Towards Large Scale Reasoning on the Semantic
Web

Balazs Kadar, Gergely Lukacsy and Péter Szeredi

Budapest University of Technology and Economics
Department of Computer Science and Information Theory
1117 Budapest, Magyar tuddsok koratja 2., Hungary
balazs@kadar.biz,{lukacsy,szeredi}@cs.bme.hu

Abstract. Traditional algorithms for description logic (DL) instance re-
trieval are inefficient for large amounts of underlying data. As description
logic is becoming popular in areas such as the Semantic Web, it is very
important to have systems that can reason efficiently over large data sets.
In this paper we present the DLog description logic reasoner specifically
designed for such scenarios.

The DLog approach transforms description logic axioms using the SHZQ
DL language into a Prolog program. This transformation is done without
any knowledge of the particular individuals: they are accessed dynami-
cally during the normal Prolog execution of the generated program. This
allows us to store the individuals in a database instead of memory, which
results in better scalability and helps using description logic ontologies
directly on top of existing information sources.

In this paper we focus on the description of the DLog application itself.
We present the architecture of DLog and describe its interfaces. These
make it possible to use ABoxes stored in databases and to communi-
cate with the Protégé ontology editor, as a server application. We also
evaluate the performance of the DLog database extension.

Keywords: large data sets, description logic, reasoning, logic program-
ming, databases

1 Introduction

Description Logics (DLs) allow us to represent knowledge bases consisting of
terminological axioms (the T'Boz) and assertional knowledge (the ABoz).

Description Logics are becoming widespread as more and more systems start
using semantics for various reasons. As an example, in the Semantic Web idea,
DLs are intended to provide the mathematical background needed for more intel-
ligent query answering. Here the knowledge is captured in the form of expressive
ontologies, described in the Web Ontology Language (OWL) [1]. This language
is mostly based on the SHZQ description logic, and it is intended to be the
standard knowledge representation format of the Web.

However, we have tremendous amounts of information on the Web which
calls for reasoners that are able to efficiently handle such abundance of data.

Moreover, as these data cannot be stored directly in memory, we need solutions
for querying description logic concepts in an environment where the ABox is
stored in a database.

We found that most existing description logic reasoners are not suitable for
this task, as these are not capable of handling ABoxes stored externally. This
is not a simple technical problem: most existing algorithms for querying DL
concepts need to examine the whole ABox to answer a query. This results in
scalability problems and undermines the point of using databases. Because of
this, we started to investigate techniques which allow the separation of the in-
ference algorithm from the data storage.

We have developed a solution, where the inference algorithm is divided into
two phases. First we create a query-plan in Prolog from the actual DL knowl-
edge base, without accessing the underlying data set. Subsequently, this query-
plan can be run on real data, to obtain the required results. The implementa-
tion of these ideas is incorporated in the DLog reasoning system, available at
http://dlog-reasoner.sourceforge.net.

In this paper we focus on the architecture of the DLog system, as well as
on its external interfaces. We discuss the interface used for accessing databases,
which allows description logic reasoning on top of existing information sources.
We also describe the Protégeé [2] interface that makes it possible to use DLog as
the back-end reasoner of this popular ontology editor. Details on the theoretical
side of DLog can be found in [3] and in [4].

This paper is structured as follows. Section 2 summarises related work. In
Section 3 we give a general introduction to the DLog approach and present the
architecture and implementation details of the system. The database and Protégé
interfaces are described in Sections 4 and 5, respectively. Section 6 evaluates the
performance of the database extension of DLog w.r.t. the version which stores
the ABox as Prolog facts. Finally, in Section 7, we conclude with the future work
and the summary of our results.

2 Related work

Several techniques have emerged for dealing with ABox-reasoning. Tradi-
tional ABox-reasoning is based on the tableau inference algorithm, which tries
to build a model showing that a given concept is satisfiable. To infer that an
individual ¢ is an instance of a concept C, an indirect assumption ~C(i) is added
to the ABox, and the tableau-algorithm is applied. If this reports inconsistency,
1 is proved to be an instance of C. The main drawback of this approach is that
it cannot be directly used for high volume instance retrieval, because it would
require checking all instances in the ABox, one by one.

To make tableau-based reasoning more efficient on large data sets, several
techniques have been developed in recent years [5]. These are used by the state-
of-the-art DL reasoners, such as RacerPro [6] or Pellet [7].

