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Abstract. In this paper we propose a solution that combines the advan-
tages of an ontology specification language, having powerful rule-based rea-
soning capabilities, with the possibility to efficiently exploit large (and,
often already existent) enterprise databases. In particular, we allow to “up-
grade” existing databases to an ontology for building a unified view of the
enterprise information. Databases are kept and the existing applications
can still work on them, but the user can benefit of the new ontological view
of the data, and exploit powerful reasoning and information integration
services, including: problem-solving, consistency checking, and consistent
query answering. Importantly, powerful rule-based reasoning can be carried
out in mass-memory allowing to deal also with data-intensive applications.
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Information Integration, Consistent Query Answering.

1 Introduction

In the last few years, the need for knowledge-based technologies is emerging in sev-
eral application areas and, in particular, both enterprises and large organizations
are looking for powerful instruments for knowledge-representation and reasoning.
In this field, ontologies [1] have been recognized to be a fundamental tool. Indeed,
they are well-suited formal tools that provide both a clean abstract model of a
given domain and powerful reasoning capabilities. In particular, they have been re-
cently exploited for specifying terms and definitions relevant to business enterprises,
obtaining the so-called enterprise/corporate ontologies. Enterprise/Corporate on-
tologies can be used to share/manipulate the information already present in a
company; in fact, they provide for a “conceptual view” expressing at the inten-
sional level complex relationships among the entities of enterprise domains. In this
way, they can offer a convenient access to the enterprise knowledge, simplifying the
retrieval of information and the discovery of new knowledge through powerful rea-
soning mechanisms. However, enterprise ontologies are not widely used yet, mainly
because of two major obstacles: (i) the specification of a real-world enterprise on-
tology is an hard task; and, (i7) usually, enterprises already store their relevant
information in large databases. As far as point (¢) is concerned, it can be easily
seen that developing an enterprise ontology by scratch would be a time-consuming
and expensive task, requiring the cooperation of knowledge engineers with domain

* Supported by M.I.U.R. within projects “Potenziamento e Applicazioni della Program-
mazione Logica Disgiuntiva” and “Sistemi basati sulla logica per la rappresentazione
di conoscenza: estensioni e tecniche di ottimizzazione.”



experts. Moreover, (i7) the obtained specification must incorporate the knowledge
(mainly regarding concept instances) already present in the enterprise information
systems. This knowledge is often stored in large (relational) database systems, and
loading it again in the ontologies may be unpractical or even unfeasible. This hap-
pens because of the large amount of data to deal with, but also since databases
have to keep their autonomy (considering that many applications work on them).
In addition, when data residing in several autonomous sources are combined in a
unified view, inconsistency problems may arise [2,12] that cannot be easily fixed.

In this paper we describe a solution that combines the advantages of an ontol-
ogy representation language (i.e., high expressive power and clean representation
of data) having powerful rule-based reasoning features, with the capability to ef-
ficiently exploit large (and, often already existent) enterprise databases. Basically,
if we are given some existing databases, we can analyze their schema and try to
recognize both entities and relationships they store. This information is exploited
for “upgrading” the database to an ontology. Here, ontology instances are “virtu-
ally” specified (i.e. they are linked, not imported) by means of special logic rules
which define a mapping from the data in the database to the ontology. The re-
sult is a unified ontological specification of the enterprise information that can be
employed, for browsing, editing and advanced reasoning. Moreover, possible incon-
sistent information obtained by merging several databases is dealt with by adopting
data-integration techniques.

We developed these solutions in OntoDLV [3-5], a system that implements a
powerful logic-based ontology representation language, called OntoDLP, which is
an extension of (disjunctive) Answer Set Programming [6-8] (ASP) with all the
main ontology constructs including classes, inheritance, relations, and axioms.! On-
toDLP combines in a natural way the modeling power of ontologies with a power-
ful “rule-based” language allowing for disjunction in rule heads and nonmonotonic
negation in rule bodies. In general, disjunctive ASP, and thus OntoDLP, can rep-
resent every problem in the complexity class X% and II5 (under brave and cautious
reasoning, respectively) [9].

