
Towards Large S
ale Reasoning on the Semanti
WebBalázs Kádár, Gergely Luká
sy and Péter SzerediBudapest University of Te
hnology and E
onomi
sDepartment of Computer S
ien
e and Information Theory1117 Budapest, Magyar tudósok körútja 2., Hungarybalazs�kadar.biz,{luka
sy,szeredi}�
s.bme.huAbstra
t. Traditional algorithms for des
ription logi
 (DL) instan
e re-trieval are ine�
ient for large amounts of underlying data. As des
riptionlogi
 is be
oming popular in areas su
h as the Semanti
 Web, it is veryimportant to have systems that 
an reason e�
iently over large data sets.In this paper we present the DLog des
ription logi
 reasoner spe
i�
allydesigned for su
h s
enarios.The DLog approa
h transforms des
ription logi
 axioms using the SHIQDL language into a Prolog program. This transformation is done withoutany knowledge of the parti
ular individuals: they are a

essed dynami-
ally during the normal Prolog exe
ution of the generated program. Thisallows us to store the individuals in a database instead of memory, whi
hresults in better s
alability and helps using des
ription logi
 ontologiesdire
tly on top of existing information sour
es.In this paper we fo
us on the des
ription of the DLog appli
ation itself.We present the ar
hite
ture of DLog and des
ribe its interfa
es. Thesemake it possible to use ABoxes stored in databases and to 
ommuni-
ate with the Protégé ontology editor, as a server appli
ation. We alsoevaluate the performan
e of the DLog database extension.Keywords: large data sets, des
ription logi
, reasoning, logi
 program-ming, databases1 Introdu
tionDes
ription Logi
s (DLs) allow us to represent knowledge bases 
onsisting ofterminologi
al axioms (the TBox ) and assertional knowledge (the ABox ).Des
ription Logi
s are be
oming widespread as more and more systems startusing semanti
s for various reasons. As an example, in the Semanti
 Web idea,DLs are intended to provide the mathemati
al ba
kground needed for more intel-ligent query answering. Here the knowledge is 
aptured in the form of expressiveontologies, des
ribed in the Web Ontology Language (OWL) [1℄. This languageis mostly based on the SHIQ des
ription logi
, and it is intended to be thestandard knowledge representation format of the Web.However, we have tremendous amounts of information on the Web whi
h
alls for reasoners that are able to e�
iently handle su
h abundan
e of data.



Moreover, as these data 
annot be stored dire
tly in memory, we need solutionsfor querying des
ription logi
 
on
epts in an environment where the ABox isstored in a database.We found that most existing des
ription logi
 reasoners are not suitable forthis task, as these are not 
apable of handling ABoxes stored externally. Thisis not a simple te
hni
al problem: most existing algorithms for querying DL
on
epts need to examine the whole ABox to answer a query. This results ins
alability problems and undermines the point of using databases. Be
ause ofthis, we started to investigate te
hniques whi
h allow the separation of the in-feren
e algorithm from the data storage.We have developed a solution, where the inferen
e algorithm is divided intotwo phases. First we 
reate a query-plan in Prolog from the a
tual DL knowl-edge base, without a

essing the underlying data set. Subsequently, this query-plan 
an be run on real data, to obtain the required results. The implementa-tion of these ideas is in
orporated in the DLog reasoning system, available athttp://dlog-reasoner.sour
eforge.net.In this paper we fo
us on the ar
hite
ture of the DLog system, as well ason its external interfa
es. We dis
uss the interfa
e used for a

essing databases,whi
h allows des
ription logi
 reasoning on top of existing information sour
es.We also des
ribe the Protégé [2℄ interfa
e that makes it possible to use DLog asthe ba
k-end reasoner of this popular ontology editor. Details on the theoreti
alside of DLog 
an be found in [3℄ and in [4℄.This paper is stru
tured as follows. Se
tion 2 summarises related work. InSe
tion 3 we give a general introdu
tion to the DLog approa
h and present thear
hite
ture and implementation details of the system. The database and Protégéinterfa
es are des
ribed in Se
tions 4 and 5, respe
tively. Se
tion 6 evaluates theperforman
e of the database extension of DLog w.r.t. the version whi
h storesthe ABox as Prolog fa
ts. Finally, in Se
tion 7, we 
on
lude with the future workand the summary of our results.2 Related workSeveral te
hniques have emerged for dealing with ABox-reasoning. Tradi-tional ABox-reasoning is based on the tableau inferen
e algorithm, whi
h triesto build a model showing that a given 
on
ept is satis�able. To infer that anindividual i is an instan
e of a 
on
ept C, an indire
t assumption ¬C(i) is addedto the ABox, and the tableau-algorithm is applied. If this reports in
onsisten
y,
i is proved to be an instan
e of C. The main drawba
k of this approa
h is thatit 
annot be dire
tly used for high volume instan
e retrieval, be
ause it wouldrequire 
he
king all instan
es in the ABox, one by one.To make tableau-based reasoning more e�
ient on large data sets, severalte
hniques have been developed in re
ent years [5℄. These are used by the state-of-the-art DL reasoners, su
h as Ra
erPro [6℄ or Pellet [7℄.Extreme 
ases involve serious restri
tions on the knowledge base to ensuree�
ient exe
ution with large amounts of instan
es. For example, [8℄ suggests a2