Extreme cases involve serious restrictions on the knowledge base to ensure
efficient execution with large amounts of instances. For example, [8] suggests a

solution called the instance store, where the ABox is stored externally, and is
accessed in a very efficient way. The drawback is that the ABox may contain
only axioms of form C(a), i.e. we cannot make role assertions.

Paper [9] discusses how a first order theorem prover such as Vampire can
be modified and optimised for reasoning over description logic knowledge bases.
This work, however, mostly focuses on TBox reasoning.

In [10], a resolution-based inference algorithm is described, which is not as
sensitive to the increase of the ABox size as the tableau-based methods. How-
ever, this approach still requires the input of the whole content of the ABox
before attempting to answer any queries. The KAON2 system [11] implements
this method and provides reasoning services over the description logic language
SHZQ by transforming the knowledge base into a disjunctive datalog program.

Although the motivation and goals of KAON2 are similar to ours, unlike
KAON2 (1) we use a pure two-phase reasoning approach (i.e. the ABox is ac-
cessed only during query answering) and (2) we translate into Prolog which has
well-established, efficient and robust implementations.

Article [12] introduces the term Description Logic Programming. This idea
uses a direct transformation of ALC description logic concepts into definite Horn-
clauses, and poses some restrictions on the form of the knowledge base, which
disallow axioms requiring disjunctive reasoning. As an extension, [13] introduces
a fragment of the SHZQ language that can be transformed into Horn-clauses.
This work, however, still poses restrictions on the use of disjunctions.

3 The DLog system

The main idea of the DLog approach is that we transform a SHZQ knowl-
edge base KB into first-order clauses 2(KB) and from these we generate Prolog
code [3]. In contrast with [11], all clauses containing function symbols are elim-
inated during the transformation: the resulting clauses can be resolved further
only with ABox clauses. This forms the basis of a pure two phase reasoning
framework, where every possible ABox-independent reasoning step is performed
before accessing the ABox itself, allowing us to store the content of the ABox in
an external database.

Actually, in the general transformation, we use only certain properties of
2(KB). These properties are satisfied by a subset of first order clauses that is,
in fact, larger than the set of clauses that can be generated from a SHZQ KB.
We call these clauses DL clauses. As a consequence of this, our results can be
used for DL knowledge bases that are more expressive than SHZ Q. This includes
the use of certain role constructors, such as union. Furthermore, some parts of
the knowledge base can be supplied by the user directly in the form of first order
clauses. More details can be found in [3].

As the clauses of a SHZQ knowledge base KB are normal first-order clauses
we can apply the Prolog Technology Theorem Proving (PTTP) technology [14]
directly on these. In [3] we have simplified the PTTP techniques for the special

case of DL clauses and we have proved that these modifications are sound and
complete for DL clauses.

The simplified PTTP techniques used in DLog include deterministic ancestor
resolution and loop elimination. Both are applicable only to unary predicates,
i.e. predicates corresponding to DL concepts.

In the design of the DLog system we focus on modularity. This enables us to
easily implement new features and new interfaces. The top level architecture of
the system is shown in Figure 1. In this figure, as in subsequent figures of the
paper, rectangles with rounded corners represent modules of the DLog system,
while data are shown as plain rectangles. In Figure 1 the DLog reasoner is shown
within a dashed rectangle.

First phase:
L—"| translation

N :
H |
< i
o0 |
< i
= |
< i

= |
@ i
n |
< i
3 v ;
9 |
o0 |
~ |
= |
3 |
o i
G :
RS ‘
- i

| Second phase:

execution

Fig. 1. The top level architecture of the DLog system.

The user (either local or remote) accesses DLog through one of the external
interfaces. These interfaces range from a local console to server interfaces like
DIG used by the Protégé ontology editor. The knowledge base manager is the
central piece of the system. It coordinates the tasks of the other modules, and
performs the administration of multiple concurrent knowledge bases. It forwards
the request arriving from the interfaces to the reasoner modules.

The support modules consist of several tools that are used by most parts of
the system. They include a configuration manager module, a logger, an XML
reader, a run-time system for the second phase, and several portability tools that
allow DLog to run under different Prolog implementations (currently SWI and
SICStus).

The first phase, translation, shown in Figure 2, takes a set of description
logic axioms as input. These axioms are divided into two parts: the TBox or
terminology box stores concept and role inclusion axioms, while the ABox or
assertion box contains the factual data. The ABox may be stored (partly or

completely) in external databases. The ABox is processed first, producing the
ABoz code (which is a Prolog module), and the ABox signature, which is required
for translating the TBox. The generation of ABox code includes optimisations
such as indexing on second argument for roles stored in memory.

