
Towards Large Sale Reasoning on the SemantiWebBalázs Kádár, Gergely Lukásy and Péter SzerediBudapest University of Tehnology and EonomisDepartment of Computer Siene and Information Theory1117 Budapest, Magyar tudósok körútja 2., Hungarybalazs�kadar.biz,{lukasy,szeredi}�s.bme.huAbstrat. Traditional algorithms for desription logi (DL) instane re-trieval are ine�ient for large amounts of underlying data. As desriptionlogi is beoming popular in areas suh as the Semanti Web, it is veryimportant to have systems that an reason e�iently over large data sets.In this paper we present the DLog desription logi reasoner spei�allydesigned for suh senarios.The DLog approah transforms desription logi axioms using the SHIQDL language into a Prolog program. This transformation is done withoutany knowledge of the partiular individuals: they are aessed dynami-ally during the normal Prolog exeution of the generated program. Thisallows us to store the individuals in a database instead of memory, whihresults in better salability and helps using desription logi ontologiesdiretly on top of existing information soures.In this paper we fous on the desription of the DLog appliation itself.We present the arhiteture of DLog and desribe its interfaes. Thesemake it possible to use ABoxes stored in databases and to ommuni-ate with the Protégé ontology editor, as a server appliation. We alsoevaluate the performane of the DLog database extension.Keywords: large data sets, desription logi, reasoning, logi program-ming, databases1 IntrodutionDesription Logis (DLs) allow us to represent knowledge bases onsisting ofterminologial axioms (the TBox ) and assertional knowledge (the ABox ).Desription Logis are beoming widespread as more and more systems startusing semantis for various reasons. As an example, in the Semanti Web idea,DLs are intended to provide the mathematial bakground needed for more intel-ligent query answering. Here the knowledge is aptured in the form of expressiveontologies, desribed in the Web Ontology Language (OWL) [1℄. This languageis mostly based on the SHIQ desription logi, and it is intended to be thestandard knowledge representation format of the Web.However, we have tremendous amounts of information on the Web whihalls for reasoners that are able to e�iently handle suh abundane of data.



Moreover, as these data annot be stored diretly in memory, we need solutionsfor querying desription logi onepts in an environment where the ABox isstored in a database.We found that most existing desription logi reasoners are not suitable forthis task, as these are not apable of handling ABoxes stored externally. Thisis not a simple tehnial problem: most existing algorithms for querying DLonepts need to examine the whole ABox to answer a query. This results insalability problems and undermines the point of using databases. Beause ofthis, we started to investigate tehniques whih allow the separation of the in-ferene algorithm from the data storage.We have developed a solution, where the inferene algorithm is divided intotwo phases. First we reate a query-plan in Prolog from the atual DL knowl-edge base, without aessing the underlying data set. Subsequently, this query-plan an be run on real data, to obtain the required results. The implementa-tion of these ideas is inorporated in the DLog reasoning system, available athttp://dlog-reasoner.soureforge.net.In this paper we fous on the arhiteture of the DLog system, as well ason its external interfaes. We disuss the interfae used for aessing databases,whih allows desription logi reasoning on top of existing information soures.We also desribe the Protégé [2℄ interfae that makes it possible to use DLog asthe bak-end reasoner of this popular ontology editor. Details on the theoretialside of DLog an be found in [3℄ and in [4℄.This paper is strutured as follows. Setion 2 summarises related work. InSetion 3 we give a general introdution to the DLog approah and present thearhiteture and implementation details of the system. The database and Protégéinterfaes are desribed in Setions 4 and 5, respetively. Setion 6 evaluates theperformane of the database extension of DLog w.r.t. the version whih storesthe ABox as Prolog fats. Finally, in Setion 7, we onlude with the future workand the summary of our results.2 Related workSeveral tehniques have emerged for dealing with ABox-reasoning. Tradi-tional ABox-reasoning is based on the tableau inferene algorithm, whih triesto build a model showing that a given onept is satis�able. To infer that anindividual i is an instane of a onept C, an indiret assumption ¬C(i) is addedto the ABox, and the tableau-algorithm is applied. If this reports inonsisteny,
i is proved to be an instane of C. The main drawbak of this approah is thatit annot be diretly used for high volume instane retrieval, beause it wouldrequire heking all instanes in the ABox, one by one.To make tableau-based reasoning more e�ient on large data sets, severaltehniques have been developed in reent years [5℄. These are used by the state-of-the-art DL reasoners, suh as RaerPro [6℄ or Pellet [7℄.Extreme ases involve serious restritions on the knowledge base to ensuree�ient exeution with large amounts of instanes. For example, [8℄ suggests a2



