems and Networks (POLICY 2008), pages 11-18, 2008.

3. D. Calvanese, G. De Giacomo, and M. Lenzerini. Conjunctive query containment and answering
under description logic constraints. ACM Trans. Comput. Log., 9(3), 2008.

4. AK. Chandra and PM. Merlin. Optimal implementation of conjunctive queries in relational
data bases. In Proc. Ninth Annual ACM Symp. on Theory of Computing, pages 77-90, 1976.

5. D. Hull, E. Zolin, A. Bovykin, I. Horrocks, U. Sattler, and R. Stevens. Deciding semantic
matching of stateless services. In Proc. of AAAI 2006. AAAI Press, 2006.

6. Magdalena Ortiz, Diego Calvanese, and Thomas Eiter. Data complexity of query answering in
expressive description logics via tableaux. J. of Automated Reasoning, 41(1):61-98, 2008.

7. Riccardo Rosati. Integrating ontologies and rules: Semantic and computational issues. In Rea-
soning Web, LNCS 4126, pages 128—151. Springer, 2006.

8. Riccardo Rosati. The limits of querying ontologies. In ICDT, LNCS 4353, pages 164—178.
Springer, 2007.

9. Riccardo Rosati. On conjunctive query answering in £L. In Description Logics. CEUR-WS.org,
2007.

56

Towards Large Scale Reasoning on the Semantic
Web

Balazs Kadar, Gergely Lukéacsy and Péter Szeredi

Budapest University of Technology and Economics
Department of Computer Science and Information Theory
1117 Budapest, Magyar tuddsok koritja 2., Hungary

balazs@kadar.biz,{lukacsy,szeredi}@cs.bme.hu

Abstract. Traditional algorithms for description logic (DL) instance re-
trieval are inefficient for large amounts of underlying data. As description
logic is becoming popular in areas such as the Semantic Web, it is very
important to have systems that can reason efficiently over large data sets.
In this paper we present the DLog description logic reasoner specifically
designed for such scenarios.

The DLog approach transforms description logic axioms using the SHZQ
DL language into a Prolog program. This transformation is done without
any knowledge of the particular individuals: they are accessed dynami-
cally during the normal Prolog execution of the generated program. This
allows us to store the individuals in a database instead of memory, which
results in better scalability and helps using description logic ontologies
directly on top of existing information sources.

In this paper we focus on the description of the DLog application itself.
We present the architecture of DLog and describe its interfaces. These
make it possible to use ABoxes stored in databases and to communi-
cate with the Protégé ontology editor, as a server application. We also
evaluate the performance of the DLog database extension.

Keywords: large data sets, description logic, reasoning, logic program-
ming, databases

1 Introduction

Description Logics (DLs) allow us to represent knowledge bases consisting of
terminological axioms (the TBoz) and assertional knowledge (the ABoz).

Description Logics are becoming widespread as more and more systems start
using semantics for various reasons. As an example, in the Semantic Web idea,
DLs are intended to provide the mathematical background needed for more intel-
ligent query answering. Here the knowledge is captured in the form of expressive
ontologies, described in the Web Ontology Language (OWL) [1]. This language
is mostly based on the SHZQ description logic, and it is intended to be the
standard knowledge representation format of the Web.

However, we have tremendous amounts of information on the Web which
calls for reasoners that are able to efficiently handle such abundance of data.

57

Moreover, as these data cannot be stored directly in memory, we need solutions
for querying description logic concepts in an environment where the ABox is
stored in a database.

We found that most existing description logic reasoners are not suitable for
this task, as these are not capable of handling ABoxes stored externally. This
is not a simple technical problem: most existing algorithms for querying DL
concepts need to examine the whole ABox to answer a query. This results in
scalability problems and undermines the point of using databases. Because of
this, we started to investigate techniques which allow the separation of the in-
ference algorithm from the data storage.

We have developed a solution, where the inference algorithm is divided into
two phases. First we create a query-plan in Prolog from the actual DL knowl-
edge base, without accessing the underlying data set. Subsequently, this query-
plan can be run on real data, to obtain the required results. The implementa-
tion of these ideas is incorporated in the DLog reasoning system, available at
http://dlog-reasoner.sourceforge.net.

In this paper we focus on the architecture of the DLog system, as well as
on its external interfaces. We discuss the interface used for accessing databases,
which allows description logic reasoning on top of existing information sources.
We also describe the Protégé [2] interface that makes it possible to use DLog as
the back-end reasoner of this popular ontology editor. Details on the theoretical
side of DLog can be found in [3] and in [4].

This paper is structured as follows. Section 2 summarises related work. In
Section 3 we give a general introduction to the DLog approach and present the
architecture and implementation details of the system. The database and Protégé
interfaces are described in Sections 4 and 5, respectively. Section 6 evaluates the
performance of the database extension of DLog w.r.t. the version which stores
the ABox as Prolog facts. Finally, in Section 7, we conclude with the future work
and the summary of our results.

2 Related work

Several techniques have emerged for dealing with ABox-reasoning. Tradi-
tional ABox-reasoning is based on the tableau inference algorithm, which tries
to build a model showing that a given concept is satisfiable. To infer that an
individual ¢ is an instance of a concept C, an indirect assumption —C(7) is added
to the ABox, and the tableau-algorithm is applied. If this reports inconsistency,
i is proved to be an instance of C'. The main drawback of this approach is that
it cannot be directly used for high volume instance retrieval, because it would
require checking all instances in the ABox, one by one.

To make tableau-based reasoning more efficient on large data sets, several
techniques have been developed in recent years [5]. These are used by the state-
of-the-art DL reasoners, such as RacerPro [6] or Pellet [7].

Extreme cases involve serious restrictions on the knowledge base to ensure
efficient execution with large amounts of instances. For example, [8] suggests a

58

solution called the instance store, where the ABox is stored externally, and is
accessed in a very efficient way. The drawback is that the ABox may contain
only axioms of form C(a), i.e. we cannot make role assertions.

Paper [9] discusses how a first order theorem prover such as Vampire can
be modified and optimised for reasoning over description logic knowledge bases.
This work, however, mostly focuses on TBox reasoning.

In [10], a resolution-based inference algorithm is described, which is not as
sensitive to the increase of the ABox size as the tableau-based methods. How-
ever, this approach still requires the input of the whole content of the ABox
before attempting to answer any queries. The KAON2 system [11] implements
this method and provides reasoning services over the description logic language
SHZIQ by transforming the knowledge base into a disjunctive datalog program.

Although the motivation and goals of KAON2 are similar to ours, unlike
KAON2 (1) we use a pure two-phase reasoning approach (i.e. the ABox is ac-
cessed only during query answering) and (2) we translate into Prolog which has
well-established, efficient and robust implementations.

Article [12] introduces the term Description Logic Programming. This idea
uses a direct transformation of ALC description logic concepts into definite Horn-
clauses, and poses some restrictions on the form of the knowledge base, which
disallow axioms requiring disjunctive reasoning. As an extension, [13] introduces
a fragment of the SHZQ language that can be transformed into Horn-clauses.
This work, however, still poses restrictions on the use of disjunctions.

3 The DLog system

The main idea of the DLog approach is that we transform a SHZQ knowl-
edge base KB into first-order clauses 2(KB) and from these we generate Prolog
code [3]. In contrast with [11], all clauses containing function symbols are elim-
inated during the transformation: the resulting clauses can be resolved further
only with ABox clauses. This forms the basis of a pure two phase reasoning
framework, where every possible ABox-independent reasoning step is performed
before accessing the ABox itself, allowing us to store the content of the ABox in
an external database.

Actually, in the general transformation, we use only certain properties of
2(KB). These properties are satisfied by a subset of first order clauses that is,
in fact, larger than the set of clauses that can be generated from a SHZQ KB.
We call these clauses DL clauses. As a consequence of this, our results can be
used for DL knowledge bases that are more expressive than SHZ Q. This includes
the use of certain role constructors, such as union. Furthermore, some parts of
the knowledge base can be supplied by the user directly in the form of first order
clauses. More details can be found in [3].

As the clauses of a SHZQ knowledge base KB are normal first-order clauses
we can apply the Prolog Technology Theorem Proving (PTTP) technology [14]
directly on these. In [3] we have simplified the PTTP techniques for the special

59

case of DL clauses and we have proved that these modifications are sound and
complete for DL clauses.

The simplified PTTP techniques used in DLog include deterministic ancestor
resolution and loop elimination. Both are applicable only to unary predicates,
i.e. predicates corresponding to DL concepts.

In the design of the DLog system we focus on modularity. This enables us to
easily implement new features and new interfaces. The top level architecture of
the system is shown in Figure 1. In this figure, as in subsequent figures of the
paper, rectangles with rounded corners represent modules of the DLog system,
while data are shown as plain rectangles. In Figure 1 the DLog reasoner is shown
within a dashed rectangle.

,,

First phase:

L] translation

‘o |
= |
] |
a0 ‘
& ‘
= 1
I ‘

= |
o |
w |
< |
& v |
o |
&0 ‘
Lol |
< |
z 1
1 ‘
= |
w :
~ |

~—_ | Second phase:

execution

Fig. 1. The top level architecture of the DLog system.

The user (either local or remote) accesses DLog through one of the external
interfaces. These interfaces range from a local console to server interfaces like
DIG used by the Protégé ontology editor. The knowledge base manager is the
central piece of the system. It coordinates the tasks of the other modules, and
performs the administration of multiple concurrent knowledge bases. It forwards
the request arriving from the interfaces to the reasoner modules.

