
PathExplorer: Service Mining for Biological

Pathways on the Web

George Zheng1 and Athman Bouguettaya2

1 Virginia Tech, Blacksburg, Virginia, USA
gzheng@vt.edu

2 CSIRO ICT Centre, Canberra, ACT, Australia
athman.bouguettaya@csiro.au

Abstract. We propose to model biological processes using Web services
to address limitations of existing biological representation methodologies.
We apply our Web service mining tool, named PathExplorer, to discover
potentially interesting biological pathways linking service models of bio-
logical processes. The tool uses an innovative approach to identify useful
pathways based on graph-based hints and service-based simulation veri-
fying user’s hypotheses.

1 Introduction

Biological pathways are represented as networks of interactions among biolog-
ical entities such as cell, DNA, RNA and enzyme. The exposure of biological
pathways are expected to deepen our understanding of how diseases come about
and help expedite drug discovery for treating them. Computer-based pathway
study currently relies on two main approaches of entity/process representation:
free-text descriptions and computer models. Free-text based approaches used in
GenBank [25], DIP [28], KEGG [21, 23], Swiss-Prot [7], and COPE [20] rely on
free text annotations and narratives [15, 16] to target towards human compre-
hension. One major disadvantage with these approaches is their inherent lack
of support for computer-based simulation of these processes. Computer mod-
els (e.g., [3, 4, 17, 22, 27]) of biological processes, on the other hand, are often
constructed to simulate biological processes in an isolated environment, limited
to the study of known pathways, and lack the ability to facilitate the discov-
ery of new pathways. We propose to use Web service modeling strategy [29] to
bridge the gaps between the two representation approaches. Using this strategy,
biological processes are modeled as Web service operations, which can be first
described and published by one organization, and later discovered and invoked by
other independently developed applications. A service operation may consume
some input substance meeting a set of preconditions and then produce some
output substance as a result of its invocation. Some of these input and output
substances may themselves carry processes that are known to us and thus can be
also modeled and deployed as Web services. Domain ontologies containing defi-
nition of various entity types would be used by these Web services when referring

to their operation inputs and outputs. This service oriented process modeling
and deployment strategy not only allows for the identification of pathways link-
ing processes of biological entities, as do existing natural language processing
approaches (e.g., [18, 26]), but would more importantly bring about unprece-
dented opportunity for validating such pathways right on the Web through di-
rect invocation of involved services. When enough details are captured in these
process models, this in-place invocation capability presents an inexpensive and
accessible alternative to existing in vitro and/or in vivo exploratory mechanisms.
In [31], we applied our Web service mining framework [30] to WSML/WSDL ser-
vice models of biological processes that are deployed using WSMX [10] for the
discovery of biological pathways. We then explored the unprecedented opportu-
nity of evaluating such pathways right on the Web through direct invocation of
involved services. In this paper, we extend our approach to also provide graph-
based hints on discovered pathways to help user formulate hypotheses, which
can then be either confirmed or rejected based on simulation results, leading to
the identification of useful pathways.

In the remainder of this paper, we first describe in Section 2 the architecture
of PathExplorer. In Section 3, we introduce how we model biological processes as
WSML services. In Section 4, we describe the mechanisms PathExplorer uses to
discover pathways linking WSML service models of biological processes. In par-
ticular, we focus on how PathExplorer identifies potentially interesting subgraphs
within such a pathway network. In Section 5, we describe our simulation algo-
rithm, first introduced in [31] and since extended for this paper. The algorithm
is used to invoke Web services involved in discovered pathways for validation
and predictive analysis purposes. We then present and discuss our simulation
results from applying this algorithm. We conclude the paper in Section 6.

2 Architecture

Fig. 1 shows the architecture of PathExplorer, which starts with scope specifica-

tion, a manual phase involving a domain expert defining mining context including
functional areas (e.g., cell enzyme, drug functions) and/or locales (e.g., heart,
brain) where these functions reside. Based on such mining context, PathExplorer
establishes a hierarchy of domain ontology indices to speed up later phases in
the mining process. Scope specification is followed by several automatic phases.
The first of these is search space determination, where the mining context is
used to define a focused library of existing Web services as the initial pool for
further mining. The next is the screening phase, where Web services in the fo-
cused library would go through filtering algorithms for the purpose of identifying
potentially interesting leads of service compositions or pathway segments. The
filtering algorithms are based on the following three service/operation recogni-
tion mechanisms:

Promotion. When operation op1 of service sa produces an entity (i.e., output
parameter) that in turn provides service sb, we say that sa : op1 promotes sb, as
shown in Fig. 1 (a).