Next, the TBox is processed in two steps. First the DL translator module
transforms the description logic formulae to a set of DL clauses [15], which are
passed on to the TBox translator module that generates the executable TBozx
code. This generated code is equivalent, with respect to instance retrieval, to the
input DL knowledge base. The TBox translator module uses various optimisa-
tions [3] to obtain more efficient Prolog programs. The ABox and TBox code can
be generated directly into memory or may be saved to disk for later (standalone)
use.

ABox o :
ABox a{translator]—>‘ ABox code

DL TBox I
TBox translator translator _TBOX code

Fig. 2. The first phase: translation.

The second phase, execution, shown in Figure 3, uses the ABox and TBox
programs generated in the first phase, to answer queries. There are two ways
to execute queries: the generated TBox can be called directly from Prolog as
a low-level interface, or the Query module provides a high-level interface that
provides basic support for composite queries and can aggregate the results. In
normal operation the query module is called by the knowledge base manager,
which forwards the results to the user interface. As the query module does not
depend on the rest of the system, it may be used in standalone operation. The
run-time system (shown as RTS in the figure) includes a hash table implemented
in C used to speed up the reasoning, and optional collection of statistics.

ABox code Queries
o Query
RTS TBox code module Results

Fig. 3. The second phase: execution.

4 Integrating DLog with databases

As the first phase of reasoning (i.e. the generation of a query plan) ounly
depends on the signature of the data set, and because of the top-down inference
of Prolog, DLog can efficiently use databases to store the ABox.

There may be several advantages in using databases to store the ABox.
Firstly, this allows reasoning on data sets that cannot fit into memory. Secondly,
it makes integrating DLog with existing systems easier, as the reasoner can use
the existing databases of other applications. Thirdly, querying some concepts
(namely those corresponding to so-called query predicates) may be performed
using complex database queries, rather than DL reasoning, which is expected to
deliver a marked increase in performance.

A predicate is a query predicate [3], if it is non-recursive, it does not invoke
its negation, and is not invoked from within its negation. Here, a predicate Py is
said to invoke a predicate P,, n > 1, if there are n — 1 intermediate predicates
Py ... P,_1, such that P; is directly invoked by P;_q, i.e. it occurs in a clause
body the head of which is P;_1, fori=1,...,n.

Query predicates require neither loop elimination, nor ancestor resolution
during execution. The name “query predicate” reflects that fact that such predi-
cates can be transformed to complex database queries (provided that all concepts
and roles required are stored in a single database). This can increase the per-
formance as the database engine can optimise the query using statistical and
structural knowledge of the database in question.

We designed the database interface to be as simple as possible. The databases
are accessed via the ODBC driver of SWI-Prolog; as a consequence DLog can
interface with most modern database systems. We wanted a way to specify
database access using existing tools and interfaces — such as Protégé and the
DIG interface it utilises — even if those do not, at the moment, provide a way to
specify database usage. To access a database, several pieces of information are
needed: the name of the database, a user name, a password, a description of which
table to use for given concepts and roles, etc. Because of the aforementioned re-
quirements we decided to use ABox assertions to carry this meta-information.
ABox assertions are description logic constructs that are readily available in DL
systems and interfaces, such as OWL and DIG.

In order to specify the database access for concepts and roles we introduce
new roles (object properties), attributes (datatype properties) and individuals
defined in the namespace http://www.cs.bme.hu/dlogDB.

The ODBC interface prescribes that database connections are to be iden-
tified by a Data Source Name (DSN). In DLog we introduce an individual to
represent, a given database connection. Roles and concepts are also represented
by individuals. An arbitrary name can be used for such an individual.

The meta data provided is used to connect to the database, and, for each
concept and role, an additional clause is generated, which, by executing an ap-
propriate database query, lists appropriate individuals (or pairs of individuals).
This allows concepts and roles to be stored partially in databases and partially
in memory. This may be very useful when developing ontologies.

4.1 Specifying the Database Interface

Database connections are represented by individuals that have the string at-
tribute hasDSN defined. The value of this attribute is the name of the data source
(DSN). As all other names in this section, this name is defined in the namespace
http://www.cs.bme.hu/dlogDB. Additional string attributes, namely hasUserName
and hasPassword, may be used to specify the user name and the password for
the given connection, if required.