The support modules consist of several tools that are used by most parts of
the system. They include a configuration manager module, a logger, an XML
reader, a run-time system for the second phase, and several portability tools that
allow DLog to run under different Prolog implementations (currently SWI and
SICStus).

The first phase, translation, shown in Figure 2, takes a set of description
logic axioms as input. These axioms are divided into two parts: the TBox or
terminology box stores concept and role inclusion axioms, while the ABox or
assertion box contains the factual data. The ABox may be stored (partly or

60

completely) in external databases. The ABox is processed first, producing the
ABox code (which is a Prolog module), and the ABox signature, which is required
for translating the TBox. The generation of ABox code includes optimisations
such as indexing on second argument for roles stored in memory.

Next, the TBox is processed in two steps. First the DL translator module
transforms the description logic formulae to a set of DL clauses [15], which are
passed on to the TBox translator module that generates the executable TBox
code. This generated code is equivalent, with respect to instance retrieval, to the
input DL knowledge base. The TBox translator module uses various optimisa-
tions [3] to obtain more efficient Prolog programs. The ABox and TBox code can
be generated directly into memory or may be saved to disk for later (standalone)
use.

ABox {trﬁfs?ﬁtor'—» ABox code

DL TBox
TBox ™ translator translator ZTBOX code

Fig. 2. The first phase: translation.

The second phase, execution, shown in Figure 3, uses the ABox and TBox
programs generated in the first phase, to answer queries. There are two ways
to execute queries: the generated TBox can be called directly from Prolog as
a low-level interface, or the Query module provides a high-level interface that
provides basic support for composite queries and can aggregate the results. In
normal operation the query module is called by the knowledge base manager,
which forwards the results to the user interface. As the query module does not
depend on the rest of the system, it may be used in standalone operation. The
run-time system (shown as RTS in the figure) includes a hash table implemented
in C used to speed up the reasoning, and optional collection of statistics.

: ABox code Queries
; Query
RTS TBox code module Results

Fig. 3. The second phase: execution.

61

4 Integrating DLog with databases

As the first phase of reasoning (i.e. the generation of a query plan) only
depends on the signature of the data set, and because of the top-down inference
of Prolog, DLog can efficiently use databases to store the ABox.

There may be several advantages in using databases to store the ABox.
Firstly, this allows reasoning on data sets that cannot fit into memory. Secondly,
it makes integrating DLog with existing systems easier, as the reasoner can use
the existing databases of other applications. Thirdly, querying some concepts
(namely those corresponding to so-called query predicates) may be performed
using complex database queries, rather than DL reasoning, which is expected to
deliver a marked increase in performance.

A predicate is a query predicate [3], if it is non-recursive, it does not invoke
its negation, and is not invoked from within its negation. Here, a predicate Py is
said to invoke a predicate P,, n > 1, if there are n — 1 intermediate predicates
Py ...P,_1, such that P; is directly invoked by P;_1, i.e. it occurs in a clause
body the head of which is P;_1, fori=1,...,n.

Query predicates require neither loop elimination, nor ancestor resolution
during execution. The name “query predicate” reflects that fact that such predi-
cates can be transformed to complex database queries (provided that all concepts
and roles required are stored in a single database). This can increase the per-
formance as the database engine can optimise the query using statistical and
structural knowledge of the database in question.

We designed the database interface to be as simple as possible. The databases
are accessed via the ODBC driver of SWI-Prolog; as a consequence DLog can
interface with most modern database systems. We wanted a way to specify
database access using existing tools and interfaces — such as Protégé and the
DIG interface it utilises — even if those do not, at the moment, provide a way to
specify database usage. To access a database, several pieces of information are
needed: the name of the database, a user name, a password, a description of which
table to use for given concepts and roles, etc. Because of the aforementioned re-
quirements we decided to use ABox assertions to carry this meta-information.
ABox assertions are description logic constructs that are readily available in DL
systems and interfaces, such as OWL and DIG.

In order to specify the database access for concepts and roles we introduce
new roles (object properties), attributes (datatype properties) and individuals
defined in the namespace http://www.cs.bme.hu/dlogDB.

The ODBC interface prescribes that database connections are to be iden-
tified by a Data Source Name (DSN). In DLog we introduce an individual to
represent a given database connection. Roles and concepts are also represented
by individuals. An arbitrary name can be used for such an individual.

The meta data provided is used to connect to the database, and, for each
concept and role, an additional clause is generated, which, by executing an ap-
propriate database query, lists appropriate individuals (or pairs of individuals).
This allows concepts and roles to be stored partially in databases and partially
in memory. This may be very useful when developing ontologies.

62

4.1 Specifying the Database Interface

Database connections are represented by individuals that have the string at-
tribute hasDSN defined. The value of this attribute is the name of the data source
(DSN). As all other names in this section, this name is defined in the namespace
http://wuw.cs.bme.hu/dlogDB. Additional string attributes, namely hasUserName
and hasPassword, may be used to specify the user name and the password for
the given connection, if required.

The object property hasConnection links an individual representing a role
or a concept with the database connection to be used for accessing it. This
makes it possible to use one data source for one concept, and a different one
for another. The instance on the left hand side is the individual representing
the role or concept, while the instance on the right hand side is the individual
representing the connection.

Two methods are provided to specify how to get the data from the database.
One is to specify a query that is to be directly executed on the database. This
method, named the simple interface, is provided because of its simplicity: it can
be applied to databases without any modification. However it has two drawbacks:

— it makes transforming query predicates to database queries very difficult;
and
— it performs badly for instance check queries.

The latter is a large setback as most of the queries are instance checks, assuming
the the projection optimisation of [3] is used.

Therefore the second, preferred, way is to provide the name of a table or of
a view and the name of the column(s) of this table. This approach, called the
complez interface may require the creation of new views in the database, but
provides much greater flexibility and better performance.

The SQL query in the simple interface is defined using the string attribute
hasQuery. The individual represents the role or concept and the attribute value
is the query string. For individuals representing roles the query must return two
columns, and for those used for concepts it must return one column that contains
the individual name.

If the complex interface is used, the name of the table or view to use is
specified by the string attribute hasTable. The name of the column listing the
individuals of a concept is given using the string attribute hasColumn. For roles,
the attributes hasLHS and hasRHS are used for the left and the right hand side,
respectively.

Because, in Protégé, individuals cannot be specified as instances of a negated
concept, we provide some additional attributes: hasNegQuery, hasNegTable and
hasNegColumn. These are used to specify the database access of negated con-
cepts, in a way similar to their respective positive pairs. By providing an attribute
hasNegQuery for a name representing the concept C' we specify a query listing
the individuals of =C'. Obviously, both hasQuery and hasNegQuery can appear
as attributes of the same individual.

63

To specify that the individual concept represents the concept C, one simply
has to make concept an instance of C. The DLog system will check each concept
occurring in the ABox if it contains an instance which is in the namespace
http://www.cs.bme.hu/dlogDB. If such an instance is found, it is interpreted
as a “handle” to a database which is to produce (additional) instances for the
given concept.

Similarly, to specify that an individual role represents the role R, we require
that the user includes the triple {role, R, indiv} in the ABox. Here indiv is
an arbitrary individual. Again DLog will look for an instance in the namespace
http://wuw.cs.bme.hu/dlogDB within the domain (i.e. the left hand side) of
each role, and use it to construct a database access for the given role.

The database interface is currently in the alpha test phase. We believe that
our approach for this task, discussed above, is an intermediate solution. Ulti-
mately the standard interfaces, such as DIG, should be extended to allow storing
(parts of) the ABox in databases. However, we hope that our work contributes
to implementing this ultimate goal.

4.2 Examples of Using the Database Interface

We now present two examples for interfacing with databases, one for the
simple, and one for the complex interface.

The examples contain ABox assertions, which are displayed as RDF triples
in {subject, predicate, object} format. String values are shown between
quotes. The namespace http://www.cs.bme.hu/dlogDB# is represented by the
dlog: prefix.

Figure 4 shows the use of the simplified interface for the ABox of the Iocaste
example. This classical example involves the concept describing a person hav-
ing a patricide child, who, in turn, has a non-patricide child. The ABox axioms,
which are now to be stored in a database, describe the hasChild relation between
pairs of individuals (traditionally containing (Iocaste, Oedipus), (Iocaste,
Polyneikes), (Oedipus, Polyneikes) and (Polyneikes, Thersandros)). The
ABox also specifies which individuals are patricide and which are non-patricide
(traditionally Dedipus is known to belong to the former, while Thersandros to
the latter).

We have chosen the namespace represented by the io: prefix for the names
in this ontology. The database connection is named iodb, and the corresponding
DSN is specified as "iocaste" (line 1). This connection is accessed without
specifying a user name or a password. Accordingly, icdb has no attributes other
than dlog:hasDSN.

Both the role hasChild and the concept Patricide are taken from this
database. The role hasChild is represented by the instance dlog:riohasChild.
We chose this name as a mnemonic for a role from the namespace io, called
hasChild, but any other name could have been used. Line 2 tells the system that
this individual represents the role io:hasChild. Here, the right hand side of
the role is of no interest, so we chose to have the same individual as on the left
hand side. Line 6 tells that the individual dlog:cioPatricide is an instance of

64

-

[\

{dlog:iodb, dlog:hasDSN, "iocaste"}
{dlog:riohasChild, io:hasChild, dlog:riohasChild}
{dlog:riohasChild, dlog:hasConnection, dlog:iodb}
{dlog:riohasChild, dlog:hasQuery,

"SELECT parent, child FROM hasChild"}
{dlog:cioPatricide, rdf:type, io:Patricide}
{dlog:cioPatricide, dlog:hasConnection, dlog:iodb}
{dlog:cioPatricide, dlog:hasQuery,

"SELECT name FROM people WHERE patricide"}
{dlog:cioPatricide, dlog:hasNegQuery,

"SELECT name FROM people WHERE NOT patricide"}

Fig. 4. An example of the simplified database interface.

the concept io:Patricide!. This individual, which thus represents the concept
io:Patricide, has two queries associated with it: one for io:Patricide (line 8)
and one for its negation (line 10).