������� � �
	�� ������ � �

����� ��������� ��� !�

"�#��$��
"%�! &#!' (' #&��� ' ��)

"� &�!� #��*"%�!�&#�
+% &� �� ,�')��&� ' ��)

-%. /!0 1�0 2�354
6�7!8$6!9 1!. :
;<:5= 6!> 6�? 4
@ :&A!. 25/&B

C�DFEFG H G I
J�K�H L�G MNK O�P�Q�RJ�K�H L�G MNK

S 6 2�T�B�/&AVU&. W�0 1�0 4
X
. :�. : ?ZY�6 :5= /�[F=

\�]N^F_F` a b�^FcFd
cFe fFchg

d bF_Nchd fFg

"�#!� � !)�')�i

j&G k l K�H G IFm

J�l nhl G M
o�K&H G p G MNnhl G q5I

rFG I�stG INm

u

v

w

u vxV��y�	!��z w { �
	&� ������ � �

J$|h} ~ KFMtl G LhK
�5Lhn5k |FnNl G q&I

P } ~ KFM l G LhK�5Lhn5k |Nnhl G q�I
�!���!� ���5� ' ��)

�

�

{

�

J�G ��|Fk n�l G q5I

� Itl K5H nFMtl G q5I

��1�= 3h��1�4*��/�= � 6 0 �NB

�

�����������

�*J�� Q���� |FIFI�G INm�*J��<r%J�K&H L�G MNKFD

��Khl l � ��� |FI�IFG IFm��J��$r�J�K�H L�G MNKhD

�

�

��|NMF|ND
J�K&H L�G MNK

� ����� �� !¡ ¢t£�¤&¥�¦<£&¤�§�¨��$¡ ¥ ¡ §!�

©tª «¬&®&¯
� °!��±�¢t§�²V§�¥ ¡ §��

�t³$�!� �!´�¡ µ�¡ ¥ ¡ §��

¶!· ¶¶!¸

©hª «¬
�®&¯ ¶�·¶!¸

¹

¶¹

«
¬�®�º ¬

&®�»«

¬

q&ENK5H nhl G q5I

�*K5}
J�K�H L�G MNK

¼%½�¾¿½�À¿Á$Â

©Nª «

¬
«

D�K5H L�G MNK �EFH qhLhG Ã5G INm
K5I�l G l �

H KFm&|Fk n�H
K&Itl G l �

G IFÄFG }hG l G INm
q&ENK5H nhl G q5I

¹

Fig. 1. PathExplorer Architecture

Inhibition. When operation op1 of service sa consumes an entity (i.e., input
parameter) that in turn provides service sb, we say that sa : op1 inhibits sb as
shown in Fig. 1 (b).

Indirect Recognition3. A target operation opt indirectly recognizes a source

operation ops, if ops generates some or all input parameters of opt, as shown in
Fig. 1 (c).

Based on these recognition mechanisms coupled with a publication/subscription-
based algorithm [30], linkages between Web services and their operations in the
focused library can be quickly established from bottom-up. These pathway seg-
ment leads are then semantically verified based on a subset of operation pre-
and post-conditions involving binary variables (e.g., whether the input to an op-
eration is activated) and enumerated properties (e.g., the locale of an operation
input). Finally, verified pathway segment leads are linked together using our link
algorithms [29] for establishing more comprehensive pathway network. Discov-
ered pathways from the screening phase are input to the evaluation phase, which
consists of four sub-phases. Objective evaluation identifies and highlights inter-
esting segments of a pathway by checking whether such linkages are novel (i.e.,

3 Indirect recognition is in contrast to direct recognition [30], where an operation can
be directly invoked by another. Direct recognition is applicable to fields such as
e-commerce but not pathway discovery and is thus not included here.