solution 
alled the instan
e store, where the ABox is stored externally, and isa

essed in a very e�
ient way. The drawba
k is that the ABox may 
ontainonly axioms of form C(a), i.e. we 
annot make role assertions.Paper [9℄ dis
usses how a �rst order theorem prover su
h as Vampire 
anbe modi�ed and optimised for reasoning over des
ription logi
 knowledge bases.This work, however, mostly fo
uses on TBox reasoning.In [10℄, a resolution-based inferen
e algorithm is des
ribed, whi
h is not assensitive to the in
rease of the ABox size as the tableau-based methods. How-ever, this approa
h still requires the input of the whole 
ontent of the ABoxbefore attempting to answer any queries. The KAON2 system [11℄ implementsthis method and provides reasoning servi
es over the des
ription logi
 language
SHIQ by transforming the knowledge base into a disjun
tive datalog program.Although the motivation and goals of KAON2 are similar to ours, unlikeKAON2 (1) we use a pure two-phase reasoning approa
h (i.e. the ABox is a
-
essed only during query answering) and (2) we translate into Prolog whi
h haswell-established, e�
ient and robust implementations.Arti
le [12℄ introdu
es the term Des
ription Logi
 Programming. This ideauses a dire
t transformation ofALC des
ription logi
 
on
epts into de�nite Horn-
lauses, and poses some restri
tions on the form of the knowledge base, whi
hdisallow axioms requiring disjun
tive reasoning. As an extension, [13℄ introdu
esa fragment of the SHIQ language that 
an be transformed into Horn-
lauses.This work, however, still poses restri
tions on the use of disjun
tions.3 The DLog systemThe main idea of the DLog approa
h is that we transform a SHIQ knowl-edge base KB into �rst-order 
lauses Ω(KB) and from these we generate Prolog
ode [3℄. In 
ontrast with [11℄, all 
lauses 
ontaining fun
tion symbols are elim-inated during the transformation: the resulting 
lauses 
an be resolved furtheronly with ABox 
lauses. This forms the basis of a pure two phase reasoningframework, where every possible ABox-independent reasoning step is performedbefore a

essing the ABox itself, allowing us to store the 
ontent of the ABox inan external database.A
tually, in the general transformation, we use only 
ertain properties of
Ω(KB). These properties are satis�ed by a subset of �rst order 
lauses that is,in fa
t, larger than the set of 
lauses that 
an be generated from a SHIQ KB.We 
all these 
lauses DL 
lauses. As a 
onsequen
e of this, our results 
an beused for DL knowledge bases that are more expressive than SHIQ. This in
ludesthe use of 
ertain role 
onstru
tors, su
h as union. Furthermore, some parts ofthe knowledge base 
an be supplied by the user dire
tly in the form of �rst order
lauses. More details 
an be found in [3℄.As the 
lauses of a SHIQ knowledge base KB are normal �rst-order 
lauseswe 
an apply the Prolog Te
hnology Theorem Proving (PTTP) te
hnology [14℄dire
tly on these. In [3℄ we have simpli�ed the PTTP te
hniques for the spe
ial3




ase of DL 
lauses and we have proved that these modi�
ations are sound and
omplete for DL 
lauses.The simpli�ed PTTP te
hniques used in DLog in
lude deterministi
 an
estorresolution and loop elimination. Both are appli
able only to unary predi
ates,i.e. predi
ates 
orresponding to DL 
on
epts.In the design of the DLog system we fo
us on modularity. This enables us toeasily implement new features and new interfa
es. The top level ar
hite
ture ofthe system is shown in Figure 1. In this �gure, as in subsequent �gures of thepaper, re
tangles with rounded 
orners represent modules of the DLog system,while data are shown as plain re
tangles. In Figure 1 the DLog reasoner is shownwithin a dashed re
tangle.
PSfrag repla
ements Client