The simplified interface allows complex queries, such as the one for Patricide
which has a WHERE clause. This way the existing table people can be used without
modification. However, this approach makes it very difficult to transform any
possible query predicates in the TBox to direct database queries, and instance
check queries run with a poor performance.

We now present a second example. The TBox of this example, taken from
[4], is shown below.

JhasFriend. Alcoholic T —Alcoholic
JhasParent. —-Alcoholic L —Alcoholic

Line 1 describes that those who have a friend who is alcoholic are non-alcoholic
(as they see a bad example), while line 2 states that those who have a non-
alcoholic parent are non-alcoholic (as they see a good example). In the classic
form the ABox contains role assertions for the hasParent and hasFriend re-
lations only, and no concept assertions about anyone being alcoholic or non-
alcoholic. In spite of this, in the presence of certain role instance patterns, one
can infer some people to be non-alcoholic, using case analysis.

For example, consider the following pattern: Jack is Joe’s parent and also his
friend. Now, if we assume that Jack is alcoholic, then the axiom in line 1 implies
that Joe is not alcoholic. On the other hand, if Jack is not alcoholic, it follows
from line 2 that Joe is not alcoholic, either. Thus these two role assertions imply
that Joe has to be non-alcoholic. Other patterns, where Joe can be inferred to
be non-alcoholic, are the following: Joe is a friend of himself; Joe is a friend of
an ancestor; and Joe’s two ancestors are in the hasFriend relationship.

! Note that the prefix rdf, used in the predicate position of the triple in line 6, refers
to the RDF namespace: http://www.w3.0rg/1999/02/22-rdf -syntax-ns#

65

In Figure 5 we present a database access specification for the above example,
using the complex interface. Here, the database alcoholic is accessed with the
user name "drunkard" and the password "palinka" (lines 1-3). We assume
that a new view, called "hasParentView", was defined in the database to hide
the complex query for the role hasParent, cf. lines 4 6. The columns of this
view, child and parent (lines 7-8), contain the data for the role hasParent.
From this information DLog can create a query for instance retrieval ("SELECT
child, parent FROM hasParentView"), and three other query patterns for the
cases when at least one of the individuals is known (e.g. "SELECT child FROM
hasParentView WHERE parent = ?"). This approach allows for the generation
of complex database queries for the query predicates.

{dlog:alcdb, dlog:hasDSN, "alcoholic"}

{dlog:alcdb, dlog:hasUserName, "drunkard"}

{dlog:alcdb, dlog:hasPassword, "palinka"}
{dlog:ralchasParent, alc:hasParent, dlog:ralchasParent}
{dlog:ralchasParent, dlog:hasConnection, dlog:alcdb}
{dlog:ralchasParent, dlog:hasTable, "hasParentView"}
{dlog:ralchasParent, dlog:hasLHS, "child"}
{dlog:ralchasParent, dlog:hasRHS, "parent"}
{dlog:ralchasFriend, alc:hasFriend, dlog:ralchasFriend}
{dlog:ralchasFriend, dlog:hasConnection, dlog:alcdb}
{dlog:ralchasFriend, dlog:hasTable, "friends"}
{dlog:ralchasFriend, dlog:hasLHS, "friendl"}
{dlog:ralchasFriend, dlog:hasRHS, "friend2"}
{dlog:calcAlcoholic, rdf:type, alc:Alcoholic}
{dlog:calcAlcoholic, dlog:hasConnection, dlog:alcdb}
{dlog:calcAlcoholic, dlog:hasTable, "alcoholicView"}
{dlog:calcAlcoholic, dlog:hasColumn, "name"}
{dlog:calcAlcoholic, dlog:hasNegTable, "nonalcoholicView"}
{dlog:calcAlcoholic, dlog:hasNegColumn, "name"}

Fig. 5. An example of the complex database interface.

In Figure 5, lines 10-13 specify the database access for the role hasFriend,

while lines 14-19 allow for accessing individuals belonging to the concept alcoholic

and its negation through appropriate database views.

5 Integrating DLog with Protégé
Protégé [2] is an open source ontology editor that supports the Web Ontology
Language (OWL) [1], and can connect to reasoners via the HTTP-based DIG

interface [16]. The DLog server implements the DIG interface and can be used to
execute instance retrieval queries issued from the graphical interface of Protégé.

10

66

The DIG interface specifies communication via HTTP, and uses XML data
format. For the implementation we used the HTTP server provided with SWI-
Prolog. In implementing the interface we faced difficulties caused by some am-
biguities of the DIG specifications, despite there being an (exact) XML schema
definition. Another difficulty was that Protégé does not strictly follow the def-
inition of the interface. For example it uses a clearKB command that is not
even defined in version 1.1 of DIG. In DIG 1.0, which supported only a single
database, this command was defined, but Protégé uses the new version that sup-
ports multiple concurrent knowledge hases. We strove for an implementation as
generic and complying to the interface definition as possible while, also being
compatible with Protégé.

For parsing XML we use the SGML module of SWI-Prolog, which can be
operated in an XML compatibility mode, allowing namespaces. As this is not
a direct XML parser, it has some difficulties when used in XML mode. For
example even with the strictest settings and treating all warnings as errors, it
accepts input files that are not even well-formed XML. Because of this, and in
hope of better performance, we are planning to switch to Apache Xerces-C++.
With Xerces we plan to use SAX parsing, instead of DOM, with the hope of
lower memory usage and faster parsing.

The data are extracted from the XML DOM using Definite Clause Grammars
(DCG).

Figure 6 shows the results of a query issued from Protégé, as answered by
the DLog server.

| @ Metedatn (vims3000) | OWiLChoses | BB Properties | @ Individuals | = Forr
s L cmssen
For Project: @ cal0 Efconnected to DLog 0.2 alpha x|
Asserted Hierarchy Computing indivicduals belonging to class: Querying reasoner ..
vl Thing I 1t
Alzohalic
» © notalcoholc [Reasoner log

¥ & Synchronize ressoner

Time to clear knowledgehase = 0.032 seconds
Time far DIt conversion = 0016 seconds

Time to updste reasoner = 0454 seconds

* Time to synchronize = 0.532 seconds

Inlividuzls belonging to: notAlcoholic

@ Total time: 0,513 seconds

[ox]

Fig. 6. Screenshot of query results in Protégé answered by DLog.

11

67

The integration of Protégé and the database interface is in progress. A serious
difficulty is that if the results of a query contain individuals that are not defined
in Protégé (i.e. individuals present only in databases) Protégé silently drops
these individuals from the list of query results.

6 FEvaluation

This section contains a preliminary performance test of the database inter-
face.

We tried the database interface on a large version of the Iocaste problem
which contains 5058 pairs in the hasChild relation, 855 instances that are known
to be patricide, and 314 that are known to be non-patricide.

The execution results are summarised in Table 1. The load time means the
time it takes to load the file which contains the axioms, including the XML
parsing. The translation time is the time it takes to generate the TBox and
ABox code from the axioms, while execution time is the run-time of the query.

Table 1. Comparing the in-memory and database version of a large Iocaste test.

(seconds) load translate execute total
in-memory 0.88 0.53 0.02 1.43
database 0.05 0.02 0.36 0.43

When the ABox is stored in memory, the translation takes 1.41 seconds, and
the execution takes only 0.02 seconds. Note that these figures were obtained with
the indexing optimisation turned off. When this optimisation is turned on, the
number of generated ABox clauses is doubled, and translation time increases
accordingly.

The database variant of the example enumerates all the instances of the
queried concept in 0.36 seconds. This, compared to the original 0.02 seconds is
much slower. However, the time we spent at compile-time was altogether 0.07
seconds, resulting in a total execution time of 0.43 seconds. To sum up, in terms
of total query execution time, more than a three-fold decrease was achieved,
using the database interface.

From the above data it may seem that using a database for storing the ABox,
which fits into memory, is beneficial only because of the reduced compile-time.
However, we believe that in the case of large data sets and complex queries
(especially if these contain concepts giving rise to query predicates) execution
time can also be better than that of the in-memory variant.

Detailed evaluation of the DLog System can be found in [3].

12

68

7 Summary and future work

In this paper we have shown the architecture of the DLog system, discussed a
database interface for representing large ABoxes, and reported on the integration
of DLog with the Protégé ontology editor.

The database interface is especially useful if the data set cannot fit in memory
or if it is shared with other systems. Using databases can greatly reduce compile
time and, with advanced optimisations, it may provide efficiency similar to that
of the in-memory version.

Future improvements include the optimisation of query predicates, by trans-
forming them to database queries, and better integration of Protégé and the
database interface. Qur plans also include the implementation of a query mod-
ule to handle composite queries, and the support for additional interface formats,
such as OWL, or the KRSS notation used by e.g. the RacerPro engine.

Acknowledgements

The authors are grateful to the anonymous reviewers for their comments on
the earlier version of the paper, and especially for recommending the Billion
Triples Challenge for evaluation.