solution alled the instane store, where the ABox is stored externally, and isaessed in a very e�ient way. The drawbak is that the ABox may ontainonly axioms of form C(a), i.e. we annot make role assertions.Paper [9℄ disusses how a �rst order theorem prover suh as Vampire anbe modi�ed and optimised for reasoning over desription logi knowledge bases.This work, however, mostly fouses on TBox reasoning.In [10℄, a resolution-based inferene algorithm is desribed, whih is not assensitive to the inrease of the ABox size as the tableau-based methods. How-ever, this approah still requires the input of the whole ontent of the ABoxbefore attempting to answer any queries. The KAON2 system [11℄ implementsthis method and provides reasoning servies over the desription logi language
SHIQ by transforming the knowledge base into a disjuntive datalog program.Although the motivation and goals of KAON2 are similar to ours, unlikeKAON2 (1) we use a pure two-phase reasoning approah (i.e. the ABox is a-essed only during query answering) and (2) we translate into Prolog whih haswell-established, e�ient and robust implementations.Artile [12℄ introdues the term Desription Logi Programming. This ideauses a diret transformation ofALC desription logi onepts into de�nite Horn-lauses, and poses some restritions on the form of the knowledge base, whihdisallow axioms requiring disjuntive reasoning. As an extension, [13℄ introduesa fragment of the SHIQ language that an be transformed into Horn-lauses.This work, however, still poses restritions on the use of disjuntions.3 The DLog systemThe main idea of the DLog approah is that we transform a SHIQ knowl-edge base KB into �rst-order lauses Ω(KB) and from these we generate Prologode [3℄. In ontrast with [11℄, all lauses ontaining funtion symbols are elim-inated during the transformation: the resulting lauses an be resolved furtheronly with ABox lauses. This forms the basis of a pure two phase reasoningframework, where every possible ABox-independent reasoning step is performedbefore aessing the ABox itself, allowing us to store the ontent of the ABox inan external database.Atually, in the general transformation, we use only ertain properties of
Ω(KB). These properties are satis�ed by a subset of �rst order lauses that is,in fat, larger than the set of lauses that an be generated from a SHIQ KB.We all these lauses DL lauses. As a onsequene of this, our results an beused for DL knowledge bases that are more expressive than SHIQ. This inludesthe use of ertain role onstrutors, suh as union. Furthermore, some parts ofthe knowledge base an be supplied by the user diretly in the form of �rst orderlauses. More details an be found in [3℄.As the lauses of a SHIQ knowledge base KB are normal �rst-order lauseswe an apply the Prolog Tehnology Theorem Proving (PTTP) tehnology [14℄diretly on these. In [3℄ we have simpli�ed the PTTP tehniques for the speial3



ase of DL lauses and we have proved that these modi�ations are sound andomplete for DL lauses.The simpli�ed PTTP tehniques used in DLog inlude deterministi anestorresolution and loop elimination. Both are appliable only to unary prediates,i.e. prediates orresponding to DL onepts.In the design of the DLog system we fous on modularity. This enables us toeasily implement new features and new interfaes. The top level arhiteture ofthe system is shown in Figure 1. In this �gure, as in subsequent �gures of thepaper, retangles with rounded orners represent modules of the DLog system,while data are shown as plain retangles. In Figure 1 the DLog reasoner is shownwithin a dashed retangle.
PSfrag replaements Client