The object property hasConnection links an individual representing a role
or a concept with the database connection to be used for accessing it. This
makes it possible to use one data source for one concept, and a different one
for another. The instance on the left hand side is the individual representing
the role or concept, while the instance on the right hand side is the individual
representing the connection.

Two methods are provided to specify how to get the data from the database.
One is to specify a query that is to be directly executed on the database. This
method, named the simple interface, is provided because of its simplicity: it can
be applied to databases without any modification. However it has two drawbacks:

— it makes transforming query predicates to database queries very difficult;
and
— it performs badly for instance check queries.

The latter is a large setback as most of the queries are instance checks, assuming
the the projection optimisation of [3] is used.

Therefore the second, preferred, way is to provide the name of a table or of
a view and the name of the column(s) of this table. This approach, called the
complex interface may require the creation of new views in the database, but
provides much greater flexibility and better performance.

The SQL query in the simple interface is defined using the string attribute
hasQuery. The individual represents the role or concept and the attribute value
is the query string. For individuals representing roles the query must return two
columns, and for those used for concepts it must return one column that contains
the individual name.

If the complex interface is used, the name of the table or view to use is
specified by the string attribute hasTable. The name of the column listing the
individuals of a concept is given using the string attribute hasColumn. For roles,
the attributes hasLHS and hasRHS are used for the left and the right hand side,
respectively.

Because, in Protégé, individuals cannot be specified as instances of a negated
concept, we provide some additional attributes: hasNegQuery, hasNegTable and
hasNegColumn. These are used to specify the database access of negated con-
cepts, in a way similar to their respective positive pairs. By providing an attribute
hasNegQuery for a name representing the concept C' we specify a query listing
the individuals of =C'. Obviously, both hasQuery and hasNegQuery can appear
as attributes of the same individual.

To specify that the individual concept represents the concept C, one simply
has to make concept an instance of C. The DLog system will check each concept
occurring in the ABox if it contains an instance which is in the namespace
http://www.cs.bme.hu/dlogDB. If such an instance is found, it is interpreted
as a “handle” to a database which is to produce (additional) instances for the
given concept.

Similarly, to specify that an individual role represents the role R, we require
that the user includes the triple {role, R, indiv} in the ABox. Here indiv is
an arbitrary individual. Again DLog will look for an instance in the namespace
http://www.cs.bme.hu/dlogDB within the domain (i.e. the left hand side) of
each role, and use it to construct a database access for the given role.

The database interface is currently in the alpha test phase. We believe that
our approach for this task, discussed above, is an intermediate solution. Ulti-
mately the standard interfaces, such as DIG, should be extended to allow storing
(parts of) the ABox in databases. However, we hope that our work contributes
to implementing this ultimate goal.

4.2 Examples of Using the Database Interface

We now present two examples for interfacing with databases, one for the
simple, and one for the complex interface.

The examples contain ABox assertions, which are displayed as RDF triples
in {subject, predicate, object} format. String values are shown between
quotes. The namespace http://www.cs.bme.hu/dlogDB# is represented by the
dlog: prefix.

Figure 4 shows the use of the simplified interface for the ABox of the Iocaste
example. This classical example involves the concept describing a person hav-
ing a patricide child, who, in turn, has a non-patricide child. The ABox axioms,
which are now to be stored in a database, describe the hasChild relation between
pairs of individuals (traditionally containing (Iocaste, Oedipus), (Iocaste,
Polyneikes), (Dedipus, Polyneikes) and (Polyneikes, Thersandros)).The
ABox also specifies which individuals are patricide and which are non-patricide
(traditionally Oedipus is known to belong to the former, while Thersandros to
the latter).

We have chosen the namespace represented by the io: prefix for the names
in this ontology. The database connection is named iodb, and the corresponding
DSN is specified as "iocaste" (line 1). This connection is accessed without
specifying a user name or a password. Accordingly, iodb has no attributes other
than dlog:hasDSN.