Summarizing, the main contributions of this paper are:

— an extension of OntoDLP by suitable constructs, called wvirtual class and virtual
relation, which allows one to specify the extensions of ontology concepts/relations
by using data from existing relational databases;

— the design of a rewriting technique for implementing Consistent Query Answer-
ing (CQA) [2,10-13] in OntoDLV. CQA allows for obtaining as much consistent
information as possible from queries, in case of global inconsistent information.

Moreover, we efficiently implemented the proposed extensions in the OntoDLV
system by allowing for the evaluation of queries in mass memory. In this way,
OntoDLV can seamlessly provide to the users both an integrated ontological view
of the enterprise knowledge and efficient query processing on existing data sources.

! The term “Answer Set Programming” was introduced by Vladimir Lifschitz in his
invited talk at ICLP’99 to denote the declarative programming paradigm originally
described in [6]. Since ASP is the most prominent branch of logic programming in
which rule heads may be disjunctive, the term Disjunctive Logic Programming (DLP)
refers explicitly to ASP. OntoDLP takes its name from ontologies plus DLP.



2 The OntoDLP language

In this section we briefly overview OntoDLP, an ontology representation and rea-
soning language which provides the most important ontological constructs and
combines them with the reasoning capabilities of ASP. For space limitations we
cannot include a detailed description of the language. The reader is referred to [4,
5] for details. Moreover, hereafter we assume the reader to be familiar with ASP
syntax and semantics, for further details refer to [6, 14].

More in detail, the OntoDLP language includes, the most common ontology
constructs, such as: classes, relations, (multiple) inheritance; and the concept
of modular programming by means of reasoning modules. A class can be thought
of as a collection of individuals. An individual, or object, is any identifiable entity
in the universe of discourse. Objects, also called class instances, are unambiguously
identified by their object-identifier (oid) and belong to a class. A class is defined by
a name (which is unique) and an ordered list of typed attributes, identifying the
properties of its instances. Classes can be organized in a specialization hierarchy
(or data-type taxonomy) using the built-in is-a relation (multiple inheritance). The
following are examples of both class and instance declarations:

class person(name: string, father : person, mother : person, birthplace : place).
class employee isa {person}(salary:integer, boss: person).
john : person(name: “John”, father: jack, mother: ann, birthplace : rome).

Relationships among objects are represented by means of relations, which, like
classes, are defined by a (unique) name and an ordered list of attributes. As in
ASP, logic programs are sets of logic rules and constraints. However, OntoDLP
extends the definition of logic atom by introducing class and relation predicates,
and complex terms (allowing for a direct access to object properties). Logic rules
can be exploited for defining classes and relations when their instances can be “de-
rived” (or inferred) from the information already stated in an ontology. This kind
of intensional constructs are called Collection classes and Intensional Relations.
Basically, collection classes collect instances defined by another class and perform
a re-classification based on some information which is already present in the ontol-
ogy; whereas, intentional relations are similar to (but more powerful of) database
views. Importantly, the programs (set of rules) defining collection classes (and in-
tensional relations) must be normal and stratified (see e.g., [15]). For instance, the
class richEmployee can be defined as follows:

collection classrichEmployee(name: string){
E : richEmployee(name: N) :— E : employee(name: N, salary:S), S > 1000000.}

Moreover, OntoDLP allows for special logic expressions called azioms modeling sen-
tences that are always true. Axioms provide a powerful mean for defining/checking
consistency of the specification (i.e., discard ontologies which are, somehow, con-
tradictory or not compliant with the domain’s intended perception). For example,
we may enforce that a person cannot be father of himself by writing: — X :
person(father: X).

In addition to the ontology specification, OntoDLP provides powerful reasoning
and querying capabilities by means of the language components reasoning modules
and queries. In practice, a reasoning module is a disjunctive ASP program conceived
to reason about the data described in an ontology. Reasoning modules are identified
by a name and are defined by a set of (possibly disjunctive) logic rules and integrity



constraints; clearly, the rules of a module can access the information present in the
ontology.

An important feature of the language is the possibility of asking conjunctive
queries, that, in general, can involve both ontology entities and reasoning modules
predicates. As an example, we ask for persons whose father is born in Rome as
follows: X : person(father: person(birthplace : place(name: “Rome”)))?

3 Virtual Classes and Virtual Relations

In this section we show how an existing database can be “upgraded” to an OntoDLP
ontology. In particular, the new features of the language, called virtual classes and
virtual relations, are described by exploiting the following example.