DLog reasoner
KnowledgeBas
eManager First phase:translationSeond phase:exeutionSupport modulesFig. 1. The top level arhiteture of the DLog system.The user (either loal or remote) aesses DLog through one of the externalinterfaes. These interfaes range from a loal onsole to server interfaes likeDIG used by the Protégé ontology editor. The knowledge base manager is theentral piee of the system. It oordinates the tasks of the other modules, andperforms the administration of multiple onurrent knowledge bases. It forwardsthe request arriving from the interfaes to the reasoner modules.The support modules onsist of several tools that are used by most parts ofthe system. They inlude a on�guration manager module, a logger, an XMLreader, a run-time system for the seond phase, and several portability tools thatallow DLog to run under di�erent Prolog implementations (urrently SWI andSICStus).The �rst phase, translation, shown in Figure 2, takes a set of desriptionlogi axioms as input. These axioms are divided into two parts: the TBox orterminology box stores onept and role inlusion axioms, while the ABox orassertion box ontains the fatual data. The ABox may be stored (partly or4



ompletely) in external databases. The ABox is proessed �rst, produing theABox ode (whih is a Prolog module), and the ABox signature, whih is requiredfor translating the TBox. The generation of ABox ode inludes optimisationssuh as indexing on seond argument for roles stored in memory.Next, the TBox is proessed in two steps. First the DL translator moduletransforms the desription logi formulae to a set of DL lauses [15℄, whih arepassed on to the TBox translator module that generates the exeutable TBoxode. This generated ode is equivalent, with respet to instane retrieval, to theinput DL knowledge base. The TBox translator module uses various optimisa-tions [3℄ to obtain more e�ient Prolog programs. The ABox and TBox ode anbe generated diretly into memory or may be saved to disk for later (standalone)use.PSfrag replaements
TBoxABox DLtranslator TBoxtranslatorABox signatureABoxtranslator ABox odeTBox odeFig. 2. The �rst phase: translation.The seond phase, exeution, shown in Figure 3, uses the ABox and TBoxprograms generated in the �rst phase, to answer queries. There are two waysto exeute queries: the generated TBox an be alled diretly from Prolog asa low-level interfae, or the Query module provides a high-level interfae thatprovides basi support for omposite queries and an aggregate the results. Innormal operation the query module is alled by the knowledge base manager,whih forwards the results to the user interfae. As the query module does notdepend on the rest of the system, it may be used in standalone operation. Therun-time system (shown as RTS in the �gure) inludes a hash table implementedin C used to speed up the reasoning, and optional olletion of statistis.PSfrag replaements ABox odeTBox ode QuerymoduleRTS Queries ResultsFig. 3. The seond phase: exeution.5