Both the role hasChild and the concept Patricide are taken from this
database. The role hasChild is represented by the instance dlog:riohasChild.
We chose this name as a mnemonic for a role from the namespace io, called
hasChild, but any other name could have been used. Line 2 tells the system that
this individual represents the role io:hasChild. Here, the right hand side of
the role is of no interest, so we chose to have the same individual as on the left
hand side. Line 6 tells that the individual dlog:cioPatricide is an instance of

-

&

{dlog:iodb, dlog:hasDSN, "iocaste"}
{dlog:riohasChild, io:hasChild, dlog:riochasChild}
{dlog:riohasChild, dlog:hasConnection, dlog:iodb}
{dlog:riohasChild, dlog:hasQuery,

"SELECT parent, child FROM hasChild"}
{dlog:cioPatricide, rdf:type, io:Patricide}
{dlog:cioPatricide, dlog:hasConnection, dlog:iodb}
{dlog:cioPatricide, dlog:hasQuery,

"SELECT name FROM people WHERE patricide"}
{dlog:cioPatricide, dlog:hasNegQuery,

"SELECT name FROM people WHERE NOT patricide"}

Fig. 4. An example of the simplified database interface.

the concept io:Patricide'. This individual, which thus represents the concept
io:Patricide, has two queries associated with it: one for io:Patricide (line 8)
and one for its negation (line 10).

The simplified interface allows complex queries, such as the one for Patricide
which has a WHERE clause. This way the existing table people can be used without
modification. However, this approach makes it very difficult to transform any
possible query predicates in the TBox to direct database queries, and instance
check queries run with a poor performance.

We now present a second example. The TBox of this example, taken from
[4], is shown below.

JhasFriend.Alcoholic [—Alcoholic
JhasParent. —Alcoholic [—Alcoholic

Line 1 describes that those who have a friend who is alcoholic are non-alcoholic
(as they see a bad example), while line 2 states that those who have a non-
alcoholic parent are non-alcoholic (as they see a good example). In the classic
form the ABox contains role assertions for the hasParent and hasFriend re-
lations only, and no concept assertions about anyone being alcoholic or non-
alcoholic. In spite of this, in the presence of certain role instance patterns, one
can infer some people to be non-alcoholic, using case analysis.

For example, consider the following pattern: Jack is Joe’s parent and also his
friend. Now, if we assume that Jack is alcoholic, then the axiom in line 1 implies
that Joe is not alcoholic. On the other hand, if Jack is not alcoholic, it follows
from line 2 that Joe is not alcoholic, either. Thus these two role assertions imply
that Joe has to be non-alcoholic. Other patterns, where Joe can be inferred to
be non-alcoholic, are the following: Joe is a friend of himself; Joe is a friend of
an ancestor; and Joe’s two ancestors are in the hasFriend relationship.

! Note that the prefix rdf, used in the predicate position of the triple in line 6, refers
to the RDF namespace: http://www.w3.0rg/1999/02/22-rdf -syntax-ns#

In Figure 5 we present a database access specification for the above example,
using the complex interface. Here, the database alcoholic is accessed with the
user name "drunkard" and the password "palinka" (lines 1 3). We assume
that a new view, called "hasParentView", was defined in the database to hide
the complex query for the role hasParent, cf. lines 4—6. The columns of this
view, child and parent (lines 7 8), contain the data for the role hasParent.
From this information DLog can create a query for instance retrieval ("SELECT
child, parent FROM hasParentView"), and three other query patterns for the
cases when at least one of the individuals is known (e.g. "SELECT child FROM
hasParentView WHERE parent = 7"). This approach allows for the generation
of complex database queries for the query predicates.

{dlog:alcdb, dlog:hasDSN, "alcoholic"}

{dlog:alcdb, dlog:hasUserName, "drunkard"}

{dlog:alcdb, dlog:hasPassword, "palinka"}
{dlog:ralchasParent, alc:hasParent, dlog:ralchasParent}
{dlog:ralchasParent, dlog:hasConnection, dlog:alcdb}
{dlog:ralchasParent, dlog:hasTable, "hasParentView"}
{dlog:ralchasParent, dlog:hasLHS, "child"}
{dlog:ralchasParent, dlog:hasRHS, "parent"}
{dlog:ralchasFriend, alc:hasFriend, dlog:ralchasFriend}
{dlog:ralchasFriend, dlog:hasConnection, dlog:alcdb}
{dlog:ralchasFriend, dlog:hasTable, "friends"}
{dlog:ralchasFriend, dlog:hasLHS, "friendl1"}
{dlog:ralchasFriend, dlog:hasRHS, "friend2"}
{dlog:calcAlcoholic, rdf:type, alc:Alcoholic}
{dlog:calcAlcoholic, dlog:hasConnection, dlog:alcdb}
{dlog:calcAlcoholic, dlog:hasTable, "alcoholicView"}
{dlog:calcAlcoholic, dlog:hasColumn, "name'"}
{dlog:calcAlcoholic, dlog:hasNegTable, "nonalcoholicView"}
{dlog:calcAlcoholic, dlog:hasNegColumn, "name"}

Fig.5. An example of the complex database interface.