previously unknown). An interactive session follows next with the user taking
hints from these highlighted interesting segments within the pathway network
and picking a handful of nodes representing services, operations and parameters
to pursue further. PathExplorer then attempts to link these nodes into a fully
connected graph using a subset of nodes and edges in the original graph. This
subgraph provides the user the basis to formulate hypotheses. As an example,
such a hypothesis may state that an increase in the dosage amount of Aspirin
will lead to the relief of pain, but may inadvertently increase the risk of ul-
cer in the stomach. These hypotheses can be tested out via simulation, which
involves PathExplorer invoking the relevant service operations, changing the
quantity/attribute value of various entities involved. Simulation results showing
the dynamic relationships between these biological entities are then presented
to the user, whose subjective evaluation finally determines whether the pathway
in pursuit is actually useful.

3 Service-based Modeling of Biological Processes

To model biological processes as Web services, we first compiled a list of concep-
tual process models shown in Fig. 2 that are based on [2], [6], [14], [19] and [24].
In addition to describing process models, these sources also reveal some simple
relevant pathways that can be manually put together. Multiple examples of pro-

motion, inhibition and indirect recognition can be found in these pathways. For
example, Fig. 2 (a) shows that 15 LO provides an operation called produce LXA4,
which promotes the service of LXA4. Fig. 2 (c) shows that upon injury, LTB4 re-
cruits Neutrophil, promoting its service of producing COX2. Fig. 2 (i) shows that
Gastric Juice’s service can inhibit the services of both Stomach Cell and Mucus.
Examples of indirect recognition can be found in Fig. 2 (h), where PLA2’s service
can liberate Arachidonic Acid, which can in turn be used as input to either the
produce PGG2 operation of COX1’s service or the produce PGE2 operation of
the COX2 service. Examples of pre- and post-conditions can be found in Fig. 2
(g), where NF-κB/Rel when not phosphorylated can translocate from cytoplasm
to cell nucleus, where it can stimulate proinflammatory gene transcription. NF-
κB/Rel’s service, however, may be inhibited by the IκB service if NF-κB/Rel is
bound by its corresponding operation when IκB is not phosphorylated. We use
process models such as these as references when we develop real Web services.
We also use simple pathways manually constructed here as references when we
check the correctness of pathways automatically discovered in Section 4 using
our mining algorithms.

Each of the conceptual process models is next captured in a Java class and
exposed through Axis2 [1] running inside a Jetty Web server [5] as a WSDL
service. Although the internal details of biological processes can be modeled as
WSDL Web services, WSDL itself does not provide elaborate mechanism for ex-
pressing the pre- and post-conditions of service operations. WSDL also lacks the
semantics needed to unambiguously describe data types used by operation input
and output messages. We choose WSML [8] among others (e.g., OWL-S [13],
WSDL-S [11]) to fill this gap due to the availability of WSMX, which supports

���������
	�� �� ��	

��� ��	�� ��� 	������ ������� ������� ������� �

�

�
�
���� ��
	!� �� ��	

��
" � ��	�� �#� 	����

�
� ������� ���!��� �$����� �
�

��%�&
�

�!� �!'������
��	�" " �
	�� �� ��)(� ����* �#	+'�*��#*�,

-�. �
/�*#��*�,

0 �#1�2�*��!��� � � 354�6 7
�

/�*#��*�,5�
	�� �� ��	
�

� ��#	���, � ��'������$8���" "

-�. �
�!� �!'���������	�" "

�%���, � � � �9�*�� � 	
�
	!� �� ��	

���	 (" 	#� 	
'�*#��*�,

�
	!� ����	

,�� �!'5������� 	�" "