DLog reasoner
KnowledgeBas
eManager First phase:translationSe
ond phase:exe
utionSupport modulesFig. 1. The top level ar
hite
ture of the DLog system.The user (either lo
al or remote) a

esses DLog through one of the externalinterfa
es. These interfa
es range from a lo
al 
onsole to server interfa
es likeDIG used by the Protégé ontology editor. The knowledge base manager is the
entral pie
e of the system. It 
oordinates the tasks of the other modules, andperforms the administration of multiple 
on
urrent knowledge bases. It forwardsthe request arriving from the interfa
es to the reasoner modules.The support modules 
onsist of several tools that are used by most parts ofthe system. They in
lude a 
on�guration manager module, a logger, an XMLreader, a run-time system for the se
ond phase, and several portability tools thatallow DLog to run under di�erent Prolog implementations (
urrently SWI andSICStus).The �rst phase, translation, shown in Figure 2, takes a set of des
riptionlogi
 axioms as input. These axioms are divided into two parts: the TBox orterminology box stores 
on
ept and role in
lusion axioms, while the ABox orassertion box 
ontains the fa
tual data. The ABox may be stored (partly or4




ompletely) in external databases. The ABox is pro
essed �rst, produ
ing theABox 
ode (whi
h is a Prolog module), and the ABox signature, whi
h is requiredfor translating the TBox. The generation of ABox 
ode in
ludes optimisationssu
h as indexing on se
ond argument for roles stored in memory.Next, the TBox is pro
essed in two steps. First the DL translator moduletransforms the des
ription logi
 formulae to a set of DL 
lauses [15℄, whi
h arepassed on to the TBox translator module that generates the exe
utable TBox
ode. This generated 
ode is equivalent, with respe
t to instan
e retrieval, to theinput DL knowledge base. The TBox translator module uses various optimisa-tions [3℄ to obtain more e�
ient Prolog programs. The ABox and TBox 
ode 
anbe generated dire
tly into memory or may be saved to disk for later (standalone)use.PSfrag repla
ements
TBoxABox DLtranslator TBoxtranslatorABox signatureABoxtranslator ABox 
odeTBox 
odeFig. 2. The �rst phase: translation.The se
ond phase, exe
ution, shown in Figure 3, uses the ABox and TBoxprograms generated in the �rst phase, to answer queries. There are two waysto exe
ute queries: the generated TBox 
an be 
alled dire
tly from Prolog asa low-level interfa
e, or the Query module provides a high-level interfa
e thatprovides basi
 support for 
omposite queries and 
an aggregate the results. Innormal operation the query module is 
alled by the knowledge base manager,whi
h forwards the results to the user interfa
e. As the query module does notdepend on the rest of the system, it may be used in standalone operation. Therun-time system (shown as RTS in the �gure) in
ludes a hash table implementedin C used to speed up the reasoning, and optional 
olle
tion of statisti
s.PSfrag repla
ements ABox 
odeTBox 
ode QuerymoduleRTS Queries ResultsFig. 3. The se
ond phase: exe
ution.5



4 Integrating DLog with databasesAs the �rst phase of reasoning (i.e. the generation of a query plan) onlydepends on the signature of the data set, and be
ause of the top-down inferen
eof Prolog, DLog 
an e�
iently use databases to store the ABox.There may be several advantages in using databases to store the ABox.Firstly, this allows reasoning on data sets that 
annot �t into memory. Se
ondly,it makes integrating DLog with existing systems easier, as the reasoner 
an usethe existing databases of other appli
ations. Thirdly, querying some 
on
epts(namely those 
orresponding to so-
alled query predi
ates) may be performedusing 
omplex database queries, rather than DL reasoning, whi
h is expe
ted todeliver a marked in
rease in performan
e.A predi
ate is a query predi
ate [3℄, if it is non-re
ursive, it does not invokeits negation, and is not invoked from within its negation. Here, a predi
ate P0 issaid to invoke a predi
ate Pn, n ≥ 1, if there are n − 1 intermediate predi
ates
P1 . . . Pn−1, su
h that Pi is dire
tly invoked by Pi−1, i.e. it o