4 Integrating DLog with databasesAs the �rst phase of reasoning (i.e. the generation of a query plan) onlydepends on the signature of the data set, and beause of the top-down infereneof Prolog, DLog an e�iently use databases to store the ABox.There may be several advantages in using databases to store the ABox.Firstly, this allows reasoning on data sets that annot �t into memory. Seondly,it makes integrating DLog with existing systems easier, as the reasoner an usethe existing databases of other appliations. Thirdly, querying some onepts(namely those orresponding to so-alled query prediates) may be performedusing omplex database queries, rather than DL reasoning, whih is expeted todeliver a marked inrease in performane.A prediate is a query prediate [3℄, if it is non-reursive, it does not invokeits negation, and is not invoked from within its negation. Here, a prediate P0 issaid to invoke a prediate Pn, n ≥ 1, if there are n − 1 intermediate prediates
P1 . . . Pn−1, suh that Pi is diretly invoked by Pi−1, i.e. it ours in a lausebody the head of whih is Pi−1, for i = 1, . . . , n.Query prediates require neither loop elimination, nor anestor resolutionduring exeution. The name �query prediate� re�ets that fat that suh predi-ates an be transformed to omplex database queries (provided that all oneptsand roles required are stored in a single database). This an inrease the per-formane as the database engine an optimise the query using statistial andstrutural knowledge of the database in question.We designed the database interfae to be as simple as possible. The databasesare aessed via the ODBC driver of SWI-Prolog; as a onsequene DLog aninterfae with most modern database systems. We wanted a way to speifydatabase aess using existing tools and interfaes � suh as Protégé and theDIG interfae it utilises � even if those do not, at the moment, provide a way tospeify database usage. To aess a database, several piees of information areneeded: the name of the database, a user name, a password, a desription of whihtable to use for given onepts and roles, et. Beause of the aforementioned re-quirements we deided to use ABox assertions to arry this meta-information.ABox assertions are desription logi onstruts that are readily available in DLsystems and interfaes, suh as OWL and DIG.In order to speify the database aess for onepts and roles we introduenew roles (objet properties), attributes (datatype properties) and individualsde�ned in the namespae http://www.s.bme.hu/dlogDB.The ODBC interfae presribes that database onnetions are to be iden-ti�ed by a Data Soure Name (DSN). In DLog we introdue an individual torepresent a given database onnetion. Roles and onepts are also representedby individuals. An arbitrary name an be used for suh an individual.The meta data provided is used to onnet to the database, and, for eahonept and role, an additional lause is generated, whih, by exeuting an ap-propriate database query, lists appropriate individuals (or pairs of individuals).This allows onepts and roles to be stored partially in databases and partiallyin memory. This may be very useful when developing ontologies.6



4.1 Speifying the Database InterfaeDatabase onnetions are represented by individuals that have the string at-tribute hasDSN de�ned. The value of this attribute is the name of the data soure(DSN). As all other names in this setion, this name is de�ned in the namespaehttp://www.s.bme.hu/dlogDB.Additional string attributes, namely hasUserNameand hasPassword, may be used to speify the user name and the password forthe given onnetion, if required.The objet property hasConnetion links an individual representing a roleor a onept with the database onnetion to be used for aessing it. Thismakes it possible to use one data soure for one onept, and a di�erent onefor another. The instane on the left hand side is the individual representingthe role or onept, while the instane on the right hand side is the individualrepresenting the onnetion.Two methods are provided to speify how to get the data from the database.One is to speify a query that is to be diretly exeuted on the database. Thismethod, named the simple interfae, is provided beause of its simpliity: it anbe applied to databases without any modi�ation. However it has two drawbaks:� it makes transforming query prediates to database queries very di�ult;and� it performs badly for instane hek queries.The latter is a large setbak as most of the queries are instane heks, assumingthe the projetion optimisation of [3℄ is used.Therefore the seond, preferred, way is to provide the name of a table or ofa view and the name of the olumn(s) of this table. This approah, alled theomplex interfae may require the reation of new views in the database, butprovides muh greater �exibility and better performane.The SQL query in the simple interfae is de�ned using the string attributehasQuery. The individual represents the role or onept and the attribute valueis the query string. For individuals representing roles the query must return twoolumns, and for those used for onepts it must return one olumn that ontainsthe individual name.If the omplex interfae is used, the name of the table or view to use isspei�ed by the string attribute hasTable. The name of the olumn listing theindividuals of a onept is given using the string attribute hasColumn. For roles,the attributes hasLHS and hasRHS are used for the left and the right hand side,respetively.Beause, in Protégé, individuals annot be spei�ed as instanes of a negatedonept, we provide some additional attributes: hasNegQuery, hasNegTable andhasNegColumn. These are used to speify the database aess of negated on-epts, in a way similar to their respetive positive pairs. By providing an attributehasNegQuery for a name representing the onept C we speify a query listingthe individuals of ¬C. Obviously, both hasQuery and hasNegQuery an appearas attributes of the same individual. 7