In Figure 5, lines 10 13 specify the database access for the role hasFriend,

while lines 14-19 allow for accessing individuals belonging to the concept alcoholic

and its negation through appropriate database views.

5 Integrating DLog with Protégé

Protégeé [2] is an open source ontology editor that supports the Web Ontology
Language (OWL) [1], and can connect to reasoners via the HTTP-based DIG
interface [16]. The DLog server implements the DIG interface and can be used to
execute instance retrieval queries issued from the graphical interface of Protégé.

10

The DIG interface specifies communication via HT'TP, and uses XML data
format. For the implementation we used the HTTP server provided with SWI-
Prolog. In implementing the interface we faced difficulties caused by some am-
biguities of the DIG specifications, despite there being an (exact) XML schema
definition. Another difficulty was that Protégé does not strictly follow the def-
inition of the interface. For example it uses a clearKB command that is not
even defined in version 1.1 of DIG. In DIG 1.0, which supported only a single
database, this command was defined, but Protégé uses the new version that sup-
ports multiple concurrent knowledge bases. We strove for an implementation as
generic and complying to the interface definition as possible while, also being
compatible with Protégé.

For parsing XML we use the SGML module of SWI-Prolog, which can be
operated in an XML compatibility mode, allowing namespaces. As this is not
a direct XML parser, it has some difficulties when used in XML mode. For
example even with the strictest settings and treating all warnings as errors, it
accepts input files that are not even well-formed XML. Because of this, and in
hope of better performance, we are planning to switch to Apache Xerces-C+—+.
With Xerces we plan to use SAX parsing, instead of DOM, with the hope of
lower memory usage and faster parsing.

The data are extracted from the XML DOM using Definite Clause Grammars
(DCG).

Figure 6 shows the results of a query issued from Protégé, as answered by
the DLog server.

[@ Metadata (vima9000) | OnLClasses | B Properties | @ Individuals | = Form

o
For Project: @ oat0 B Connected to DLog 0.2 alpha x|
Asserted Hierarchy Computing individusls belonging to class: Guerying reasoner

oyl Thing

Alcoholic

b O notaicoholic feeasaner log
¥ @ Synchronize reasoner

Time to clear knowledgebase = 0.032 seconds
- @ Time for DIG conversion = 0.016 secands
- @ Time to update reasoner = 0.454 seconcs
- @ Time to eynchronize = 0. 532 seconds
W@ Individuals belonging to; notAlcoholic

L dl
e
-

&0
i
>

T
*ic

Tatal time: 0.813 seconds

Fig. 6. Screenshot of query results in Protégé answered by DLog.

11

The integration of Protégé and the database interface is in progress. A serious
difficulty is that if the results of a query contain individuals that are not defined
in Protégé (i.e. individuals present only in databases) Protégé silently drops
these individuals from the list of query results.

6 Evaluation

This section contains a preliminary performance test of the database inter-
face.

We tried the database interface on a large version of the Iocaste problem
which contains 5058 pairs in the hasChild relation, 855 instances that are known
to be patricide, and 314 that are known to be non-patricide.

The execution results are summarised in Table 1. The load time means the
time it takes to load the file which contains the axioms, including the XML
parsing. The translation time is the time it takes to generate the TBox and
ABox code from the axioms, while execution time is the run-time of the query.

Table 1. Comparing the in-memory and database version of a large Iocaste test.

(seconds) load translate execute total
in-memory (.88 0.53 0.02 1.43
database 0.05 0.02 0.36 0.43

When the ABox is stored in memory, the translation takes 1.41 seconds, and
the execution takes only 0.02 seconds. Note that these figures were obtained with
the indexing optimisation turned off. When this optimisation is turned on, the
number of generated ABox clauses is doubled, and translation time increases
accordingly.

The database variant of the example enumerates all the instances of the
queried concept in 0.36 seconds. This, compared to the original 0.02 seconds is
much slower. However, the time we spent at compile-time was altogether 0.07
seconds, resulting in a total execution time of 0.43 seconds. To sum up, in terms
of total query execution time, more than a three-fold decrease was achieved,
using the database interface.