urs in a 
lausebody the head of whi
h is Pi−1, for i = 1, . . . , n.Query predi
ates require neither loop elimination, nor an
estor resolutionduring exe
ution. The name �query predi
ate� re�e
ts that fa
t that su
h predi-
ates 
an be transformed to 
omplex database queries (provided that all 
on
eptsand roles required are stored in a single database). This 
an in
rease the per-forman
e as the database engine 
an optimise the query using statisti
al andstru
tural knowledge of the database in question.We designed the database interfa
e to be as simple as possible. The databasesare a

essed via the ODBC driver of SWI-Prolog; as a 
onsequen
e DLog 
aninterfa
e with most modern database systems. We wanted a way to spe
ifydatabase a

ess using existing tools and interfa
es � su
h as Protégé and theDIG interfa
e it utilises � even if those do not, at the moment, provide a way tospe
ify database usage. To a

ess a database, several pie
es of information areneeded: the name of the database, a user name, a password, a des
ription of whi
htable to use for given 
on
epts and roles, et
. Be
ause of the aforementioned re-quirements we de
ided to use ABox assertions to 
arry this meta-information.ABox assertions are des
ription logi
 
onstru
ts that are readily available in DLsystems and interfa
es, su
h as OWL and DIG.In order to spe
ify the database a

ess for 
on
epts and roles we introdu
enew roles (obje
t properties), attributes (datatype properties) and individualsde�ned in the namespa
e http://www.
s.bme.hu/dlogDB.The ODBC interfa
e pres
ribes that database 
onne
tions are to be iden-ti�ed by a Data Sour
e Name (DSN). In DLog we introdu
e an individual torepresent a given database 
onne
tion. Roles and 
on
epts are also representedby individuals. An arbitrary name 
an be used for su
h an individual.The meta data provided is used to 
onne
t to the database, and, for ea
h
on
ept and role, an additional 
lause is generated, whi
h, by exe
uting an ap-propriate database query, lists appropriate individuals (or pairs of individuals).This allows 
on
epts and roles to be stored partially in databases and partiallyin memory. This may be very useful when developing ontologies.6



4.1 Spe
ifying the Database Interfa
eDatabase 
onne
tions are represented by individuals that have the string at-tribute hasDSN de�ned. The value of this attribute is the name of the data sour
e(DSN). As all other names in this se
tion, this name is de�ned in the namespa
ehttp://www.
s.bme.hu/dlogDB.Additional string attributes, namely hasUserNameand hasPassword, may be used to spe
ify the user name and the password forthe given 
onne
tion, if required.The obje
t property hasConne
tion links an individual representing a roleor a 
on
ept with the database 
onne
tion to be used for a

essing it. Thismakes it possible to use one data sour
e for one 
on
ept, and a di�erent onefor another. The instan
e on the left hand side is the individual representingthe role or 
on
ept, while the instan
e on the right hand side is the individualrepresenting the 
onne
tion.Two methods are provided to spe
ify how to get the data from the database.One is to spe
ify a query that is to be dire
tly exe
uted on the database. Thismethod, named the simple interfa
e, is provided be
ause of its simpli
ity: it 
anbe applied to databases without any modi�
ation. However it has two drawba
ks:� it makes transforming query predi
ates to database queries very di�
ult;and� it performs badly for instan
e 
he
k queries.The latter is a large setba
k as most of the queries are instan
e 
he
ks, assumingthe the proje
tion optimisation of [3℄ is used.Therefore the se
ond, preferred, way is to provide the name of a table or ofa view and the name of the 
olumn(s) of this table. This approa
h, 
alled the
omplex interfa
e may require the 
reation of new views in the database, butprovides mu
h greater �exibility and better performan
e.The SQL query in the simple interfa
e is de�ned using the string attributehasQuery. The individual represents the role or 
on
ept and the attribute valueis the query string. For individuals representing roles the query must return two
olumns, and for those used for 
on
epts it must return one 
olumn that 
ontainsthe individual name.If the 
omplex interfa
e is used, the name of the table or view to use isspe
i�ed by the string attribute hasTable. The name of the 
olumn listing theindividuals of a 
on
ept is given using the string attribute hasColumn. For roles,the attributes hasLHS and hasRHS are used for the left and the right hand side,respe
tively.Be
ause, in Protégé, individuals 
annot be spe
i�ed as instan
es of a negated
on
ept, we provide some additional attributes: hasNegQuery, hasNegTable andhasNegColumn. These are used to spe
ify the database a

ess of negated 
on-
epts, in a way similar to their respe
tive positive pairs. By providing an attributehasNegQuery for a name representing the 
on
ept C we spe
ify a query listingthe individuals of ¬C. Obviously, both hasQuery and hasNegQuery 
an appearas attributes of the same individual. 7