Suppose that a Banking Enterprise asks for building an ontology of its domain
of interest. This request has the goal of obtaining a uniform view of the knowledge
stored in the enterprise information system that is shared among all the enterprise
branches.

[ Table [Attributes
Branch branch-name, branch-city, assets
Customer customer-name, social-security, customer-street, customer-city
Depositor customer-social-sec_, account-number, access-date

Saving-account |[account-number, balance, interest-rate
Checking-account|account-number, balance,overdraft-amount

Toan loan-number , amount, branch-name
Borrower customer-social-sec, loan-number
Payment loan-number , payment-number, payment-date, payment-amount

Table 1. The Banking Enterprise Database.

The schema of the existing database of the enterprise is reported in Table 1.
The first step that must be done is to reconstruct the semantics of the data stored
in this database. It is worth noting that, in general, a database schema is the
product of a previously-done modeling step on the domain of interest. Usually,
the result of this conceptual-design phase is a semantic data model that describes
the structure of the entities stored in the database. Likely, the database engineers
exploited the Entity-Relationship Model (ER-model) [17], that consists of a set
of basic objects (called entities), and of relationships among these objects. The
ER-model underlying a database can be reconstructed by reverse-engineering? or
can be directly obtained from the documentation of the original project.

Suppose now that, we obtained the ER-model corresponding to the database
of Table 1. In particular, the corresponding ER diagram is shown in Figure 1.
From this diagram it is easy to recognize that the enterprise is organized into
branches, which are located into a given place and also have an asset and a unique
name. A bank customer is identified by its social-security number and, in addi-
tion, the bank stores information about customer’s name, street and living place.
Moreover, customers may have accounts and can take out loans. The bank offers
two types of accounts: saving-accounts with an interest-rate, and checking-accounts
with a overdraft-amount. To each account is assigned a unique account-number,
and maintains last access date. Moreover, accounts can be held by more than one

2 Note that, the reverse-engineering task is not trivial, and even automatic methods may
fail to reconstruct the original semantics [18].
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Fig. 1. The Banking Enterprise ER diagram

customer, and obviously one customer can have various accounts (depositors). Note
that, in the case of accounts, the ER-model exploits specialization/generalization
construct. A loan is identified by a unique loan-number and, as well as accounts,
can be held by several customers (borrowers). In addition, the bank keeps track
of the loan amount and payments and also of the branch at the loan originates.
For each payment the bank records the date and the amount; for a specific loan a
payment-number univocally identifies a particular payment.

All this information represents a good starting point for defining an ontology
that describes the banking enterprise domain.? As a matter of fact, we can easily
exploit it both for identifying ontology concepts and for detecting the database
tables which store data about ontology instances. In practice, we can “upgrade”
the banking database to a banking ontology by creating an OntoDLP (base) class,
with name ¢, for each concept ¢ in the domain; and by exploiting logic rules that
specify a mapping between class ¢ and its instances “stored” in the database. A
class ¢ defined by means of mapping rules is called wvirtual, because its instances
come from an external source; but, as far as reasoning and querying are concerned
they are like any other class directly specified in OntoDLP. More in detail, a virtual
class is defined by using the keywords virtual class followed by the class name,
and by the specification of class attributes; then, instances are defined by means
of rules containing special atoms that allows for accessing the source database.

First of all, external data sources are specified directly in OntoDLP, as instances
of the built-in class dbSource as follows:

db1 : dbSource(connectionURI : “hitp : //db.banking.com” , user: “myUser”,
password : “myPsw”).

Here, the object identifier db1 is used to identify the enterprise database. Note that
such a mechanism allows to build an ontology starting from one or more databases,
just specifying more dbSources; moreover, this source identification strategy is suf-
ficiently general to be (in the future) extended also to access other kind of sources

3 Note also that, our goal is not to provide a tool for reasoning on ER schemata; instead,
we allow the ontology engineer to design and “populate” an ontology that exploits data
about the instances that is stored in relational databases.



beside databases. Now, given the source identifier for the enterprise database, we
model the branch entity as follows:
virtual classbranch(name: string, city: string, assets : integer){
f(BN) : branch(name: BN, city: BC, assets: A) —
branch@dbl(branch-name: BN, branch-city : BC, assets: A).}

The rule acts as mapping between the data contained in table branch and the
instances of class branch by exploiting a new type of atom, called sourced atom. A
sourced atoms consist of a name (branch), that identifies a table "at” (@) a specific
database source (db1), and a list of attributes (that match the table schema).
Attributes can be filled in by constants or variables.