To speify that the individual onept represents the onept C, one simplyhas to make onept an instane of C. The DLog system will hek eah oneptourring in the ABox if it ontains an instane whih is in the namespaehttp://www.s.bme.hu/dlogDB. If suh an instane is found, it is interpretedas a �handle� to a database whih is to produe (additional) instanes for thegiven onept.Similarly, to speify that an individual role represents the role R, we requirethat the user inludes the triple {role, R, indiv} in the ABox. Here indiv isan arbitrary individual. Again DLog will look for an instane in the namespaehttp://www.s.bme.hu/dlogDB within the domain (i.e. the left hand side) ofeah role, and use it to onstrut a database aess for the given role.The database interfae is urrently in the alpha test phase. We believe thatour approah for this task, disussed above, is an intermediate solution. Ulti-mately the standard interfaes, suh as DIG, should be extended to allow storing(parts of) the ABox in databases. However, we hope that our work ontributesto implementing this ultimate goal.4.2 Examples of Using the Database InterfaeWe now present two examples for interfaing with databases, one for thesimple, and one for the omplex interfae.The examples ontain ABox assertions, whih are displayed as RDF triplesin {subjet, prediate, objet} format. String values are shown betweenquotes. The namespae http://www.s.bme.hu/dlogDB# is represented by thedlog: pre�x.Figure 4 shows the use of the simpli�ed interfae for the ABox of the Ioasteexample. This lassial example involves the onept desribing a person hav-ing a patriide hild, who, in turn, has a non-patriide hild. The ABox axioms,whih are now to be stored in a database, desribe the hasChild relation betweenpairs of individuals (traditionally ontaining (Ioaste, Oedipus), (Ioaste,Polyneikes), (Oedipus, Polyneikes) and (Polyneikes, Thersandros)). TheABox also spei�es whih individuals are patriide and whih are non-patriide(traditionally Oedipus is known to belong to the former, while Thersandros tothe latter).We have hosen the namespae represented by the io: pre�x for the namesin this ontology. The database onnetion is named iodb, and the orrespondingDSN is spei�ed as "ioaste" (line 1). This onnetion is aessed withoutspeifying a user name or a password. Aordingly, iodb has no attributes otherthan dlog:hasDSN.Both the role hasChild and the onept Patriide are taken from thisdatabase. The role hasChild is represented by the instane dlog:riohasChild.We hose this name as a mnemoni for a role from the namespae io, alledhasChild, but any other name ould have been used. Line 2 tells the system thatthis individual represents the role io:hasChild. Here, the right hand side ofthe role is of no interest, so we hose to have the same individual as on the lefthand side. Line 6 tells that the individual dlog:ioPatriide is an instane of8