To spe
ify that the individual 
on
ept represents the 
on
ept C, one simplyhas to make 
on
ept an instan
e of C. The DLog system will 
he
k ea
h 
on
epto

urring in the ABox if it 
ontains an instan
e whi
h is in the namespa
ehttp://www.
s.bme.hu/dlogDB. If su
h an instan
e is found, it is interpretedas a �handle� to a database whi
h is to produ
e (additional) instan
es for thegiven 
on
ept.Similarly, to spe
ify that an individual role represents the role R, we requirethat the user in
ludes the triple {role, R, indiv} in the ABox. Here indiv isan arbitrary individual. Again DLog will look for an instan
e in the namespa
ehttp://www.
s.bme.hu/dlogDB within the domain (i.e. the left hand side) ofea
h role, and use it to 
onstru
t a database a

ess for the given role.The database interfa
e is 
urrently in the alpha test phase. We believe thatour approa
h for this task, dis
ussed above, is an intermediate solution. Ulti-mately the standard interfa
es, su
h as DIG, should be extended to allow storing(parts of) the ABox in databases. However, we hope that our work 
ontributesto implementing this ultimate goal.4.2 Examples of Using the Database Interfa
eWe now present two examples for interfa
ing with databases, one for thesimple, and one for the 
omplex interfa
e.The examples 
ontain ABox assertions, whi
h are displayed as RDF triplesin {subje
t, predi
ate, obje
t} format. String values are shown betweenquotes. The namespa
e http://www.
s.bme.hu/dlogDB# is represented by thedlog: pre�x.Figure 4 shows the use of the simpli�ed interfa
e for the ABox of the Io
asteexample. This 
lassi
al example involves the 
on
ept des
ribing a person hav-ing a patri
ide 
hild, who, in turn, has a non-patri
ide 
hild. The ABox axioms,whi
h are now to be stored in a database, des
ribe the hasChild relation betweenpairs of individuals (traditionally 
ontaining (Io
aste, Oedipus), (Io
aste,Polyneikes), (Oedipus, Polyneikes) and (Polyneikes, Thersandros)). TheABox also spe
i�es whi
h individuals are patri
ide and whi
h are non-patri
ide(traditionally Oedipus is known to belong to the former, while Thersandros tothe latter).We have 
hosen the namespa
e represented by the io: pre�x for the namesin this ontology. The database 
onne
tion is named iodb, and the 
orrespondingDSN is spe
i�ed as "io
aste" (line 1). This 
onne
tion is a

essed withoutspe
ifying a user name or a password. A

ordingly, iodb has no attributes otherthan dlog:hasDSN.Both the role hasChild and the 
on
ept Patri
ide are taken from thisdatabase. The role hasChild is represented by the instan
e dlog:riohasChild.We 
hose this name as a mnemoni
 for a role from the namespa
e io, 
alledhasChild, but any other name 
ould have been used. Line 2 tells the system thatthis individual represents the role io:hasChild. Here, the right hand side ofthe role is of no interest, so we 
hose to have the same individual as on the lefthand side. Line 6 tells that the individual dlog:
ioPatri
ide is an instan
e of8