:�;�<#=�;�> ?�@ ?�AB#C @ ;�D�E�D�F G F < H�I
J�K�L B 4�6 7�7

� (�� �#� � ���MN	!���O	�� �� ��	(� �#�� ��� ��PQ� ��	
� (�� �#� � �!�

RTS�UNS�VTW+X

-�. �

YZ

	���� � � 3(� �##� ��� ��PQ� ��	
M[����
	�� #� � 	

� � (*�� ,5� �
� (�� �#� � ���
'�	�	#� � ��P(� 	������ ��� � � �!� � (�� �#� � ���(��, � �����#��� � � ���

�

�
-�. �
,�	�� �� ��	�.(� �#�� ��� ��P
,�*�� ,�� �!��� 	-�. �

� 	�P�*�" ����	���� � � 3

,�	�� �� �#	�. (� �#�� ��� ��P
	���� � � 3

(� ����*���	\��%�%5

-O. � �����O
�

���$�� Q�O	�� �� ��	
�

(� ����*���	+��%�-�

J]�^�_�K `�a b�?�G�:�;!< C�c ;�d C#c ;�@ H�G E�< ?�A

�
& e�fg��	!� �� ��	

�
��� ���\h�i�. e�f!j k�	�" h�i�. e#f!j k�	�"

-�. � �

�

�

� � ���#,�" �����#� 	

, � � '�*�" �#� 	 (� ��� ��1 " �!'�'���� ��� 3P�	��#	�� � ����,��#� � (� � ���

l]�G ;�= E�G ?\m�=�H#< ; C G E�d#n

G ;�=�E�G ?\m�:!o�=�G ?�o�d

G ;�=�E�G ?\mQ:!o =�G ?�o�d

p `N:�;!< C�c ;�d C�c ;#@ H#G E�< ?�A

G ;�=#E�G ?+m�q�:�A�; C G E�d�n�F =�b�?�< F =�o�G o�n

���%�-�
�
	�� �� ��	

�

�
h
	�*�� � � (��� "
�
	�� �� ��	

�
�
� ����*���	Q���$��

& ����*���	\��r�. ��� -�. �
��r�. ���

��� ���\h
����� � 	 (� ���

-�. �
h
	�*�� � � (��� " �#�!� � s *�� 3

�
(� ����*�� 	\��tOfOu

-�. �
��t�f�u

� ���tOf�u
,#	�� �� ��	 � 	��#� *�� �!h
	�*�� � � (��� "

�
h
	�*�� � � (��� "

G ;�= E�G ?�v mQF : w o�@ H

�
�� �x���y�z -�. �

��, (� � � �
��	!� �� � 	

�
�����O

��� �#��& {
{
|

-�. �
�����������	�� 3�" �#� 	Q�������

����	�� 3�" �#� 	Q�����O
-�. �

-!. �
& {
{�. |

� �
��%�%5

��%�-�
-�. �

J] p }�} K

�
& {�{�. |�~���� ��� �#� & e�f

-�. �

l] p `T:�;�< C�c ;�d C�c ;#@ H�G E!< ?�A

(����, (����� 3�" �#� 	\& e�f

p ` C�c ;�d C�c ;#@ H#G E�< ?�A

�
��r�. ����, 	�� �� ��	

�
(� ����*�� 	\������u

-�. �
�����
u

� �
�����
u��
	�� �� ��	

,�* (�(� 	�,�,Q� ��1 " ��'�'5�#� � ���

� � ����� � 	
� ��1 " ��'�'��#� � ���

���+�

���Q�

�����

� �g�

���g�

� �g�

�����

��� �

� 	�P�*�" ����	!��� � � 3

h�i�. e�f!j k
	!"
�
	�� #� ��	

�

�

�
,�	���,�	+�O��� �

-�. �
����� ��,�� P�����"��#�!� ��1 " �!'�'��#� � ���

-�. �
h
����� � 	 (� ���

�
� � ����,�'�� ������� �

^�;�= F = ? C < ;#@�F d5`
;�o#:�A

-�. �
����� �5,�� P�����"#� ��, (� �#��" ���!� �

� -�. �
k
	�" � 	#1�,�� P��#��" � ��, (� � ��" ����� �

G ;�= E�G�m�F :�L G E�n�nQE!< F ;�:

G ;�= E�G�m�d C F :�E�G#= ;#@ A

� � �

� ���

�
� (� ���!" ����� ��
	�� �� ��	

�
� � ���#,�'�� ������� �

-�. �
����� ��,#� P!����" ����, (� ����" ����� �

-�. �
����� ��,�� P�� ��" ���!��� ��� �

�
� � �!��,�'�� ������� ��k
	�" � 	#1 -!. �

k
	!" � 	#1�,#� P!����" ���!��� ��� �

-�. �
k
	�" � 	�1�,�� P�����"��#��, (� �#��" ����� �

�
f
� ��� ����	�� #� � 	

�
(� ��� 	�,�,����!� �

�

�

�

�

�

���O������������� � ¡

h
����� � 	 (� ���
�O	�� �� ��	

, 	���,�	+k
	!" � 	#1

Fig. 2. Examples of Conceptual Process Model and Simple Pathway

the deployment of ontologies and Web services described in WSML. We catego-
rize biological entities within our mining context into several ontologies. These
include Fatty Acid, Protein, Cell, and Drug. They would all refer to a Common

ontology containing generic entity types such as Substance, the root concept of
all entity types. We use UnknownSubstance as a placeholder for process inputs
that are not fully described in the literature. We also create a Miscellaneous

ontology capturing definitions of entity types found in the literature that don’t
seem to belong to any domain. Fig. 3 shows several ontologies including those for
cells, proteins, fatty acids and the miscellaneous entities rendered in WSMT [9].

Using these ontologies, we then wrap the semantic interfaces of existing
WSDL services as WSML services. WSML supports the descriptions of pre- and
post-conditions in the capability section and the ontological type description in
the interface section. Fig. 4 gives an example of each for the NF kappaB Rel

service. The capability section states for the precondition that the input entity
instance named nfkbr should be of type NF kappaB Rel (defined in the protein
ontology). In addition, nfkbr’s locale should be cytoplasm and it should not be
phosphorylated. The interface section states that input entity NF kappaB Rel

has grounding with the translocate operation of the corresponding WSDL ser-
vice. The output from this service operation should be mapped to NF kappaB Rel

as defined in the protein ontology.

Fig. 3. Example Ontologies Rendered in WSMT

����������	�
��	������������������������������ ������� �!��
�"����������#�������$�#%���&#����	�'�����������%�
�(���)���	���)�����	�*�),+-�������������������)�
�.#��*�)�����������" �/��
�"��102�0��#��3�45��6�	$����	�75�$8�)��9��:9��0�)$
�.#��*�)�;��=<���>�������������9������)�
�.#�*�)�����������" �!��
�"��@?#����������"$��)��#��A�
��$��)�����?#����������"�&�;=��<B *>�������������9������(�
����/��
�"�� B *=��)���)���)������#��:��C:�;=��<�����$�������������������������D� ������� �/��
�"��������$�#���������#%5��&#����	�'�;=�FE
�#)�G�0�)�
�.#�*�)F3�45��6	�����	�75�$8�)��9��:9��0$)�
�.#��*�)��H�� B *�;�*�������
���G�(����$
F��	�����	$��(�)I�1J�)���
�"�)>K#�)���"���������������9�����5����)$
#�L��	����$	���(�)M���5�������������@0�)�
�.#��*�)�N���������"=��������������9������� B)$��0���(�
�*�)=�L��	�����	$��(�)M�����������������@0�)�
�.#��*�)�N���������"��9"���������������9������
���.�� B)�
#�L�	�����	���(�)>�����������O��������)�
5.#��*�)�����������" �!��
�"=�1?#���������"���)��#�A$
�����)�����?�����������"�&$;�3�45��6�	�����	�75�$8�)$�#��������������9������
���.�� B)�
�P�������(���	�G���)=�L��	�����	$��(�)M���5�������������5��)�
�.#��*�)�����������"Q�!��
�"�����
�(�)��)$� B ��H��

�������$
�����?#�����$����"�&+ ����;�A$
�����)�����?�����������"&E
*�	���	�G���������&R��
�	���������*�	���)