References

1. Bechhofer, S.: OWL web ontology language reference. W3C recommendation
(February 2004)

2. Noy, N., Fergerson, R., Musen, M. The knowledge model
of Protege-2000: Combining interoperability and flexibility.
http://citeseer.nj.nec.com/noy0lknowledge.html (2000)

3. Lukacsy, G., Szeredi, P.: Efficient description logic reasoning in Prolog: the DLog
system. Technical report, Budapest University of Technology and Economics (Jan-
uary 2008) Conditionally accepted for publication in Theory and Practice of Logic
Programming.

4. Lukéacsy, G., Szeredi, P., Kadar, B.: Prolog based description logic reasoning.
(December 2008) To appear in ICLP 2008.

5. Haarslev, V., Méller, R.: Optimization techniques for retrieving resources described
in OWL/RDF documents: First results. In: Ninth International Conference on the
Principles of Knowledge Representation and Reasoning, KR 2004, Whistler, BC,
Canada, June 2-5. (2004) 163-173

6. Haarslev, V., Méller, R., van der Straeten, R., Wessel, M.: Extended Query Fa-
cilities for Racer and an Application to Software-Engineering Problems. In: Pro-
ceedings of the 2004 International Workshop on Description Logics (DL-2004)
Whistler, BC, Canada, June 6-8. (2004) 148-157

7. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. Web Semant. 5(2) (2007) 51-53

8. Horrocks, 1., Li, L., Turi, D., Bechhofer, S.: The Instance Store: DL reasoning
with large numbers of individuals. In: Proceedings of D1.2004, British Columbia,
Canada. (2004)

13

69

10.

11.

12.

13.

14.

15.

16.

. Horrocks, I., Voronkov, A.: Reasoning support for expressive ontology languages

using a theorem prover. In: FoIKS. Volume 3861 of Lecture Notes in Computer
Science., Springer (2006) 201 218

Hustadt, U., Motik, B., Sattler, U.: Reasoning for Description Logics around SHIQ
in a resolution framework. Technical report, FZI, Karlsruhe (2004)

Motik, B.: Reasoning in Description Logics using Resolution and Deductive
Databases. PhD thesis, Univesitat Karlsruhe (TH), Karlsruhe, Germany (January
2006)

Grosof, B.N., Horrocks, 1., Volz, R., Decker, S.: Description logic programs: Com-
bining logic programs with description logic. In: Proc. of the Twelfth International
World Wide Web Conference (WWW 2003), ACM (2003) 48-57

Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expressive
description logics. In: Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence (IJCAT 2005), International Joint Conferences on Artificial
Intelligence (2005) 466 471

Stickel, M.E.: A Prolog technology theorem prover: a new exposition and imple-
mentation in Prolog. Theoretical Computer Science 104(1) (1992) 109-128
Zombori, Zs.: Efficient two-phase data reasoning for description logics. In: Pro-
ceedings of the International Federation for Information Processing Technical Com-
mittee on Artificial Intelligence (TC12), Milan, Italy (September 2008) Accepted
conference paper.

Bechhofer, S.: The DIG description logic interface. http://dig.cs.manchester.ac.uk/
(2006)

14

70

Reasoning on the Web with Open and Closed
Predicates

Gerd Wagner!, Adrian Giurca', Ion-Mircea Diaconescu', Grigoris Antoniou?,

Anastasia Analyti? and Carlos Viegas Damasio?

! Brandenburg University of Technology, Germany
{G.Wagner, Giurca, M.Diaconescu}@tu-cottbus.de,
2 Institute of Computer Science, FORTH-ICS, Greece

{antoniou, analyti}@ics.forth.gr
3 Universidade Nova de Lisboa, Portugal
cd@di.fct.unl.pt

Abstract. SQL, Prolog, RDF and OWL are among the most promi-
nent and most widely used computational logic languages. However,
SQL, Prolog and RDF do not allow the representation of negative in-
formation, only OWL does so. RDF does not even include any negation
concept. While SQL and Prolog only support reasoning with closed pred-
icates based on negation-as-failure, OWL supports reasoning with open
predicates based on classical negation, only. However, in many practical
application contexts, one rather needs support for reasoning with both
open and closed predicates. To support this claim, we show that the
well-known Web vocabulary FOAF includes all three kinds of predicates
i.e. closed, open and partial predicates. Therefore, reasoning with FOAF
data, as a typical example of reasoning on the Web, requires a formalism
that supports the distinction between open and closed predicates. We
argue that ERDF, an extension of RDF, offers a solution to deal with
this problem.

1 Introduction

1.1 Open and Closed Predicates

Many information management scenarios deal with predicates with their com-
plete extension recorded (e.g. in a database). Such closed predicates use the
computational mechanism of negation-as-failure (NAF) in order to infer negative
conclusions based on the explicit absence (or non-inferability) of an information
item. In other words, not for open but only for closed predicates, NAF is similar
with standard negation.

The issue of reasoning with closed predicates and NAF has been researched
in the field of Artificial Intelligence back in the 1980’s, as a form of NAF has been
implemented at that time both in the database language SQL and in the logic
programming language Prolog. The resulting theories and formalisms, including
the famous “Closed-World Assumption”, have considered NAF to be the nega-
tion concept of choice in computational logic systems, and have downplayed the

71

significance of “open-world” reasoning with classical negation. 20 years later,
however, a computational logic concept of classical negation has been chosen
and implemented in a prominent computational logic formalism, viz the Web
ontology language OWL [10]. While SQL and Prolog have a nonmonotonic com-
putational logic semantics and support only closed predicates, OWL is based
on a computational fragment of classical logic and therefore supports only open
predicates. However, in many practical application contexts, one rather needs
support for reasoning with both open and closed predicates.

1.2 Total and Partial Predicates

In fact, in addition to the distinction between open and closed predicates, it is
useful to make another distinction between total and partial predicates. All these
distinctions are related to the semantics of negative information and negation.
The distinction between total and partial predicates is supported by partial logic
(see [9]), which comes in different versions (with either 3 or 4 truth values) and
can be viewed as a refinement of classical logic allowing both truth value gaps and
truth value clashes. The law of the excluded middle only holds for total, but not
for partial predicates. Both closed and open predicates are total. Consequently
we obtain three kinds of predicates, as described in the following table:

NAF=NEG|LEM (Law of Excluded Middle)
closed yes yes
open no yes
partial no no

The symbolic equation NAF=NEG denotes the condition that negation-as-
failure and standard negation collapse, i.e. that both connectives are logically
equivalent.

1.3 Three Kinds of Predicates in FOAF

A well-known example of a Web vocabulary is FOAF, the Friends of a Friend
vocabulary [6], which is essentially expressed in RDFS (with a few additional
constructs borrowed from OWL), and which has the purpose to create a Web of
machine-readable information describing people, the links between them and the
things they create and do. As examples of closed, open and partial predicates
included in FOAF we consider the properties foaf :member, foaf:knows and
foaf:topic_interest. Of course, one could simply stipulate that these predi-
cates have a standard classical logic semantics. But we argue that their intended
meaning in natural language implies that they are better treated as closed, open,
respectively partial predicates according to partial logic.

When a foaf:Group is defined, we may assume that such a definition is
not made in an uncontrolled distributed manner, but rather in a controlled
way where one specific person (or agent) has the authority to define the group,
typically in the context of an organization that empowers the agent to do so.

72

In this case, it is natural to consider the definition of the group membership
to be a complete specification, and, consequently, to consider the foaf :member
property to be a closed predicate. For the following example,

<foaf:Group rdf:ID="http://tu-cottbus.de/lit/erdf-team">
<foaf :name>BTU Cottbus ERDF Team</foaf :name>
<foaf :member rdf:resource="#Gerd"/>
<foaf:member rdf:resource="#Adrian"/>
<foaf :member rdf:resource="#Mircea"/>
</foaf :Group>
<foaf:Person rdf:ID="Gerd">
<foaf:Person rdf:ID="Adrian">
<foaf:Person rdf:ID="Mircea">

this would mean that we can draw the (negative) conclusion that
Grigoris is not a member of the BTU Cottbus ERDF Team

based on the absence of a fact statement that ” Grigoris is a member of the BTU
Cottbus ERDF Team”.

In the case of the property foaf:knows, however, we could argue that the
standard RDF and OWL treatment of classes and properties as open predicates
is adequate, since one does normally not make a complete set of statements
about all persons one knows in a FOAF file. Consequently, the absence of a fact
statement that ”Grigoris knows Gerd” does not justify to draw the negative
conclusion that ”Grigoris does not know Gerd”.

Both foaf :member and foaf:knows can be considered as total predicates
that are subject to the law of the excluded middle, implying that the following
disjunctive statements hold:

Either Grigoris is a member of the BTU Cottbus ERDF Team or Grigoris
is not a member of the BTU Cottbus ERDF Team.
Either Grigoris knows Gerd or Grigoris does not know Gerd.

In the case of the property foaf:topic_interest, the situation is different.
First, notice that while in the previous cases of foaf:member and foaf :knows
there is no need of representing negative fact statements, we would like to be
able to express both topics in which we are interested and topics in which we
are definitely not interested (and would therefore prefer not to receive any news
messages related to them). For instance, we may want to express the negative
triple “Gerd is definitely not interested in the topic motor sports”. Therefore,
we should declare foaf:topic_interest to be a partial property, which means
(1) that we want to be able to represent negative fact statements along with
positive fact statements involving this predicate and (2) that the law of the
excluded middle does not hold for it: it is not the case that for any topic x,

Gerd is interested in the topic x or Gerd is (definitely) not interested in
the topic x.