1 {dlog:iodb, dlog:hasDSN, "io
aste"}2 {dlog:riohasChild, io:hasChild, dlog:riohasChild}3 {dlog:riohasChild, dlog:hasConne
tion, dlog:iodb}4 {dlog:riohasChild, dlog:hasQuery,5 "SELECT parent, 
hild FROM hasChild"}6 {dlog:
ioPatri
ide, rdf:type, io:Patri
ide}7 {dlog:
ioPatri
ide, dlog:hasConne
tion, dlog:iodb}8 {dlog:
ioPatri
ide, dlog:hasQuery,9 "SELECT name FROM people WHERE patri
ide"}10 {dlog:
ioPatri
ide, dlog:hasNegQuery,11 "SELECT name FROM people WHERE NOT patri
ide"}Fig. 4. An example of the simpli�ed database interfa
e.the 
on
ept io:Patri
ide1. This individual, whi
h thus represents the 
on
eptio:Patri
ide, has two queries asso
iated with it: one for io:Patri
ide (line 8)and one for its negation (line 10).The simpli�ed interfa
e allows 
omplex queries, su
h as the one for Patri
idewhi
h has a WHERE 
lause. This way the existing table people 
an be used withoutmodi�
ation. However, this approa
h makes it very di�
ult to transform anypossible query predi
ates in the TBox to dire
t database queries, and instan
e
he
k queries run with a poor performan
e.We now present a se
ond example. The TBox of this example, taken from[4℄, is shown below.1 ∃hasFriend. Al
oholi
 ⊑ ¬Al
oholi
2 ∃hasParent.¬Al
oholi
 ⊑ ¬Al
oholi
Line 1 des
ribes that those who have a friend who is al
oholi
 are non-al
oholi
(as they see a bad example), while line 2 states that those who have a non-al
oholi
 parent are non-al
oholi
 (as they see a good example). In the 
lassi
form the ABox 
ontains role assertions for the hasParent and hasFriend re-lations only, and no 
on
ept assertions about anyone being al
oholi
 or non-al
oholi
. In spite of this, in the presen
e of 
ertain role instan
e patterns, one
an infer some people to be non-al
oholi
, using 
ase analysis.For example, 
onsider the following pattern: Ja
k is Joe's parent and also hisfriend. Now, if we assume that Ja
k is al
oholi
, then the axiom in line 1 impliesthat Joe is not al
oholi
. On the other hand, if Ja
k is not al
oholi
, it followsfrom line 2 that Joe is not al
oholi
, either. Thus these two role assertions implythat Joe has to be non-al
oholi
. Other patterns, where Joe 
an be inferred tobe non-al
oholi
, are the following: Joe is a friend of himself; Joe is a friend ofan an
estor; and Joe's two an
estors are in the hasFriend relationship.1 Note that the pre�x rdf, used in the predi
ate position of the triple in line 6, refersto the RDF namespa
e: http://www.w3.org/1999/02/22-rdf-syntax-ns#.9



In Figure 5 we present a database a

ess spe
i�
ation for the above example,using the 
omplex interfa
e. Here, the database al
oholi
 is a

essed with theuser name "drunkard" and the password "palinka" (lines 1�3). We assumethat a new view, 
alled "hasParentView", was de�ned in the database to hidethe 
omplex query for the role hasParent, 
f. lines 4�6. The 
olumns of thisview, 
hild and parent (lines 7�8), 
ontain the data for the role hasParent.From this information DLog 
an 
reate a query for instan
e retrieval ("SELECT
hild, parent FROM hasParentView"), and three other query patterns for the
ases when at least one of the individuals is known (e.g. "SELECT 
hild FROMhasParentView WHERE parent = ?"). This approa
h allows for the generationof 
omplex database queries for the query predi
ates.1 {dlog:al
db, dlog:hasDSN, "al
oholi
"}2 {dlog:al
db, dlog:hasUserName, "drunkard"}3 {dlog:al
db, dlog:hasPassword, "palinka"}4 {dlog:ral
hasParent, al
:hasParent, dlog:ral
hasParent}5 {dlog:ral
hasParent, dlog:hasConne
tion, dlog:al
db}6 {dlog:ral
hasParent, dlog:hasTable, "hasParentView"}7 {dlog:ral
hasParent, dlog:hasLHS, "
hild"}8 {dlog:ral
hasParent, dlog:hasRHS, "parent"}9 {dlog:ral
hasFriend, al
:hasFriend, dlog:ral
hasFriend}10 {dlog:ral
hasFriend, dlog:hasConne
tion, dlog:al
db}11 {dlog:ral
hasFriend, dlog:hasTable, "friends"}12 {dlog:ral
hasFriend, dlog:hasLHS, "friend1"}13 {dlog:ral
hasFriend, dlog:hasRHS, "friend2"}14 {dlog:
al
Al
oholi
, rdf:type, al
:Al
oholi
}15 {dlog:
al
Al
oholi
, dlog:hasConne
tion, dlog:al
db}16 {dlog:
al
Al
oholi
, dlog:hasTable, "al
oholi
View"}17 {dlog:
al
Al
oholi
, dlog:hasColumn, "name"}18 {dlog:
al
Al
oholi
, dlog:hasNegTable, "nonal
oholi
View"}19 {dlog:
al
Al
oholi
, dlog:hasNegColumn, "name"}Fig. 5. An example of the 
omplex database interfa
e.In Figure 5, lines 10�13 spe
ify the database a

ess for the role hasFriend,while lines 14�19 allow for a

essing individuals belonging to the 
on
ept al
oholi
and its negation through appropriate database views.5 Integrating DLog with ProtégéProtégé [2℄ is an open sour
e ontology editor that supports the Web OntologyLanguage (OWL) [1℄, and 
an 
onne
t to reasoners via the HTTP-based DIGinterfa
e [16℄. The DLog server implements the DIG interfa
e and 
an be used toexe
ute instan
e retrieval queries issued from the graphi
al interfa
e of Protégé.10