��
�)�*���� B �������$�B)�H�����) B 7�&S ��H�6�G�
>��)���G�)�
�?�H>3�45��6�	$����	�75�$8�)$��T���*�	���)U�	�����	���() S ��<��������������
5&#��	���) B ��	�����	���(�) S �#V�	�� BW�S �>XI��*&#��������	$������YZ	�� BW�S �>XUH�	$����)�Y��
�������*���� B ��������B)�H�����) B 7�&S ��H�6�G�
>��)���G�)�
�?�H>3�45��6�	$����	�75�$8�)$��T���*�	���)U�	�����	���() S �#VZ	$� BW�S �>XI����(�*���)�(�����Y��

������)�
�H�	�*�)F3�45��6�	$����	�75�$8�)$�9��:9��0�)$
�.#��*�)#[�����)�
�H�	�*�)
*$����
�)���"$
�	�����&U3�45��6�	�����	�75�$8�)��9��:���0�)�
�.#�*�)�P#����
�)���"�
�	�����&����	��)�0#��"���	���(�
�)F3�45��6�	�����	�7��$8�)��9��:9��0�)�
�.#��*�)0#��	���)����"���	���(�
)

�������$
�����?#�����$����"�&+ ����;�A$
�����)�����?�����������"&E
��� *�����*�)����\����;�3�4���6�	�����	�7��$8�)�����������J#
���(�� B ����"M��������������������)�
�.#��*�)�����������"Q�!��
�" �!]�^�^�:#�3�4�6�	�����	�7�8�)�� S ��� B ��;5��� B ����������)�
�H	�*�)�N�)����	�"�)�8�)�H�)$
�)���*�) W 3�4�6�	�����	�7�8�)��#����
	���������*�	$��)�������^=Y��
��(�� *�����*�)����\����;�3�4���6�	�����	�7��$8�)��

��
�	���������������8$(���)��>3�4���6�	�����	�75�$8�)��9��:���0�)�
�.#��*�)�_#
�	���������������8�(���)��

`�acbed�f�g>h�if1j f!k1lDmcneo\pqd�ork�stoUfuqvtoOwxf�u
`Of9ytz�{I|}d-fu~vef�j�|ck=f1a�ux�9a�b�gUa�v}o�iC��a�ptb#j�o

Fig. 4. Semantic Interface Description in WSML

To work with WSML, we have made slight adaptations to our screening al-
gorithms so they can be applied directly to WSML services. First, we add a
provider property in the non functional properties (nfp) section of each WSML
service to indicate the corresponding ontological type of an entity that can pro-
vide the service. PathExplorer uses this information to establish the relationship
between a service providing entity and the service it provides. Second, we add a
modelSource property in the nfp section to indicate the source information that
the model is based on. Third, we add a providerConsumable property in the nfp
section to indicate to PathExplorer whether the service providing entity should
be consumed along the invocation of its operation. For example, in order for
mucus (Fig. 2 (i)) to cover the wall of stomach, the mucus itself will have to be
consumed. Finally, our validation algorithm has been customized to work with
the service interrogation APIs of the WSMX runtime library for determining the
overlap between the postcondition of a source operation and the precondition
of a target operation. Unfortunately, WSML allows for the specification of pre-
and post-conditions for only an entire service, but not its individual operations.
Thus we have to split services that each originally has multiple operations into
several services (e.g., NF kappaB Rel 1 Service and NF kappaB Rel 2 Service)
so that different conditions can be individually specified for these operations.

PathExplorer uses the name of these services to keep track of their relationship
and uses that information to merge these services towards the end of the screen-
ing phase. During simulation, PathExplorer uses lowering/lifting adapters [31]
to convert ontological entity instances used by WSML services to/from SOAP
messages used by WSDL services.

4 Discovery of Interesting Pathways

Algorithms from [29] and [31] enabled PathExplorer to discover potentially in-
teresting pathways linking WSML service models of biological processes as rep-
resented in Fig. 2. To support pathway visualization, PathExplorer generates a
GraphML file for each discovered pathway network and uses yEd [12] to ren-
der the corresponding graph. We have since also developed new algorithms in
PathExplorer to help user, during the evaluation phase, formulate hypotheses
that would lead to the identification of useful pathways extended from interesting
segments. The addition of the modelSource property (Fig. 4) in the nfp section
allows PathExplorer to identify novel (i.e., interesting) linkages between service
models in a discovered pathway network by comparing the source indicator of
linkages in the pathway graph representing the three types of service/operation
recognitions as shown in Fig. 1. PathExplorer then automatically highlights these
edges in the graph, presenting them as visual aid to the user for focusing more on
nodes that may lead to the identification of useful pathways. After the user se-
lects nodes of interest, PathExplorer attempts to link them into a fully connected
graph to the extent possible using the following steps:

– Coalescing nodes (e.g., a, b, c in Fig. 5) linked by interesting edges into a group.