73

There may be topics, for which it is undetermined whether Gerd is interested in
them or not.

1.4 Extended RDF

Since RDF(S) (see [7, 5, 3]) does not allow to represent negative information and
does not support any negation concept, we need to extend it for turning it into
a suitable reasoning formalism for FOAF and similar Web vocabularies.

In [12], it was argued that a database, as a knowledge representation system,
needs two kinds of negation, namely weak negation for expressing negation-as-
failure (or non-truth), and strong negation for expressing explicit negative infor-
mation or falsity, to be able to deal with partial information. In [13], this point
was also made for the Semantic Web as a framework for knowledge representa-
tion in general, and in [1, 2] for the Semantic Web language RDF with a proposal
how to extend RDF for accommodating the two negations of partial logic as well
as derivation rules. The extended language, called Ezxtended RDF, or in short
ERDF, has a model-theoretic semantics that is based on partial logic [9].

1.5 Plan of the Paper

While the theoretical foundation of ERDF has been presented in [1, 2], the novel
contributions of this paper are

1. an exposition and discussion of the RDF-style syntax of ERDF, and

2. a presentation of a case study that shows how a practical Web vocabulary
(FOAF) would benefit from the extended logical features offered by ERDF
(the support of two kinds of negation and three kinds of predicates).

3. a discussion about our current implementation of ERDF tool set, including
an inference engine, and our future plans for improvements.

2 The ERDF Abstract Syntax

This section describes the abstract syntax of ERDF in terms of a MOF/UML
metamodel that is aligned with the RDF metamodel of OMG’s Ontology Defi-
nition Metamodel (ODM) [8].

2.1 The ERDF-Vocabulary

ERDF adds the following classes to the RDFS vocabulary: erdf :PartialClass,
erdf :PartialProperty, erdf:TotalClass, erdf:TotalProperty, erdf :0OpenClass,
erdf :OpenProperty, erdf : ClosedClass and erdf : ClosedProperty. These classes
specialize erdf :Class and erdf :Property as depicted in Figure 1.

ERDF allows to designate properties and classes that are completely rep-
resented in a knowledge base — they are called closed. The classification if a
predicate is closed or not is up to the owner of the knowledge base: the owner
must know for which predicates there is complete information and for which
there is not.

74

AN
A Al
| TotalClass | |FartiaICIass | | Tatarpmpmy| |PartiaIPruperty |
| OpenClass | ClosedClass [OPEHPI‘DPGI‘IB'| ClosedProperty
iclosureContext"] : xs:anyURI iclosureContexd]"] : xs:anyURI

Fig. 1. The ERDF vocabulary as an extension of the RDFS vocabulary

2.2 ERDF Descriptions and Atoms

ERDF descriptions, as depicted in the metamodel diagram in Figure 2, extend
RDF descriptions by

1. adding to RDF property-value slots an optional attribute negationMode that
allows to specify three kinds of negation (Naf for negation-as-failure, Sneg for
strong negation and NafSneg for negation-of-failure over strong negation).
An optional value, None is also possible and it is the default value (i.e. when
the attribute negationMode is missing);

2. allowing not only data literals, URI references and blank node identifiers as
subject and object arguments (called subjectExpr and valueExpr in Figure
2), but also variables.

! . 1
||
| DatatypePredicateAtom | DataTypePredicate

ROF: UriReference

0.1
Arqumants
"9 uriRef -
0.1
1 ROFS::Resource
valueExpr 1

Slot
negationMode[0..1] : MegationModeEnumLit = None

]RDF::Property

Fig. 2. ERDF Descriptions

An ERDF description consists of the following components:

— One subject expression, denoted by the subjectExpr property in the meta-
model diagram, being an ERDF term, that is a URIReference, a Variable,

75

an ExistentialVariable (blank node identifier) or rdfs:Literal (see Fig-
ure 3 for the definition of ERDF term).

— A non-empty set of slots being property-value pairs consisting of a URI
reference denoting a property and an ERDF term as the value expression.

Term

[
RDFS::Literal ExistentialVariable

name : String

ROF::UriReference | Variable

name : Siring

Fig. 3. ERDF Terms

Obviously, descriptions with just one slot correspond to the usual concept
of an atomic statement (or triple), while descriptions with multiple slots cor-
respond to conjunctions of such statements. However, as can be seen in Figure
2, all descriptions are considered as FRDF' atoms, which in addition subsume
datatype predicate atoms (datatype predicates are often also called ‘built-ins’).

ERDF fact statements are variable-free ERDF descriptions such that no
slot has a negation mode other than None or Sneg. That is, only strong negation
may occur in fact statements (in the case of negative information).

ERDF descriptions with variables correspond to conjunctive query formulas
that can be used as rule conditions.

2.3 ERDF Rules

The abstract syntax of ERDF rules is defined in the metamodel diagram in
Figure 4. ERDF rules are derivation rules of the form D «— Aq,..., A,. where
D is an ERDF description with only None or Sneg as slot negation modes and
Ay, ..., A, are ERDF atoms, that is, descriptions or datatype predicate atoms.

3 A Concrete Syntax for ERDF

Our approach is to follow the RDF /XML syntax as much as possible and derive
an RDF-style syntax for ERDF atomic formulas, “triple patterns” from the
abstract syntax metamodel presented above.

3.1 Expressing a Vocabulary in ERDF

Using the ERDF predicate categories defined in section 2.1, we can refine the
FOAF vocabulary definition of foaf :member, foaf :knows and foaf :topic_interest
as follows:

76

{The negationMode of conclusion
slots must be either "None' or "Sneg’}

conditions —_—

Rule

rulelD ; xs:OName
1.* 0.1 0.1

1

conclusion

Fig. 4. ERDF Rule

<erdf :OpenProperty rdf:about="http://xmlns.com/foaf/0.1/knows">
<rdfs:domain rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
<rdfs:range rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
</erdf :OpenProperty>

<erdf:PartialProperty rdf:about="http://xmlns.com/foaf/0.1/topic_interest">
<rdfs:domain rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
<rdfs:range rdf:resource="http://wuw.w3.0rg/2002/07/owl#Thing"/>

</erdf :PartialProperty>

<erdf:ClosedProperty rdf:about="http://xmlns.com/foaf/0.1/member">
<rdfs:domain rdf:resource="http://xmlns.com/foaf/0.1/Group"/>
<rdfs:range rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
</erdf :ClosedProperty>

We identify erdf:0OpenProperty with rdf :Property and erdf:0OpenClass
with rdfs:Class. Thus, by default, all RDF predicates are considered to be
open. One may argue that is no need of erdf : OpenProperty and erdf : OpenClass
constructs, but for names uniformity and expressivity these constructs are de-
fined as part of the ERDF vocabulary.

3.2 Expressing ERDF Terms

ERDF terms are URI references, blank node identifiers, variables or data liter-
als. They are expressed in two ways, depending on their occurrence as subject
eTpressions or as value expressions.

Terms as subject expressions are values of the erdf:about attribute,
which may be URI references, blank node identifiers or variables (using the
SPARQL syntax for blank node identifiers and variables).

Terms as value expressions are expressed either with the help of one
of the attributes rdf :resource, rdf :nodeID or erdf:variable, or as the text
content of the property-value slot element in the case of a data literal.

77

3.3 Descriptions and Datatype Predicate Atoms

ERDF descriptions are encoded by means of the erdf:Description element.
Each description contains a non-empty list of (possibly negated) property-value
slots.

Ezxample 1. Gerd knows Adrian, has some topic interest, but is not interested
in the topic ‘motor sports’

<erdf:Description erdf:about="#Gerd">
<foaf:knows rdf:resource="#Adrian"/>
<foaf:topic_interest rdf :nodeID="x"/>
<foaf:topic_interest erdf:negationMode="Sneg"
rdf:resource="urn:topics:motor_sports"/>
</erdf :Description>

erdf :Description, as an extension of rdf:Description element, allows
negated slots and two other possible values for triples subject: variables and
literals (as values of erdf:about attribute). For expressing RDF triples it is
possible to use any of rdf:Description or erdf:Description elements.

Datatype predicate atoms are n-ary logical atoms. The value of erdf : arguments
property represent an ordered list of arguments. The erdf :predicate XML at-
tribute encodes the URI reference to the predicate.

Example 2. Using built-ins

<erdf :DatatypePredicateAtom erdf:predicate="swrlb:add">
<erdf:arguments>
<erdf :Variable>7sum</erdf:Variable>
<rdfs:Literal rdf:datatype="xs:int">40</rdfs:Literal>
<rdfs:Literal rdf:datatype="xs:int">20</rdfs:Literal>
</erdf :arguments>
</erdf :DatatypePredicateAtom>

3.4 Rules and Rulesets

Two syntaxes for ERDF rules are proposed: (1) a more concise non-XML syntax
based on SPARQL triple patterns, and (2) an XML-based syntax, which is useful
for rule transformations and interchange.

To express ERDF rules in XML, constructs from R2ML[14] rule markup
language are used. Later, it may be an option to use the W3C rule interchange
format.

Inspired by Jena Rules*, the non-XML syntax for ERDF rules is based on
SPARQL triple patterns: universal quantified variables prefixed by the ‘?’ sym-
bol, literals, typed literals, URI’s or QNames to denote full URI’s. Five types of
atoms can be used:

4 Jena Rules Syntax - http://jena.sourceforge.net/inference/#rules

78

— built-ins, available in a predefined set ® and offering the possibility of defining
new ones (e.g. sum(?a,?b,?c) bound c to the value of sum from a and b).