The DIG interfa
e spe
i�es 
ommuni
ation via HTTP, and uses XML dataformat. For the implementation we used the HTTP server provided with SWI-Prolog. In implementing the interfa
e we fa
ed di�
ulties 
aused by some am-biguities of the DIG spe
i�
ations, despite there being an (exa
t) XML s
hemade�nition. Another di�
ulty was that Protégé does not stri
tly follow the def-inition of the interfa
e. For example it uses a 
learKB 
ommand that is noteven de�ned in version 1.1 of DIG. In DIG 1.0, whi
h supported only a singledatabase, this 
ommand was de�ned, but Protégé uses the new version that sup-ports multiple 
on
urrent knowledge bases. We strove for an implementation asgeneri
 and 
omplying to the interfa
e de�nition as possible while, also being
ompatible with Protégé.For parsing XML we use the SGML module of SWI-Prolog, whi
h 
an beoperated in an XML 
ompatibility mode, allowing namespa
es. As this is nota dire
t XML parser, it has some di�
ulties when used in XML mode. Forexample even with the stri
test settings and treating all warnings as errors, ita

epts input �les that are not even well-formed XML. Be
ause of this, and inhope of better performan
e, we are planning to swit
h to Apa
he Xer
es-C++.With Xer
es we plan to use SAX parsing, instead of DOM, with the hope oflower memory usage and faster parsing.The data are extra
ted from the XML DOM using De�nite Clause Grammars(DCG).Figure 6 shows the results of a query issued from Protégé, as answered bythe DLog server.

Fig. 6. S
reenshot of query results in Protégé answered by DLog.11



The integration of Protégé and the database interfa
e is in progress. A seriousdi�
ulty is that if the results of a query 
ontain individuals that are not de�nedin Protégé (i.e. individuals present only in databases) Protégé silently dropsthese individuals from the list of query results.6 EvaluationThis se
tion 
ontains a preliminary performan
e test of the database inter-fa
e.We tried the database interfa
e on a large version of the Io
aste problemwhi
h 
ontains 5058 pairs in the hasChild relation, 855 instan
es that are knownto be patri
ide, and 314 that are known to be non-patri
ide.The exe
ution results are summarised in Table 1. The load time means thetime it takes to load the �le whi
h 
ontains the axioms, in
luding the XMLparsing. The translation time is the time it takes to generate the TBox andABox 
ode from the axioms, while exe
ution time is the run-time of the query.Table 1. Comparing the in-memory and database version of a large Io
aste test.(se
onds) load translate exe
ute totalin-memory 0.88 0.53 0.02 1.43database 0.05 0.02 0.36 0.43When the ABox is stored in memory, the translation takes 1.41 se
onds, andthe exe
ution takes only 0.02 se
onds. Note that these �gures were obtained withthe indexing optimisation turned o�. When this optimisation is turned on, thenumber of generated ABox 
lauses is doubled, and translation time in
reasesa

ordingly.The database variant of the example enumerates all the instan
es of thequeried 
on
ept in 0.36 se
onds. This, 
ompared to the original 0.02 se
onds ismu
h slower. However, the time we spent at 
ompile-time was altogether 0.07se
onds, resulting in a total exe
ution time of 0.43 se
onds. To sum up, in termsof total query exe
ution time, more than a three-fold de
rease was a
hieved,using the database interfa
e.From the above data it may seem that using a database for storing the ABox,whi
h �ts into memory, is bene�
ial only be
ause of the redu
ed 
ompile-time.However, we believe that in the 
ase of large data sets and 
omplex queries(espe
ially if these 
ontain 
on
epts giving rise to query predi
ates) exe
utiontime 
an also be better than that of the in-memory variant.Detailed evaluation of the DLog System 
an be found in [3℄.12