– Converting interesting nodes (e.g., t picked by user) and groups encompassing
interesting nodes (e.g., c, f) into nuclei, i.e., graph expansion focus nodes.

� �

�

� �

�

�
�

�

	

�

������ ����������� ��� ��� ���
� ��� ��� ����� � � �!����"#���$� %������ ��"

&�'(� ��� ��� ����� � ���!��"��#���) ��� ��� ����� � � �� ��"#���*%�� � +���"
&�'*�� ���

,
-

.

) ��� ��� ����� � ���/��"��#���
���� ��01��� � ����� � '2"#��� ���3� ��"

4

56

7

81��� �#�!% ��� ���

8(����������"!9;:�% ��� � � ��� < � � ���#��� � "!9;:�% ��� � � ���

=

>

?

Fig. 5. Expansion of Interesting Segments

– Incrementally expanding all the nuclei. We use the heuristics of connecting all
the interesting nodes using as many interesting edges as possible. To achieve this,
whenever a newly encountered node is part of a non-nucleus group (e.g., one that
contains h, i and j), an additional expansion is also triggered and the whole group
are engulfed. The expansion stops when all nuclei are connected or when all nodes
in the graph are visited.

���������	��
������������� �
� ���������������������

 �!"����������#�$���&%!�(' �*)

+�,�- .�/ 0$,21�- 3(.4/ 5�/ 6(78,�6�9 / 9 : +$,�- .(/ 0�, 3�1(,�- ;49 / 3�6

Fig. 6. Discovered Pathway Rendered in yEd

Discovered pathway networks are first presented to the user in yEd graphs
with interesting linkages highlighted. Once interesting nodes are picked by the
user, PathExplorer attempts to use the above process to link them into a fully
connected subgraph, an example of which is shown in Fig. 6 and highlighted
with thick edges. Such graphs are then presented to the user as basis for hy-
pothesis formulation. For brevity, we display only shortened names for nodes
in the graph. We keep the full name containing either the ontological path for
entity nodes or the WSML service path for both service and operation nodes
in a separate description field (not shown in Fig. 6). In addition, we omit pre-
and post-condition details of operation linking edges such as the two forming a
loop between operation coverStomachWall and entity Stomach Cell 4. However,

4 The precondition along the upper edge states that Stomach Cell is not covered by
Mucus and the postcondition along the lower edge states that Stomach Cell is cov-
ered by Mucus.

we keep track of the pre- and post-conditions in our algorithm as such informa-
tion along with the ontological entity paths and WSML service paths are needed
when we try to invoke these services during simulation. To ensure the correctness
of our algorithms, we compared segments within the automatically discovered
pathway network with those constructed manually in Fig. 2 and found them to
be consistent in all cases.

5 Pathway Simulation

The verification of pathway validity can be carried out using a simulation envi-
ronment, where functions of biological Web services can be invoked in the order
as identified in pathway leads. A pathway lead identified in the screening phase
indicates the potential possibility of a pathway based on service and operation
recognition. Verification aims at determining if segments of an identified path-
way lead can indeed be enabled with a chain of relevant conditions. The second
important aspect of runtime simulation is its ability to support predictive anal-
ysis. Based on pathway leads established from the screening phase and later
highlighted in the interactive hypothesis formulation sub-phase, the user may
attempt to predict certain outcome from indirect relationships derived from the
way the pathway network is laid out. For example, the user may predict based
on Fig. 6 that an increase in the dosage amount of Aspirin will lead to the relief
of pain, but may also increase the risk of ulcer in the stomach. Such prediction
can be tested out using a simulation strategy outlined in Algorithm 1.