Note that, whereas databases store values, ontologies manage instances (which
are not values) that are uniquely identified by oids.* We provided a specific so-
lution for facing with this problem, in which values appearing in the databases
are kept, someway, distinct from object identifiers appearing in the ontology. In
particular, functional object identifiers, suitably built from database values, are ex-
ploited for identifying ontology instaces. In our example, the head of the mapping
rule contains the functional term f(BN), that builds, for each instance of branch,
a functional object identifier composed of the functor f containing the value of the
name attribute stored in the table branch. In practice, if the branch table stores a
tuple (”Spagna”,”Rome”, 1000000), then the associated instance in the ontology
will be: f(”Spagna”) : branch(name:” Spagna”, city :” Rome”, assets: 1000000). In
this way, the functional object identifier f(”Spagna”) is built from the data value
”Spagna”, keeping the data alphabet distinct from the one of object identifiers.

Note that name is a key for table branch. Because object identifiers in On-
toDLP uniquely identify instances, it is preferable to exploit only keys for defining
functional object identifiers. This simple policy ensures that we will obtain an ad-
missible ontology whenever the source database is unique and consistent; whereas,
if more than one source database is exploited for defining ontology entities, some
admissibility constraint for the ontology schema (like e.g. referential integrity con-
straints, unicity of object identifiers, etc. see [3])) might be violated. To face with
this problem our system supports data integration features which are described in
Section 4. Clearly, in order to ensure the maximum flexibility, the responsibility of
writing a “right” ontology mapping is left to the ontology engineer.

We say that a virtual class declared by means of sourced atoms is in logical
notation. We provided also an alternative notation for accessing database tables,
called SQL notation. In particular, the virtual class branch can be equivalently
defined as follows:

virtual classbranch(name: string, city: string, assets : integer){

f(BN) : branch(name: BN, city: BC, assets: A) —
[dbl,” SELECT branch-name AS BN, branch-city AS BC, assets AS A
FROM branch”]}

Here, a special atom which contains an SQL query is used in the place of a
sourced one. Formally, a SQL atom consists of a pair [db object identifier, sql
query] enclosed in square brackets. The db object identifier picks out the database
on which the sql query will be performed.

Consider now the customer entity. Also here, we define a virtual class as follows:
* This is the well-known impedance mismatch problem [19, 20].



virtual class customer(ssn: string, name: string, street : string, city : string){
c¢(SSN) : customer(ssn:SSN,name: N, street: S, city: C) :—
customer@dbl (social-security : SSN, customer-name: N, customer-street : S,
customer-city: C).}

The functional term ¢(SSN) is used here in order to assign to each instance a
suitable functional object identifier built on the social-security attribute value.
Note that, a fresh functor is used for each virtual class. In this way, functional
object identifiers belonging to different classes are kept distinct. In our example,
the customer and the branch class instances are made disjoint by using functor f
and c, respectively.

Following the same methodology, we define a virtual class for the loan entity:

virtual classloan(number:integer, loaner: branch, amount : integer){
I(N) : loan(number: N, loaner: f(L), amount: A) :—
loan@dbl(loan-number: N, branch-name: L, amount: A).}

Note that, the loan class has an attribute (loaner) of type branch. In this case,
functional terms are carefully employed in order to maintain referential integrity.
As shown above, the mapping uses the functional term f(L) to build values for
the loaner attribute. Basically, since the branch class use the functor f to build its
object identifiers, then we also use the same functor where an object identifier of
branch is expected.

In the following, we exploit the same idea to model the payment entity:

virtual class payment(ref-loan:loan, number : integer, payDate : date,
amount : integer){
p(L(L), N) : payment(ref-loan: (L), number: N, payDate: D, amount: A) :—
paymentQdbl (loan-number : L, payment-number : N, payment-date: D,
payment-amount: A).}

Also in this case we deal with referential integrity constraints by using a proper
functional term I(L) where a loan object identifier is expected (ref-loan attribute);
moreover, since payments are identified by a pair (payment-number, relative loan)
each instance of payment will be identified by a functional object identifier with
two arguments: one of these is a functional object identifier of type loan; and, the
other is the loan number.