1 {dlog:iodb, dlog:hasDSN, "ioaste"}2 {dlog:riohasChild, io:hasChild, dlog:riohasChild}3 {dlog:riohasChild, dlog:hasConnetion, dlog:iodb}4 {dlog:riohasChild, dlog:hasQuery,5 "SELECT parent, hild FROM hasChild"}6 {dlog:ioPatriide, rdf:type, io:Patriide}7 {dlog:ioPatriide, dlog:hasConnetion, dlog:iodb}8 {dlog:ioPatriide, dlog:hasQuery,9 "SELECT name FROM people WHERE patriide"}10 {dlog:ioPatriide, dlog:hasNegQuery,11 "SELECT name FROM people WHERE NOT patriide"}Fig. 4. An example of the simpli�ed database interfae.the onept io:Patriide1. This individual, whih thus represents the oneptio:Patriide, has two queries assoiated with it: one for io:Patriide (line 8)and one for its negation (line 10).The simpli�ed interfae allows omplex queries, suh as the one for Patriidewhih has a WHERE lause. This way the existing table people an be used withoutmodi�ation. However, this approah makes it very di�ult to transform anypossible query prediates in the TBox to diret database queries, and instanehek queries run with a poor performane.We now present a seond example. The TBox of this example, taken from[4℄, is shown below.1 ∃hasFriend. Aloholi ⊑ ¬Aloholi2 ∃hasParent.¬Aloholi ⊑ ¬AloholiLine 1 desribes that those who have a friend who is aloholi are non-aloholi(as they see a bad example), while line 2 states that those who have a non-aloholi parent are non-aloholi (as they see a good example). In the lassiform the ABox ontains role assertions for the hasParent and hasFriend re-lations only, and no onept assertions about anyone being aloholi or non-aloholi. In spite of this, in the presene of ertain role instane patterns, onean infer some people to be non-aloholi, using ase analysis.For example, onsider the following pattern: Jak is Joe's parent and also hisfriend. Now, if we assume that Jak is aloholi, then the axiom in line 1 impliesthat Joe is not aloholi. On the other hand, if Jak is not aloholi, it followsfrom line 2 that Joe is not aloholi, either. Thus these two role assertions implythat Joe has to be non-aloholi. Other patterns, where Joe an be inferred tobe non-aloholi, are the following: Joe is a friend of himself; Joe is a friend ofan anestor; and Joe's two anestors are in the hasFriend relationship.1 Note that the pre�x rdf, used in the prediate position of the triple in line 6, refersto the RDF namespae: http://www.w3.org/1999/02/22-rdf-syntax-ns#.9



In Figure 5 we present a database aess spei�ation for the above example,using the omplex interfae. Here, the database aloholi is aessed with theuser name "drunkard" and the password "palinka" (lines 1�3). We assumethat a new view, alled "hasParentView", was de�ned in the database to hidethe omplex query for the role hasParent, f. lines 4�6. The olumns of thisview, hild and parent (lines 7�8), ontain the data for the role hasParent.From this information DLog an reate a query for instane retrieval ("SELECThild, parent FROM hasParentView"), and three other query patterns for theases when at least one of the individuals is known (e.g. "SELECT hild FROMhasParentView WHERE parent = ?"). This approah allows for the generationof omplex database queries for the query prediates.1 {dlog:aldb, dlog:hasDSN, "aloholi"}2 {dlog:aldb, dlog:hasUserName, "drunkard"}3 {dlog:aldb, dlog:hasPassword, "palinka"}4 {dlog:ralhasParent, al:hasParent, dlog:ralhasParent}5 {dlog:ralhasParent, dlog:hasConnetion, dlog:aldb}6 {dlog:ralhasParent, dlog:hasTable, "hasParentView"}7 {dlog:ralhasParent, dlog:hasLHS, "hild"}8 {dlog:ralhasParent, dlog:hasRHS, "parent"}9 {dlog:ralhasFriend, al:hasFriend, dlog:ralhasFriend}10 {dlog:ralhasFriend, dlog:hasConnetion, dlog:aldb}11 {dlog:ralhasFriend, dlog:hasTable, "friends"}12 {dlog:ralhasFriend, dlog:hasLHS, "friend1"}13 {dlog:ralhasFriend, dlog:hasRHS, "friend2"}14 {dlog:alAloholi, rdf:type, al:Aloholi}15 {dlog:alAloholi, dlog:hasConnetion, dlog:aldb}16 {dlog:alAloholi, dlog:hasTable, "aloholiView"}17 {dlog:alAloholi, dlog:hasColumn, "name"}18 {dlog:alAloholi, dlog:hasNegTable, "nonaloholiView"}19 {dlog:alAloholi, dlog:hasNegColumn, "name"}Fig. 5. An example of the omplex database interfae.In Figure 5, lines 10�13 speify the database aess for the role hasFriend,while lines 14�19 allow for aessing individuals belonging to the onept aloholiand its negation through appropriate database views.5 Integrating DLog with ProtégéProtégé [2℄ is an open soure ontology editor that supports the Web OntologyLanguage (OWL) [1℄, and an onnet to reasoners via the HTTP-based DIGinterfae [16℄. The DLog server implements the DIG interfae and an be used toexeute instane retrieval queries issued from the graphial interfae of Protégé.10