7 Summary and future workIn this paper we have shown the ar
hite
ture of the DLog system, dis
ussed adatabase interfa
e for representing large ABoxes, and reported on the integrationof DLog with the Protégé ontology editor.The database interfa
e is espe
ially useful if the data set 
annot �t in memoryor if it is shared with other systems. Using databases 
an greatly redu
e 
ompiletime and, with advan
ed optimisations, it may provide e�
ien
y similar to thatof the in-memory version.Future improvements in
lude the optimisation of query predi
ates, by trans-forming them to database queries, and better integration of Protégé and thedatabase interfa
e. Our plans also in
lude the implementation of a query mod-ule to handle 
omposite queries, and the support for additional interfa
e formats,su
h as OWL, or the KRSS notation used by e.g. the Ra
erPro engine.A
knowledgementsThe authors are grateful to the anonymous reviewers for their 
omments onthe earlier version of the paper, and espe
ially for re
ommending the BillionTriples Challenge for evaluation.Referen
es1. Be
hhofer, S.: OWL web ontology language referen
e. W3C re
ommendation(February 2004)2. Noy, N., Fergerson, R., Musen, M.: The knowledge modelof Protege-2000: Combining interoperability and �exibility.http://
iteseer.nj.ne
.
om/noy01knowledge.html (2000)3. Luká
sy, G., Szeredi, P.: E�
ient des
ription logi
 reasoning in Prolog: the DLogsystem. Te
hni
al report, Budapest University of Te
hnology and E
onomi
s (Jan-uary 2008) Conditionally a

epted for publi
ation in Theory and Pra
ti
e of Logi
Programming.4. Luká
sy, G., Szeredi, P., Kádár, B.: Prolog based des
ription logi
 reasoning.(De
ember 2008) To appear in ICLP 2008.5. Haarslev, V., Möller, R.: Optimization te
hniques for retrieving resour
es des
ribedin OWL/RDF do
uments: First results. In: Ninth International Conferen
e on thePrin
iples of Knowledge Representation and Reasoning, KR 2004, Whistler, BC,Canada, June 2-5. (2004) 163�1736. Haarslev, V., Möller, R., van der Straeten, R., Wessel, M.: Extended Query Fa-
ilities for Ra
er and an Appli
ation to Software-Engineering Problems. In: Pro-
eedings of the 2004 International Workshop on Des
ription Logi
s (DL-2004),Whistler, BC, Canada, June 6-8. (2004) 148�1577. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A pra
ti
alOWL-DL reasoner. Web Semant. 5(2) (2007) 51�538. Horro
ks, I., Li, L., Turi, D., Be
hhofer, S.: The Instan
e Store: DL reasoningwith large numbers of individuals. In: Pro
eedings of DL2004, British Columbia,Canada. (2004) 13



9. Horro
ks, I., Voronkov, A.: Reasoning support for expressive ontology languagesusing a theorem prover. In: FoIKS. Volume 3861 of Le
ture Notes in ComputerS
ien
e., Springer (2006) 201�21810. Hustadt, U., Motik, B., Sattler, U.: Reasoning for Des
ription Logi
s around SHIQin a resolution framework. Te
hni
al report, FZI, Karlsruhe (2004)11. Motik, B.: Reasoning in Des
ription Logi
s using Resolution and Dedu
tiveDatabases. PhD thesis, Univesität Karlsruhe (TH), Karlsruhe, Germany (January2006)12. Grosof, B.N., Horro
ks, I., Volz, R., De
ker, S.: Des
ription logi
 programs: Com-bining logi
 programs with des
ription logi
. In: Pro
. of the Twelfth InternationalWorld Wide Web Conferen
e (WWW 2003), ACM (2003) 48�5713. Hustadt, U., Motik, B., Sattler, U.: Data 
omplexity of reasoning in very expressivedes
ription logi
s. In: Pro
eedings of the Nineteenth International Joint Conferen
eon Arti�
ial Intelligen
e (IJCAI 2005), International Joint Conferen
es on Arti�
ialIntelligen
e (2005) 466�47114. Sti
kel, M.E.: A Prolog te
hnology theorem prover: a new exposition and imple-mentation in Prolog. Theoreti
al Computer S
ien
e 104(1) (1992) 109�12815. Zombori, Zs.: E�
ient two-phase data reasoning for des
ription logi
s. In: Pro-
eedings of the International Federation for Information Pro
essing Te
hni
al Com-mittee on Arti�
ial Intelligen
e (TC12), Milan, Italy (September 2008) A

epted
onferen
e paper.16. Be
hhofer, S.: The DIG des
ription logi
 interfa
e. http://dig.
s.man
hester.a
.uk/(2006)

14