As far as accounts are concerned, we know from the ER-model that they are
specialized in two types: saving-accounts and checking-accounts. This situation can
be easily dealt with by exploiting inheritance (see Section 2). Thus, we first define
a virtual class named account as follows:

virtual class account(number :integer, balance : integer).

and, then, we provide two wirtual classes, savingAccount and checkingAccount,
namely, which are declared to be both subclasses of account:

virtual class savingAccount isa {account}(interestRate :integer){
acc(N) : savingAccount(number: N, balance: B, interestRate: T) :—
saving-account @Qdbl(account-number: N, balance : L, interest-rate: I).}



virtual class checkingAccount isa {account}(overdraft:integer){
acc(N) : checkingAccount(number: N, balance: B, overdraft:I) :—
checking-account Qdbl(account-number: N, balance : L, overdraft-amount: T).}

In order to conclude our “upgrading” process, we have to model the relation-
ships holding among the concepts in the banking domain. To deal with this prob-
lem, OntoDLP allows for defining also virtual relations. For instance, the ER di-
agram of Figure 1 shows that customers and loans are in relationship through
borrower and depositor. Hence, we define two virtual relations as follows:

virtual relation borrower(cust : customer, loan : loan){
borrower(cust: c(C), loan: (L)) —
borrowerQ@dbl (customer-social-sec: C, loan-number: L).}
virtual relation depositor(cust: customer, account : account, , lastAccess: date){
depositor(cust: ¢(C), account : acc(A), lastAccess: D) :—
depositor@dbl(customer-social-sec: C, account-number: A, access-date: d).}

It is worth noting that a wvirtual relation differs from a wvirtual class mainly
because tuples are not equipped with object identifiers.

4 Data Integration Features

In previous sections we showed how a existing database can be upgraded to an
OntoDLP ontology. Basically, the instances of ontology entities are virtually popu-
lated by means of special logic rules, which act as a mapping from the information
stored in database tables to ontology instances. In general, the ontology engineer
can obtain the data from several source databases, which are combined in a unified
ontological view. This is a typical data integration scenario [2] where either some
admissibility conditions on the ontology schema (e.g., referential integrity con-
straints, unicity of object identifiers, etc.), or some user-defined axioms might be
violated by the obtained ontology.® In order to face with this problem, a possibility
is to fix manually either the information in the sources or the ontology specifica-
tion; but, if the ontology engineer can/does not want to modify the sources, then
it would be very useful to single out as much consistent information as possible for
answering queries. In our framework, we support both possibilities by offering the
following data-integration features:

— Consistency checking: verify whether the obtained ontology is consistent or not,
and, in the latter case, precisely detect tuples that violate integrity constraints
or user defined axioms;

— Consistent Query Answering (CQA) [2,10-13]: compute answer to queries that
are true in every instance of the ontology that satisfies the constraints and
differs minimally from the original one.

In the field of data-integration several notions of CQA have been proposed (see [12]
for a survey), depending on whether the information in the database is assumed to
be correct and complete. Basically, the incompleteness assumption coincides with

5 It is easy to see that, our approach can be classified from a data integration point of
view as GAV (Global As View) [2] integration system.



the open world assumption, where facts missing from the database are not assumed
to be false. Conversely, we assume that sources are complete. This choice, common
in data warehousing, is suitable in a framework like OntoDLP that is based on the
closed world assumption; and, as argued in [13], strengthen the notion of minimal
distance from the original information.® There are two important consequences
of this choice: integrity restoration can be obtained by only deleting tuples (note
that the empty model is always a repair [13]); and, computing CQA for conjunc-
tive queries remains decidable even when arbitrary sets of denial constraints and
inclusion dependencies are employed [13].