— positive triples, formally expressed as (subject predicate object), e.g.
(ex:John foaf:knows ex:Tom);

— strong negated triples, denoted by adding the ‘-’ symbol in front of the second
node, namely predicate, e.g. (?x -foaf:topic_interest 7t);

— weak-negated triples, expressed as a built-in, namely naf. It’s arguments, are
the triple’s nodes, i.e. : naf (?x foaf:knows ex:Tom).

— negation-as-failure over strong negation, the -’ symbol is added in front of
the second argument, namely the predicate, when the naf built-in is used,
e.g. naf (?x -foaf:topic_interest 7t).

4 The ERDF Application Programming Interface

The ERDF Application Programming Interface was implemented as an extension
of Jena Rules. An extended rule syntax was defined for allowing the two ERDF
negation connectives. The rule language is backward compatible, therefore the
Jena rules are also supported.

Adding support for reasoning in top of ERDF facts has required modifications
in the structure of the Jena API. In Figure 5 are reflected some important
changes of the informational model. These improvements were made for allowing
representation of negated triples and for dealing with these triple types. The
ERDF reasoner was defined as an extension of the Jena backward engine.

-head .

Rule Functor
1 NegTrIpIePaﬂsm| tname : java lang.String | 4
PosTriplePattern 1
1| predicete
subject 1
1
Node ainterfacen
1 -object Builtin

-Implesmeantor

Fig. 5. ERDF Triples extension

The RDF(S)-based reasoner implemented by the Jena API uses an internal
set of axioms and rules. For instance, the following axioms are used to express
relations used by the RDF Schema:

-> (rdf:type rdfs:range rdfs:Class).
-> (rdfs:Resource rdf:type rdfs:Class).

5 Jena built-ins - http://jena.sourceforge.net/inference/#RULEbuiltins

79

An internal set of rules is used for computing the transitive closure in RDF(S).
As an example, the following rule consider the subClass0f relationship:

[(?a rdfs:subClass0f ?b), (?b rdfs:subClass0f ?c) -> (?a rdfs:subClass0f 7c)]

ERDF defines erdf:Class as being the superclass of all its classes and
erdf :Property the superclass of all properties. This was reflected by extending
the Jena axioms set:

-> (rdf:type rdfs:range erdf:Class).

-> (rdfs:Resource rdf:type erdf:Class).

-> (erdf:TotalClass rdfs:subClass0f erdf:Class)

-> (erdf:PartialClass rdfs:subClass0f erdf:Class)

-> (erdf:ClosedClass rdfs:subClassOf erdf:TotalClass)

-> (erdf:0OpenClass rdfs:subClass0f erdf:TotalClass)

-> (erdf:TotalProperty rdfs:subClass0f erdf:Property)

-> (erdf:PartialProperty rdfs:subClass0f erdf:Property)
-> (erdf:ClosedProperty rdfs:subClass0f erdf:TotalProperty)
-> (erdf:0penProperty rdfs:subClass0f erdf:TotalProperty)
-> (erdf:0OpenClass rdfs:subClass0f rdfs:Class)

-> (rdfs:Class rdfs:subClass0f erdf:OpenClass)

-> (erdf:0OpenProperty rdfs:subClass0f rdf:Property)

-> (rdf:Property rdfs:subClass0f erdf:OpenProperty)

Since ERDF deals also with closed properties, the internal rules set was
extended to support this feature:

[closel: (?s -7p 7o)
<_
(?p rdf:type erdf:ClosedProperty)
(?p rdf:range 7r) (?p rdf:domain 7d)
(?s rdf:type 7d) (7o rdf:type ?r) naf(?s 7p 7o)]

Some other information about the ERDF API might be accessed on the
ERDF Web PageS. An AJAX based Web Application 7 is provided for testing
ERDF rules. The application needs as input data: (1) a set of RDF/ERDF facts
(using XML /RDF syntax), (2) a set of rules (using Jena Rules extended syntax),
and (3) a set of queries (expressed by using Jena Rules extended syntax). The
input data is processed by the ERDF API and query results are returned.

5 Case Study - Building FOAF-Based Working Groups

This section presents a scenario involving FOAF data and ERDF rules. As a
short story, an organizing committee needs to create working groups with peo-
ples from different communities taking part at some meeting. The assumption is
that every member has his own FOAF file where their topic interests and con-
tacts are provided. The FOAF files are available to the organizing committee.

6 ERDF - http://oxygen.informatik.tu-cottbus.de/rewerse—i1/?q=ERDF
" ERDF Rules frontend - http://oxygen.informatik.tu-cottbus.de/JenaRulesWeb

80

The organizers task is to offer a solution (or more) for grouping participat-
ing members, having different topic interests areas, by their common interests.
Therefore, two members are considered qualified for the same group if they have
at least one common interest, but no contradictory interests. The second goal
is to extend the community by grouping those members which does not know
yet one each other. The meaning of “contradictory topic interest” between two
members is that one topic interest of a member is negated in the FOAF file of
the other member. The foaf :knows property express possible contacts between
participants, and foaf:topic_interest property denotes interest topics of the
meeting participants.

For instance, the organizers have collected the following data from FOAF
files of some meeting participants:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:erdf="http://www.informatik.tu-cottbus.de/IT/erdf#">

<erdf:Description erdf:about="http://www.tu-cottbus.de/staff#Gerd">
<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
<foaf:topic_interest rdf:resource="urn:topics:RDF"/>
<foaf:topic_interest rdf:resource="urn:topics:AgentBasedSimulation"/>
<foaf:topic_interest erdf:negationMode="Sneg"
rdf :resource="urn:topics:motor_sports"/>
</erdf :Description>

<rdf :Description rdf:about="http://www.ics.forth.gr/staff#Grigoris">
<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
<foaf :knows rdf:resource="http://www.tu-cottbus.de/staff#Gerd"/>
<foaf:topic_interest rdf:resource="urn:topics:RDF"/>

</rdf :Description>

<rdf:Description rdf:about="http://www.tu-cottbus.de/staff#Adrian">
<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
<foaf:topic_interest rdf:resource="urn:topics:RDF"/>
<foaf:topic_interest rdf:resource="urn:topics:motor_sports"/>
</rdf :Description>

<rdf:Description rdf:about="http://www.tu-cottbus.de/staff#Mircea">
<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
<foaf:knows rdf:resource="http://www.tu-cottbus.de/staff#Adrian"/>
<foaf:topic_interest rdf:resource="urn:topics:AgentBasedSimulation"/>

</rdf :Description>

</rdf :RDF>

Notice that only the first description, since it includes negative triples, needs
to be marked up as an ERDF description. For the other (positive) fact statements
there is possible to use RDF (but also ERDF).

The following rule, expressed by using XMI-based syntax, is defined to es-
tablishes if two persons (meeting participants) classify for the same group.

81

If persons X and Y do not know each other, they have at least one
common topic interest and have no contradictory topic interest, then it
is recommended that X and Y are members of the same group.

<r2ml:DerivationRule r2ml:ruleID="sameGroupAs">
<r2ml:conditions>
<erdf:Description erdf:about="7x">
<rdf:type rdf:resource="foaf:Person"/>
<foaf:topic_interest erdf:variable="7t"/>
<foaf:knows erdf:negationMode="Naf" erdf:variable="7y"/>
<conf:contradictoryInterest erdf:negationMode="Naf" erdf:variable="7y"/>
</erdf :Description>
<erdf:Description erdf:about="7y">
<rdf:type rdf:resource="foaf:Person"/>
<foaf:topic_interest erdf:variable="7t"/>
<foaf:knows erdf:negationMode="Naf" erdf:variable="7x"/>
<conf:contradictoryInterest erdf:negationMode="Naf" erdf:variable="7x"/>
</erdf :Description>
</r2ml:conditions>
<r2ml:conclusion>
<erdf:Description erdf:about="7x">
<conf :sameGroupAs erdf:variable="7y"/>
</erdf :Description>
</r2ml:conclusion>
</r2ml:DerivationRule>

The non-XML syntax for ERDF rules can be used to express the same rule:

[sameGroup: (7x conf:sameGroupAs 7y)
<_
(?x rdf:type foaf:Person)(?y rdf:type foaf:Person)
naf (?x foaf:knows 7y) naf(?y foaf:knows 7x)
naf (?x conf:contradictoryInterest ?7y)
naf (?y conf:contradictoryInterest 7x)]

The following rule define how the values of the conf : contradictoryInterest
predicate are computed:

[conInterest: (7pl conf:contradictoryInterest 7p2)
<_
(?p1l rdf:type foaf:Person)(?p2 rdf:type foaf:Person)
(?7pl foaf:topic_interest ?t) (7p2 -foaf:topic_interest 7t)]

Other rules/queries are then used to create foaf:Groups. Values computed
for conf : sameGroupAs property might by considered for this purpose. Consider
the following queries:

@prefix btu: http://www.tu-cottbus.de/staff#
[ql: <- (btu:Gerd conf:sameGroupAs btu:Mircea)]
[q2: <- (btu:Gerd conf:sameGroupAs btu:Adrian)]
[93: <- (?pl conf:sameGroupAs 7p2)]

82

The answer is “true” for ¢I (no contradictory interests and persons does not
know each other) and “false” for ¢2 (“motor sports” is a contradictory interest).
The last query (¢3) will return all possible combinations of two persons which
might be in the same group.