The DIG interfae spei�es ommuniation via HTTP, and uses XML dataformat. For the implementation we used the HTTP server provided with SWI-Prolog. In implementing the interfae we faed di�ulties aused by some am-biguities of the DIG spei�ations, despite there being an (exat) XML shemade�nition. Another di�ulty was that Protégé does not stritly follow the def-inition of the interfae. For example it uses a learKB ommand that is noteven de�ned in version 1.1 of DIG. In DIG 1.0, whih supported only a singledatabase, this ommand was de�ned, but Protégé uses the new version that sup-ports multiple onurrent knowledge bases. We strove for an implementation asgeneri and omplying to the interfae de�nition as possible while, also beingompatible with Protégé.For parsing XML we use the SGML module of SWI-Prolog, whih an beoperated in an XML ompatibility mode, allowing namespaes. As this is nota diret XML parser, it has some di�ulties when used in XML mode. Forexample even with the stritest settings and treating all warnings as errors, itaepts input �les that are not even well-formed XML. Beause of this, and inhope of better performane, we are planning to swith to Apahe Xeres-C++.With Xeres we plan to use SAX parsing, instead of DOM, with the hope oflower memory usage and faster parsing.The data are extrated from the XML DOM using De�nite Clause Grammars(DCG).Figure 6 shows the results of a query issued from Protégé, as answered bythe DLog server.

Fig. 6. Sreenshot of query results in Protégé answered by DLog.11



The integration of Protégé and the database interfae is in progress. A seriousdi�ulty is that if the results of a query ontain individuals that are not de�nedin Protégé (i.e. individuals present only in databases) Protégé silently dropsthese individuals from the list of query results.6 EvaluationThis setion ontains a preliminary performane test of the database inter-fae.We tried the database interfae on a large version of the Ioaste problemwhih ontains 5058 pairs in the hasChild relation, 855 instanes that are knownto be patriide, and 314 that are known to be non-patriide.The exeution results are summarised in Table 1. The load time means thetime it takes to load the �le whih ontains the axioms, inluding the XMLparsing. The translation time is the time it takes to generate the TBox andABox ode from the axioms, while exeution time is the run-time of the query.Table 1. Comparing the in-memory and database version of a large Ioaste test.(seonds) load translate exeute totalin-memory 0.88 0.53 0.02 1.43database 0.05 0.02 0.36 0.43When the ABox is stored in memory, the translation takes 1.41 seonds, andthe exeution takes only 0.02 seonds. Note that these �gures were obtained withthe indexing optimisation turned o�. When this optimisation is turned on, thenumber of generated ABox lauses is doubled, and translation time inreasesaordingly.The database variant of the example enumerates all the instanes of thequeried onept in 0.36 seonds. This, ompared to the original 0.02 seonds ismuh slower. However, the time we spent at ompile-time was altogether 0.07seonds, resulting in a total exeution time of 0.43 seonds. To sum up, in termsof total query exeution time, more than a three-fold derease was ahieved,using the database interfae.From the above data it may seem that using a database for storing the ABox,whih �ts into memory, is bene�ial only beause of the redued ompile-time.However, we believe that in the ase of large data sets and omplex queries(espeially if these ontain onepts giving rise to query prediates) exeutiontime an also be better than that of the in-memory variant.Detailed evaluation of the DLog System an be found in [3℄.12