More formally, given an OntoDLP ontology schema 3 and a set A of axioms or
integrity constraints, let @ and O" be two ontology instances”, we say that O" is a
repair [13] of O w.r.t. A, if O satisfies all the axioms in A and the instances in O"
are a maximal subset of the instances in O. Basically, given a conjunctive query @,
consistent answers are those query results that are not affected by axioms violations
and are true in any possible repair [13]. Thus, given and ontology instance O and a
set of axioms A, a conjunctive query @) is consistently true in O w.r.t. A if Q is true
in every repair of O w.r.t. A. Moreover, if ) is non-ground, the consistent answers
to @ are all the tuples ¢ such that the ground query Q[¢] obtained by replacing the
variables of () by constants in ¢ is consistently true in O w.r.t. A.

Note that, as shown in [13] the problem of computing consistent answers to
queries (CQA) in the case of denial constraints and inclusion dependencies (such
kind of constraints are sufficient to model every admissibility condition on an On-
toDLP schemal[3,4]) belongs to the ITY complexity class; thus, they can be imple-
mented by using disjunctive ASP.

In the next Section, we describe how the new features were implemented and
in particular we show how to build an ASP program that implements CQA for the
above mentioned kind of axioms in the OntoDLV system.

5 Implementation

In this section, we first briefly describe the OntoDLV system [3]; and then, we
detail the implementation of the new features, namely: virtual classes/relations
and consistent query answering.

OntoDLV. OntoDLV is a complete framework that allows one to develop
ontology-based applications. Thanks to a user-friendly visual environment, ontol-
ogy engineers can create, modify, navigate, query ontologies, as well as perform
advanced reasoning on them. An advanced persistency manager allows one to store
ontologies transparently both in text files and internal relational databases; while
powerful type-cheking routines are able to analyze ontology specifications and sin-
gle out consistency problems. All the system features are made available to software

5 Tt is worth noting that, in relevant cases like denial constraints, query results coincide
for both correct and complete information assumptions.

" Here ontology instance refers to the unique set of ground instances modeled by an
ontology specification [3]. Note that, in our settings OntoDLP axioms can model both
denial constraints (like functional dependencies) and inclusion dependencies (in the
latter case, negation as failure is exploited).



developers through an Application Programming Interface (API) that acts as a fa-
cade for supporting the development of applications based on OntoDLP [21]. The
core of OntoDLV is a rewriting procedure (see [4]) that translates ontologies, ax-
ioms, reasoning modules and queries to an equivalent ASP program which, in the
general case, runs on state-of-the art ASP system DLV [14]. Importantly, if the
rewritten program is stratified and non disjunctive [6-8] (and the input ontology
resides in relational databases) the evaluation is carried out directly in mass mem-
ory by exploiting a specialized version of the same system, called DLVPP [22].
Note that, since entity specifications are stratified and non-disjunctive, queries on
ontologies can always be evaluated in mass-memory (this is to say: “by exploit-
ing a DBMS”). This makes the evaluation process very efficient , and allows the
knowledge engineer to formulate queries in a language more expressive than SQL.
Clearly, more complex reasoning tasks (whose complexity is NP/co-NP, and up to
XP Ik are dealt with by exploiting the standard DLV system instead.

Virtual Classes and Virtual Relations. The implementation of virtual classes
and wirtual relation has been carried out by properly improving the rewriting pro-
cedure and by extending the persistency manager in order to provide both storage
and manipulation facilities for virtual entities. More in detail, we implemented two
different usage modalities: off-line and on-line.

In the first, the relevant information is extracted from the sources by exploiting
SQL queries and, is stored into the internal data structures (basically, instances
are “imported” and stored by exploiting the persistency manager). In the latter,
queries are performed directly at the sources.

The off-line mode is preferable when one wants to migrate the database into
an ontology, or when parts of a proprietary database are one-time granted to third
parties. In fact, once the import is done, the source database can be disconnected,
since instances are stored into the OntoDLV persistency manager. Obviously, de-
pending on database size, the off-line modality could be time-consuming or even
unpractical. In addition, one may want to keep the information in the original
database (which is accessed by legacy applications), in order to deal with “fresh”
information. In those cases, the on-line mode is preferable.

In both on-line and off-line modes, queries on the ontology are performed di-
rectly on mass-memory by exploiting DLVP# [22]. To this end, we extended the
rewriter procedure in such a way that DLVP® mapping statements are properly
generated. Indeed, DLVP® takes as input both a logic program and a mapping
specification linking database tables to logic predicates.