This use case is available for online testing by using the AJAX frontend. The
Figure 6 shows an results excerpt obtained by using the above facts, rules and
queries as input data in the frontend.

| Queries result:

| Query result:
| true <== gl

| Query result:
| false <==qg2

| Solutions for: g3

| (?p1=http://www.tu-cottbus.de/staff#Mircea ?p2=http://www.tu-cottbus.de/staff#Gerd)

| (?p1=http://www.tu-cottbus.de/staffAdrian ?p2=http://www.ics forth.gr/staff#Grigoris) |
«Results»

Fig. 6. Query result using ERDF API

6 Related Work

Variables in triples have also been introduced in languages such as N3 [4] and
Jena Rules [11]. A form of negation-as-failure has been implemented in Jena
Rules by using a special built-in predicate. In N3, there is also a form of negation-
as-failure, which allows one to test for what a formula does not say, with the help
of log:notIncludes. But neither N3 nor Jena Rules has a systematic treatment
of negative information and open and closed predicates.

7 Conclusion and Future work

The paper presents an abstract and an RDF-style concrete syntax for ERDF,
allowing to represent negative fact statements and supports reasoning with open
and closed predicates. We have argued that these issues are of practical sig-
nificance by showing how they affect the popular FOAF vocabulary. Finally a
prototype of the ERDF API is described and a practical use case is considered.
Future work includes further extensions of the language, constructs for han-
dling uncertainty and reliability, and their implementation in the ERDF API.

83

References

1. Anastasia Analyti, Grigoris Antoniou, Carlos Viegas Damasio, and Gerd Wagner.
Negation and Negative Information in the W3C Resource Description Framework.
Annals of Mathematics, Computing and Teleinformatics, 1(2):25-34, 2004.

2. Anastasia Analyti, Grigoris Antoniou, Carlos Viegas Damasio, and Gerd Wagner.
Stable Model Theory for Extended RDF Ontologies. In Yolanda Gil, Enrico Motta,
V. Richard Benjamins, and Mark A. Musen, editors, Proceedings of the 4th Inter-
national Semantic Web Conference, volume 3729 of Lecture Notes in Computer
Science (LNCS), pages 21-36, Galway, Ireland, 6-10 November 2005. Springer-
Verlag.

3. Grigoris Antoniou and Frank Van Harmelen. A Semantic Web Primer. MIT Press,
2004.

4. Tim Berners-Lee. N3 (Notation 3). http://www.w3.org/DesignIssues/Notation3.html,
1998.

5. D. Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation February 2004. http://www.w3.org/TR/rdf-
schema/.

6. Dan Brickley and Libby Miller. FOAF Vocabulary Specification 0.91.
http://xmlns.com/foaf/spec/, November 2007.

7. Klyne G. and Caroll J.J. Resource Description Framework (RDF): Con-
cepts and Abstract Syntax. W3C Recommendation 10 February 2004.
http://www.w3.org/TR/rdf-concepts/.

8. Object Management Group. Ontology Definition = Metamodel.
http://www.omg.org/docs/ptc/07-09-09.pdf, November 2007.

9. Heinrich Herre, Jan O. M. Jaspars, and Gerd Wagner. Partial Logics with Two
Kinds of Negation as a Foundation for Knowledge-Based Reasoning. In D.M.
Gabbay and H. Wansing, editors, What is Negation? Kluwer Academic Publishers,
1999.

10. Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL Web Ontol-
ogy Language. Semantics and Abstract Syntax. http://www.w3.org/TR/owl-
semantics/, February 2004.

11. Dave Reynolds. Jena Rules experiences and implications for rule use cases. In
W3C Workshop on Rule Languages for Interoperability, 2005.

12. Gerd Wagner. A database needs two kinds of negation. In B. Talheim and H.D.
Gerhardt, editors, 8rd Symposium on Mathematical Fundamentals of Database
and KnowledgeBase Systems, volume 495 of Lecture Notes in Computer Science
(LNCS), pages 357-371. Springer-Verlag, 1991.

13. Gerd Wagner. Web rules need two kinds of negation. In F. Bry, N. Henze, and
J. Maluszynski, editors, Principles and Practice of Semantic Web Reasoning, Pro-
ceedings of the 1st International Workshop, PPSWR 03, volume 2901 of Lecture
Notes in Computer Science (LNCS), pages 33-50. Springer-Verlag, 2003.

14. Gerd Wagner, Adrian Giurca, and Sergey Lukichev. A General Markup Frame-
work for Integrity and Derivation Rules. In F. Bry, F. Fages, M. Marchiori, and
H. Ohlbach, editors, Dagstuhl Seminar Proceedings 05371, Principles and Practices
of Semantic Web Reasoning, 2005.

84

A Preliminary Report on Answering Complex Queries
related to Drug Discovery using Answer Set Programming

Olivier Bodenreider!, Zeynep H. Coban?, Mahir C. Doganay?
Esra Erdem?, and Hilal Kosucu®

1 National Library of Medicine, National Institutes of Health, USA
2 Department of Biostatistics, Harvard School of Public Health, USA
3 Dept. of Mathematics and Computing Science, University of Groningen, The Netherlands
4 Faculty of Engineering and Natural Sciences, Sabanci University, Turkey
® Department of Computer Science, University of Toronto, Canada

Abstract. We introduce a new method for integrating relevant parts of knowl-
edge extracted from biomedical ontologies and answering complex queries re-
lated to drug safety and discovery, using Semantic Web technologies and answer
set programming. The applicability of this method is illustrated in detail on some
parts of existing biomedical ontologies. Its effectiveness is demonstrated by com-
puting an answer to a real-world biomedical query that requires the integration of
NCBI Entrez Gene and the Gene Ontology.

1 Introduction

Improvements in Web technologies have brought about various forms of data, and thus
WWW has been a huge and easy-to-reach source of knowledge. Particularly recent
advances in health and life sciences (e.g., human genome project) have led to generation
of a large amount of data. In order to facilitate access to its desired parts, such a big mass
of data has been stored in structured forms (like databases or ontologies). For instance,
some data/information about drugs is being stored in ontologies, like DRUGBANK and
PHARMGKB, available on WWW; and the genes targeted by the drug Epinephrine can
be found by searching such a drug ontology using the keyword “Epinephrine.”

On the other hand, storing heterogeneous data independent from each other and
at different locations has made it difficult to automate high-level reasoning about the
stored data. For instance, it is possible to find an answer to the query “What are the
genes targeted both by Epinephrine and by Isoproterenol?” only after several steps:
considering that a drug (and also a gene) might have been stored in different ontologies
under different names, first for each drug a list of genes targeted by that drug could be
found, and next these two lists of genes are compared to identify the common ones, by
comparing these two lists of genes. Such complex queries, which require appropriate in-
tegration of knowledge stored in different places and in various forms, can be answered
by current Web technologies most of the time only by some direction/reasoning of hu-
mans. This slows down vital research, like drug discovery, that requires comparative
data analysis and high-level reasoning and decision making.

Motivated by these challenges, this paper studies the problem of integrating vari-
ous data sources to be able to perform high-level reasoning tasks, including answering

85

complex queries using both Semantic Web technologies and Answer Set Programming
(ASP) [1-4]. The idea is to build a rule layer using ASP over ontologies described with
some Semantic Web technologies. The rule layer not only provides rules to link parts
of the ontologies but also provides some background knowledge to be able to perform
various reasoning tasks, such as query answering.

That most of the information about biomedical ontologies are actually defaults and
that most biomedical ontologies contain incomplete knowledge motivated us to use a
nonmonotonic formalism to build a rule layer over ontologies. That experts might want
to express preferences as well as constraints while querying the knowledge stored in
ontologies to be able to discover new knowledge, and that ASP provides an expressive
language to express them and efficient solvers, like DLVHEX® [5] built over DLV,’ to
reason about them motivated us to use ASP as such a nonmonotonic formalism.

2 Three Ontologies

To experiment with our ASP approach to integrating biomedical ontologies and reason-
ing about them, and to illustrate its applicability, we have developed three ontologies,
namely a gene ontology, a disease ontology, and a drug ontology. We have built these
ontologies from existing knowledge from various data sources available on the Web.
These ontologies are written in RDF(S). To develop our disease ontology, first we se-
lected a set of diseases. The names (and their synonyms) of each disease are taken
from PHARMGKB database.® Information about the symptoms of these diseases is
obtained from the Medical Symptoms and Signs of Disease web page.’ Information
about the genes related to each disease are also extracted from PHARMGKB. Each dis-
ease is classified in some category relative to the information available at the Genes
and Diseases web page.'” Some components of the disease ontology is shown in Ta-
ble 1. We have prepared the other two ontologies in a similar way, using PHARMGKB,
UNIPROT,!! GENE ONTOLOGY (GO),'? GENENETWORK database,'> DRUGBANK,'*
and the Medical Symptoms and Signs of Disease web page.

3 Integrating Knowledge Extracted from Different Ontologies

DLVHEX provides constructs to import external theories that may be in different for-
mats. For instance, consider as an external theory our drug ontology described in RDF.
All triples from this theory can be exported using the external predicate srdf:

Shttp://con.fusion.at/dlvhex/
"http://www.dbai.tuwien.ac.at/proj/dlv/

8 http://www.pharmgkb.org/ .
9http://www.medicinenet.com/symptoms_and_signs/article.htm.
Uhttp://www.ncbi.nlm.nih.gov/disease/ .
"http://www.ebi.uniprot.org/index.shtml .
]2http://www.geneontology.org.
13http://humgen.med.uu.nl/“lude/genenetwork/.
“http://redpoll.pharmacy.ualberta.ca/drugbank/ .