From the above data it may seem that using a database for storing the ABox,
which fits into memory, is beneficial only because of the reduced compile-time.
However, we believe that in the case of large data sets and complex queries
(especially if these contain concepts giving rise to query predicates) execution
time can also be better than that of the in-memory variant.

Detailed evaluation of the DLog System can be found in [3].

12

7 Summary and future work

In this paper we have shown the architecture of the DLog system, discussed a
database interface for representing large ABoxes, and reported on the integration
of DLog with the Protégé ontology editor.

The database interface is especially useful if the data set cannot fit in memory
or if it is shared with other systems. Using databases can greatly reduce compile
time and, with advanced optimisations, it may provide efficiency similar to that
of the in-memory version.

Future improvements include the optimisation of query predicates, by trans-
forming them to database queries, and better integration of Protégé and the
database interface. Our plans also include the implementation of a query mod-
ule to handle composite queries, and the support for additional interface formats,
such as OWL, or the KRSS notation used by e.g. the RacerPro engine.

Acknowledgements

The authors are grateful to the anonymous reviewers for their comments on
the earlier version of the paper, and especially for recommending the Billion
Triples Challenge for evaluation.

References

1. Bechhofer, S.: OWL web ontology language reference. W3C recommendation
(February 2004)

2. Noy, N., Fergerson, R., Musen, M.: The knowledge model
of Protege-2000: Combining interoperability and flexibility.
http://citeseer.nj.nec.com/noy0lknowledge.html (2000)

3. Lukacsy, G., Szeredi, P.: Efficient description logic reasoning in Prolog: the DLog
system. Technical report, Budapest University of Technology and Economics (Jan-
uary 2008) Conditionally accepted for publication in Theory and Practice of Logic
Programming.

4. Lukacsy, G., Szeredi, P., Kadar, B.: Prolog based description logic reasoning.
(December 2008) To appear in ICLP 2008.

5. Haarslev, V., Moéller, R.: Optimization techniques for retrieving resources described
in OWL/RDF documents: First results. In: Ninth International Conference on the
Principles of Knowledge Representation and Reasoning, KR 2004, Whistler, BC,
Canada, June 2-5. (2004) 163-173

6. Haarslev, V., Mdller, R., van der Straeten, R., Wessel, M.: Extended Query Fa-
cilities for Racer and an Application to Software-Engineering Problems. In: Pro-
ceedings of the 2004 International Workshop on Description Logics (DL-2004),
Whistler, BC, Canada, June 6-8. (2004) 148-157

7. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. Web Semant. 5(2) (2007) 51 53

8. Horrocks, I., Li, L., Turi, D., Bechhofer, S.: The Instance Store: DL reasoning
with large numbers of individuals. In: Proceedings of DL2004, British Columbia,
Canada. (2004)

13

10.

11.

12.

13.

14.

15.

16.

Horrocks, I., Voronkov, A.: Reasoning support for expressive ontology languages
using a theorem prover. In: FoIKS. Volume 3861 of Lecture Notes in Computer
Science., Springer (2006) 201-218

Hustadt, U., Motik, B., Sattler, U.: Reasoning for Description Logics around SHIQ
in a resolution framework. Technical report, FZI, Karlsruhe (2004)

Motik, B.: Reasoning in Description Logics using Resolution and Deductive
Databases. PhD thesis, Univesitdt Karlsruhe (TH), Karlsruhe, Germany (January
2006)

Grosof, B.N., Horrocks, I., Volz, R.; Decker, S.: Description logic programs: Com-
bining logic programs with description logic. In: Proc. of the Twelfth International
World Wide Web Conference (WWW 2003), ACM (2003) 48 57

Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expressive
description logics. In: Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence (IJCAI 2005), International Joint Conferences on Artificial
Intelligence (2005) 466-471

Stickel, M.E.: A Prolog technology theorem prover: a new exposition and imple-
mentation in Prolog. Theoretical Computer Science 104(1) (1992) 109 128
Zombori, Zs.: Efficient two-phase data reasoning for description logics. In: Pro-
ceedings of the International Federation for Information Processing Technical Com-
mittee on Artificial Intelligence (TC12), Milan, Italy (September 2008) Accepted
conference paper.

Bechhofer, S.: The DIG description logic interface. http://dig.cs.manchester.ac.uk/
(2006)

14