Importantly, in order to avoid the materialization of the entire ontology for
evaluating an input query, an “unfolding” technique [2, 12] has also been integrated
into the Rewriter module. Basically, when we have a query ¢ on the ontology,
every predicate of ¢ is substituted with the corresponding query over the sources,
provided that suitable syntactic conditions are satisfied.

As an example, if we ask for the instances of virtual class branch of Section 3
the following mapping directive for DLVP® is generated by the rewriter procedure:

USEDB “hitp : //db.banking.com” :myUser:myPsw.
USE branch (branch-name, branch-city, assets)
MAPTO branchPredicate (varchar,varchar,integer).



The above directive specifies the database (USEDB) on which the SQL query
will be performed (may be the source database). Moreover, the listed attributes
of the table branch (USE) are mapped (MAPTO) on the logic predicate branch-
Predicate. In this case, branchPredicate is the predicate name used internally to
rewrite in standard ASP the class branch.

Implementation of CQA. In order to implement consistent query answering
we developed a new procedure in the OntoDLV system. Given an ontology O, this
procedure takes as input a conjunctive query Q, and a set of integrity constraints
A and builds both an ASP program Il.,, and a query (qqq, such that: () is con-
sistently true in O w.r.t. A iff Qqq is true in every answer set of Il.44, in symbols:
.40 Ec Qega (in other words Q.4 is cautious consequence of Il.qq).

Note that, this can be done in our settings since CQA belongs to the IT
complexity class [13]. However, we decided to support in the implementation only
a family of constraints in such a way that complexity of CQA stays in co-NP. In
particular, we consider constraints of the form:

(3) :— ar(t1), -, an(tn),o(t1, ... tn). (i) =— a1(t), not as(t).

where t; is a tuple and o(t1,...,t,) is a conjunction of comparison literals of the
form X0Y, with 0 € {<,>,=,#} and X and Y are variables occurring in t1, . .., .
In the database field constraints of type (i) are called denial constraints, whereas
constraints of type (ii) allow for modeling inclusion dependencies (see [23]).8 An
inclusion dependency is often denoted by Q[Y] C P[X] (where Q and P are rela-
tions) and it requires that all values of attribute Y in @ are also values of attribute
X in some instance of P. For example, if P and () are unary this can be ensured
in OntoDLP by writing :— Q(X), not P(X). In particular, we allow only acyclic?
inclusion dependencies, since this assumption is sufficient to guarantee that CQA
is in co-NP, see [13].

It is worth noting that, the algorithm that builds 114, is evaluated in OntoDLV
together with the ASP program produced by the OntoDLV rewriter. Since the
rewriting process suitably replaces OntoDLP atoms by standard ASP atoms [4],
without loss of generality we adopt in the following the standard ASP notation for
atoms. Given a query @), and a set of constraints A, Il.4, is built as follows:

1- for each constraints of the form (7) in A, insert the following rule into I1.4.:
El(tl) Vo \/an(tn) = al(tl), S ,an(tn), O'(tl, S ,tn).

2- for each atom a(t) occurring in some axiom of A, insert into Il.4, a rule:
a*(t) :— a(t), not a(t).

3- for all constraints of the form (i7) in A, insert the following rules in IT.q,:
ai(t) :— ai(t1), not aj(t).

4- for each a(t) occurring in some axiom of A insert into I1.q, the following rules:
a’(t) :— a*(t), not a(t), not a(t).

8 Axioms of type (i) can model inclusion dependencies under the assumption of complete
sources, where facts that are not in the ontology are considered to be false.

9 Informally, a set of inclusion dependencies is acyclic if no attribute of a relation R
transitively depends (w.r.t. inclusion dependencies) on an attribute of the same R.



Finally, Q¢qq is built from @ by replacing atoms a(t) by a”(t), whenever a(t) occurs
in both @ and some constraint in A. The disjunctive rules (step 1) guess atoms to
be cancelled (step 2) for satisfying denial constraints, and rules generated by step
3, remove atoms violating also referential integrity constraints; eventually, step 4
builds repaired relations. Note that the minimality of answer sets guarantees that
deletions are minimized.