86

Table 1. The disease “Asthma” described in our disease ontology

has_name Asthma

has_synonyms Bronchia, Bronchial Asthma
has_symptoms Coughing, Wheezing, Chest tightness,
Shortness of breath, Faster breathing
related_genes ABCC1, ADA, ADAM33, ADCY9, ADORAlL,
ADRB1, ADRB2, ALOX5, COMT, CRHRI1
treatedBy_drugs|Isoproterenol, Flunisolide, Salbutamol

triple_drug(X,Y,Z) :- &rdf["URI for Drug Ontology"] (X,Y,7Z).

Not all triples may be relevant to the query asked by the user. For instance, if one
asks for the names of drugs listed in the ontology, then only the triples that describe
the names of drugs are sufficient to answer this query. The names of drugs, out of all
properties about drugs described in drug. rdf, can be extracted by the following rule:

drug_name (A) :— triple_drug(_, "drugproperties:name",A).

If the query were about gene-gene interactions, then we could extract the relevant
part of the gene ontology by the rules

gene_gene (G1,G2) :- triple_gene (X, "geneproperties:name",Gl),
triple_gene (X, "geneproperties:related_genes",B),
triple_gene(B,Z,Y), z!="rdf:type",
triple_gene (Y, "geneproperties:name",G2) .

Once necessary parts of ontologies are extracted from ontologies, one can define
further concepts to integrate these knowledge. For instance, once we extract the gene-
gene interactions, we can obtain all chains of gene-gene interactions for a gene targeted
by a drug, by defining the transitive closure of gene_gene:

tc_gene_gene (X,Y) :— gene_gene (X,Y).
tc_gene_gene (X,Y) :—- gene_gene(X,Z), tc_gene_gene(Z,Y).

Now let us relate this information to a gene G targeted by a drug D by finding every
gene (1 that is related to G by means of a chain of interactions:

drugTargetedGene_interacts_gene (D,G,Gl) :—

drug_targets (D,G), tc_gene_gene(G,Gl).

4 Answering Complex Queries using DLVHEX
With the help of Devrim Goéziiagik (a medical doctor and a molecular biologist), we
have identified a set of meaningful queries about drugs, genes, diseases, towards drug

safety and discovery. We present here only three of them:

Q6 What are the sideeffects that are shared by all the drugs that treat a disease D?

87

QI2
Ql4

Q6

QI2

Ql4

Is there a drug that has no toxicity information?
Does a drug R alleviate at least 1 symptom of a disease D and have at most 2
symptoms of D as side effects?

We integrate relevant parts of ontologies, and formulate these queries as follows.

What are the sideeffects that are shared by all the drugs that treat a disease D?
For the disease Asthma, this query can be formulated as follows:

answer :— sideeffect (S), common_sideeffect ("Asthma",S).
:— not answer.

Here common_sideeffect is defined as follows:

—common_sideeffect (D,S) :- not drug_sideeffect(R,S),
drug_disease (R,D), sideeffect(S).

common_sideeffect (D,S) :— not —-common_sideeffect (D,S),
sideeffect (S), disease_name (D) .

Here is a part of the answer DLVHEX finds to the query above:
flushing dizziness headache
Is there a drug that has no toxicity information?
To answer this query, we define a new concept of “unknown” toxicity:
unknown_toxicity_drug(X) :- drug_synonym(R,X),
not drug_istoxic(R), not -drug_istoxic(R).
where drug_istoxic (R) describes that the drug R is toxic, and -drug_istoxic (R)
describes that the drug R is not toxic:

drug_istoxic(R) :- triple_drug (X, "drugproperties:name",R),
triple_drug (X, "drugproperties:is_toxic", "yes").
drug_istoxic(R) :- drug_synonym(R,R1l), drug_istoxic(R1).
—drug_istoxic (R) :- triple_drug (X, "drugproperties:name",R),
triple_drug (X, "drugproperties:is_toxic","no").
—drug_istoxic (R) :- drug_synonym(R,R1l), —-drug_istoxic(R1).
For the query

:— not unknown_toxicity_drug("Isoproterenol") .

DLVHEX returns an answer set; therefore the answer to the query above is positive.
Does a drug R alleviate at least 1 symptom of a disease D and have at most 2
symptoms of D as side effects?

To answer this query we define a new concept:

a_drug_disease_relation(R,D) :-—
disease_name (D), drug_name (R),
1 <= #count{S:drug_symptom(R,S),disease_symptom(D,S) },
#count{S:drug_sideeffect (R,S),disease_symptom(D,S) }<=2.

For the query

:— not a_drug_disease_relation("Isoproterenol",
"Substance Related Disorders").

DLVHEX returns no answer set; therefore the answer to the query above is negative.

88

5 From Glycosyltransferase to Congenital Muscular Dystrophy

To investigate the effectiveness of our approach to answering real-world queries, we
have considered a slight modification of the complex query studied in [6]:

Find all the genes annotated with the molecular function glycosyltransferase
or any of its descendants and associated with any form of congenital muscular
dystrophy.

and tried to reproduce the same results. In the query of [6] the GO ID for glycosyltrans-
ferase is given. The query above requires integration of NCBI Entrez Gene (EG) and
the Gene Ontology (GO).

To find an answer to this query, we have used the RDF version of GO that is released
on February 6, 2008; it contains 416700 RDF triples. We have used an RDF version of
EG that contains 673180 RDF triples.

The computation of an answer consists of two parts: extracting relevant knowledge
from each ontology and integrating them. We have extracted from GO the molecular
function glycosyltransferase and its descendants by the rules

mf_isa(Y) :- triple_go(Y,"go:name",YN),
&strstr[YN, "glycosyltransferase"].
mf_isa(Y) :- triple_go(Y,"go:synonym",Y¥YN),

&strstr[YN, "glycosyltransferase"].

mf_isa(X) :- triple_go(X,"go:is_a",Y), mf_isa(Y).
mf_isa(X) :- triple_go (X, "go:synonym",XN),
triple_go(Z,"go:name",XN), triple_go(Z,"go:is_a",¥Y), mf_isa(Y).

The first two rules extract the molecular functions whose names or synonyms contain
the string “glycosyltransferase”. The last two rules extract the descendants of these
molecular functions, considering their synonyms.

Similarly, we have extracted from EG the diseases with any form of congenital
muscular dystrophy, by the rules

gene_disease(Y,D) :- triple_eg(Y,"eg:has_OMIM_ record",?Z),
triple_eg(Z,"eg:has_textual_description”,D),
&strstr[D, "congenital"], &strstr[D,"muscular"],
&strstr[D, "dystrophy"].

After that we have integrated the extracted knowledge by the rules
gene_mf_disease(Y,XI,D) :- gene_disease(Y,D),

triple_eg (Y, "eg:has_GeneOntology_annotation",X),

mf_isa(XI), triple_eg(X,"eg:has_GO_ID",XI).

and computed the following answer (the same as in [6]) to the query:

gene_mf_disease ("http://www.ncbi.nlm.nih.gov/dtd/NCBI_Entrezgene.
dtd/9215", "http://www.geneontology.org/go#G0:0008375",
"Muscular dystrophy, congenital, type 1D")

89

DLVHEX extracts relevant knowledge from the ontologies, integrates them, and
computes the answer above in 9 minutes, on a machine with Intel Centrino 1.8GHz
CPU and 1 GB of RAM running on Windows XP.

6 Conclusion

We have studied integrating relevant parts of knowledge extracted from biomedical on-
tologies, and answering complex queries related to drug safety and discovery, using Se-
mantic Web technologies and Answer Set Programming (ASP). We have illustrated the
applicability of this method on some ontologies extracted from existing biomedical on-
tologies, and its effectiveness by computing an answer to a real-world biomedical query
that requires the integration of NCBI Entrez Gene and the Gene Ontology. We have also
compared our approach with the existing Semantic Web technologies that support rep-
resenting and answering queries. We have observed about these technologies that, due
to lack of support for rules or for some concepts (e.g., transitive closure, negation as fail-
ure, cardinality constraints), some queries can not be represented concisely and some
queries can not be represented at all. In this sense, the ASP-approach provides a more
expressive formalism to represent rules, concepts, constraints, and queries.

Acknowledgments

Devrim Goziiacik helped us identify some of the complex queries. Thomas Krennwall-
ner and Roman Schindlauer helped us with installing/using DLVHEX. RACER Systems
provided us a free, educational version of RACERPRO,! to be used in connection with
DLVHEX. Anonymous reviewers provided useful comments on an earlier draft. This
research was supported in part by the Intramural Research Program of the National
Institutes of Health (NIH), National Library of Medicine (NLM).

References

1. Lifschitz, V.: Action languages, answer sets and planning. In: The Logic Programming
Paradigm: a 25-Year Perspective. Springer (1999)

2. Marek, V., Truszczynski, M.: Stable models and an alternative logic programming paradigm.
In: The Logic Programming Paradigm: a 25-Year Perspective. Springer (1999)

3. Niemeld, I.: Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25 (1999)

4. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

5. Eiter, T., G.Ianni, R.Schindlauer, H.Tompits: Effective integration of declarative rules with
external evaluations for Semantic-Web reasoning. In: Proc. of ESWC. (2006)

6. Sahoo, S.S., Zeng, K., Bodenreider, O., Sheth, A.: From “glycosyltransferase” to “congenital
muscular dystrophy”: Integrating knowledge from NCBI Entrez Gene and the Gene Ontology.
In: Proc. of Medinfo. (2007)

Bhttp://www.racer-systems.com/ .

90