7 Summary and future workIn this paper we have shown the arhiteture of the DLog system, disussed adatabase interfae for representing large ABoxes, and reported on the integrationof DLog with the Protégé ontology editor.The database interfae is espeially useful if the data set annot �t in memoryor if it is shared with other systems. Using databases an greatly redue ompiletime and, with advaned optimisations, it may provide e�ieny similar to thatof the in-memory version.Future improvements inlude the optimisation of query prediates, by trans-forming them to database queries, and better integration of Protégé and thedatabase interfae. Our plans also inlude the implementation of a query mod-ule to handle omposite queries, and the support for additional interfae formats,suh as OWL, or the KRSS notation used by e.g. the RaerPro engine.AknowledgementsThe authors are grateful to the anonymous reviewers for their omments onthe earlier version of the paper, and espeially for reommending the BillionTriples Challenge for evaluation.Referenes1. Behhofer, S.: OWL web ontology language referene. W3C reommendation(February 2004)2. Noy, N., Fergerson, R., Musen, M.: The knowledge modelof Protege-2000: Combining interoperability and �exibility.http://iteseer.nj.ne.om/noy01knowledge.html (2000)3. Lukásy, G., Szeredi, P.: E�ient desription logi reasoning in Prolog: the DLogsystem. Tehnial report, Budapest University of Tehnology and Eonomis (Jan-uary 2008) Conditionally aepted for publiation in Theory and Pratie of LogiProgramming.4. Lukásy, G., Szeredi, P., Kádár, B.: Prolog based desription logi reasoning.(Deember 2008) To appear in ICLP 2008.5. Haarslev, V., Möller, R.: Optimization tehniques for retrieving resoures desribedin OWL/RDF douments: First results. In: Ninth International Conferene on thePriniples of Knowledge Representation and Reasoning, KR 2004, Whistler, BC,Canada, June 2-5. (2004) 163�1736. Haarslev, V., Möller, R., van der Straeten, R., Wessel, M.: Extended Query Fa-ilities for Raer and an Appliation to Software-Engineering Problems. In: Pro-eedings of the 2004 International Workshop on Desription Logis (DL-2004),Whistler, BC, Canada, June 6-8. (2004) 148�1577. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A pratialOWL-DL reasoner. Web Semant. 5(2) (2007) 51�538. Horroks, I., Li, L., Turi, D., Behhofer, S.: The Instane Store: DL reasoningwith large numbers of individuals. In: Proeedings of DL2004, British Columbia,Canada. (2004) 13



9. Horroks, I., Voronkov, A.: Reasoning support for expressive ontology languagesusing a theorem prover. In: FoIKS. Volume 3861 of Leture Notes in ComputerSiene., Springer (2006) 201�21810. Hustadt, U., Motik, B., Sattler, U.: Reasoning for Desription Logis around SHIQin a resolution framework. Tehnial report, FZI, Karlsruhe (2004)11. Motik, B.: Reasoning in Desription Logis using Resolution and DedutiveDatabases. PhD thesis, Univesität Karlsruhe (TH), Karlsruhe, Germany (January2006)12. Grosof, B.N., Horroks, I., Volz, R., Deker, S.: Desription logi programs: Com-bining logi programs with desription logi. In: Pro. of the Twelfth InternationalWorld Wide Web Conferene (WWW 2003), ACM (2003) 48�5713. Hustadt, U., Motik, B., Sattler, U.: Data omplexity of reasoning in very expressivedesription logis. In: Proeedings of the Nineteenth International Joint Confereneon Arti�ial Intelligene (IJCAI 2005), International Joint Conferenes on Arti�ialIntelligene (2005) 466�47114. Stikel, M.E.: A Prolog tehnology theorem prover: a new exposition and imple-mentation in Prolog. Theoretial Computer Siene 104(1) (1992) 109�12815. Zombori, Zs.: E�ient two-phase data reasoning for desription logis. In: Pro-eedings of the International Federation for Information Proessing Tehnial Com-mittee on Arti�ial Intelligene (TC12), Milan, Italy (September 2008) Aeptedonferene paper.16. Behhofer, S.: The DIG desription logi interfae. http://dig.s.manhester.a.uk/(2006)

14