As an example consider two relations m(code), and e(code,name). Suppose that
the axioms are :— e(X,Y),e(X,2),Y <> Z., — e(X,Y),e(Z,Y),X <> Z. and
:— m(X), not code(X), where code(X) :— e(X,Y). requiring that both code and
name are keys for e and m[code] C e[code]. Suppose now that, the following facts are
true e(1,a),e(2,b),e(2,a),m(1),m(2); it can be easily verified that all the axioms
are violated and m(2) is consistently true. The program obtained by rewriting the
constraints is:

e(X,Y)Ve(X,Z) :—e(X,Y),e(X,2),Y <> Z.

e(X,Y)Ve(Z,Y) :—e(X,Y),e(Z2,Y), X <> Z.

e"(X,Y) :— e(X,Y), not e(X,Y). m*(X) :— m(X), not m(X).

code™(X) :— code(X), not code(X). m(M) :— m* (M), not code*(M).

m”™(X) :— m*(X), not m(X), not m(X).

e"(X,Y) :— e"(X,Y),not e(X,Y), not e(X,Y).
and the two answer sets of this program both contain m”(2), thus, m(2)? is derived
to be consistently true.

6 Related Work

As a matter of fact, the problem of linking ontology to databases is not new [2].
Most of the available ontology systems and tools are able to deal with several
sources of information by exploiting different ontology languages (see [24,25]).
Among them, the most closely related systems, which offer the possibility to import
relational databases into ontologies, are: the Ontobroker system [26,27], and the
Neon tookit!?. Both of them support a fragment of Flogic [28], and allows one to
link relational database to Flogic ontologies. Comparing our approach with the
above mentioned ones, we notice that, OntoDLV supports a rule-based language
(ASP programs under the answer sets semantics) that, is strictly more expressive in
the propositional case, and retains decidability in the general case (programs with
variables). This allows to directly exploit the obtained ontology specification for
solving complex reasoning tasks; moreover, the advanced data-integration features
supported by OntoDLV, like consistent query answering, are missing in the above
mentioned systems, which, instead, support also the integration of sources different
from databases.

Another related system is MASTRO [20], that allows for linking a set of pre-
existing data sources to ontologies specified in the description logic DL-Lite 4. In
this approach, a very similar solution for creating object identifiers from database
values is used and, query answering on the obtained ontology is very efficient /scalable;
it can be performed in LogSpace in the size of the original database [29,20]. In-
deed, satisfiability checking and query answering in DL-Lite 4 can be carried out

10 http:/ /www.neon-toolkit.org/



by exploiting unfolding [20], where queries on the ontology are replaced by equiv-
alent SQL specifications on the databases containing the A-Box. This makes the
solution proposed in [20] very effective when dealing with large databases, and
complexity-wise cheaper than our approach. However, the language of OntoDLV
is rule-based and, thus, allows for specifying more complex queries. Indeed, On-
toDLP combines (in a decidable framework) ontologies with recursive rules and
non-monotonic negation. Importantly, when the specified logic program is stratified
and non-disjunctive, queries are unfolded, and computation is performed in mass-
memory by exploiting DLVP® [22]. Note that, since the language of DLVPE [22]
is strictly more expressive than SQL (thanks to recursion and stratified negation),
OntoDLV allows for the execution of more sophisticated queries w.r.t. [20].

Finally, since OntoDLP can be seen as an extension of disjunctive datalog with
object-oriented constructs, our work is related also to the techniques proposed in
the field of object-oriented databases for mapping relational data to object-views
(see e.g. [30,31]).

7 Conclusion and Future Work

In this paper we proposed a solution that allows one to “upgrade” one or more
existing enterprise relational databases to an ontology. The result is the natural
combination of the advantages of an ontology language (clean high-level view of
the information and powerful reasoning capabilities) with the efficient exploitation
of large already-existent databases.

This was obtained by extending the OntoDLV language and system. In par-
ticular, we implemented virtual classes and virtual relations, two new modeling
constructs that allow the knowledge engineer to define the instances of an ontology
by means of special logic rules, which act as a mapping from the information stored
in database tables to concept instances. Moreover, in order to deal with consistency
problems that may arise when data residing in different sources are combined in
a unified ontological view [2], we developed in OntoDLV consistent query answer-
ing [2,10-13], so that the system is able to retrieve as much consistent information
as possible from the ontology.

Ongoing work concerns the analysis of performances of our system on real-life
and large scale databases.
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