When an operation is to be invoked, the algorithm checks two factors. First,
it examines whether all the pre-conditions of the operation are met. An opera-
tion that does not have available input entities meeting its preconditions should
simply not be invoked. Second, it determines how many instances are available
for providing the corresponding service. This factor is needed due to the fact
that biological entities of the same type each has a discrete service process that
deals with input and output of a finite proportion. The available instances of a
particular service providing entity will drive the amount of various other entities
they may consume and/or produce. For this reason, the algorithm treats each
entity node in a pathway network such as one shown in Fig. 6 as a container of
entity instances of the noted ontology type. In some cases, the service provider
is also used as an input parameter. For example, the sensePain operation from
the NociceptorService in Fig. 2 (f) has a precondition stating that the Nociceptor

itself should be bound in order to provide this service. In order to express this
precondition, we decided to include the service providing entity also as an input
parameter. In cases such as this, the number of service providing instances will
be determined by checking further whether each of the service providing entity
instances also meets the precondition of the corresponding operation.

In Algorithm 1, an initial number of instances for each entity type et are
first generated based on function f(et) (lines 01-03). It is conceivable that an
expert may want to create different number of instances at the beginning for
different entity types. Next, we conduct I iterations of operation invocations
(lines 05-31). We take a snapshot of the quantities at the end of each iteration

Algorithm 1 Simulation Algorithm
Input: Pathway Network PN , function f() determining initial number of instances for an entity type,
total number of iterations I, upper bound S for random number generator random with uniform
distribution
Output: Statistics Stats
Variables: entity type et, entity instance container Container(et) of type et, operation op, input
entity opin, output entity opout and precondition oppre

1: for all et ∈ PN do

2: Container(et)← create f(et) instances;
3: end for

4: Stats← Tally entity quantities in each container;
5: for i = 0 to I do

6: for all op ∈ PN do

7: s← op.getProviderServce();
8: etparameter ← op.getInputParameter().getEntityType();
9: etprovider ← s.getProviderEntityType();
10: if etparameter = etprovider then

11: n← number of entities of type etprovider that match oppre

12: else

13: n← number of entities of type etparameter

14: end if

15: n← n/S + ((random.nextInt(S) < (n modulo S))?1 : 0);
16: for j = 0 to n do

17: if ∃opin ∈ Container(etparameter) : opin matches oppre then

18: opout ← invoke(op) with opin;
19: if etparameter 6= etprovider∧ provider is consumable then

20: Container(etprovider).remove(0);
21: end if

22: if etparameter 6= etprovider∨ provider is consumable then

23: Container(etparameter).remove(opin);
24: end if

25: etparameter ← opout.getEntityType();
26: Container(etparameter).add(opout);
27: end if

28: end for

29: end for

30: Stats ← Tally entity quantities in each container;
31: end for

and before the very first iteration (lines 30 and 04). We determine the number
of times the corresponding operation should be invoked based on the quantity of
the corresponding service providing entity (lines 7 to 15). To make sure that an
operation from a service providing entity of a small quantity also gets the chance
to be invoked, a random number generator is used (line 15). Upon invocation of
the operation, we remove corresponding entity instance based on the truth table
depicted in Fig. 7. When we determine the provider should be removed (lines 19
to 21), we remove the first instance found in the corresponding container. Since
the provider is not the input parameter, it is consequently not involved in the
evaluation of the operation precondition. Thus we can remove any one instance
found in the container. Lines 22 to 24 are for removing the input parameter
instance when the corresponding condition is met. Finally, we add the output
parameter instance to the corresponding entity container (lines 25 and 26).

Simulation results obtained from each run by the PathExplorer are compiled
into an Excel spreadsheet, which is then used to generate a plot such as those
in Fig. 8 (for the graph in Fig. 6), where the horizontal axis is for the number of
iterations and vertical axis is for quantity. Fig. 8 (a) shows that when the quantity

� ����������	
��� ����	 �
� � ������� ����	 ������� ��	 �

��	
��� ����	� �
�
������������� �

!"���

!"���

#"

#"

$ $

$%

% $

%%

&('�����'���)����	 ���*��� ��	
�+'�
��� �,���,	 ����
������

&('�����'���)��	
��� ����	
�+'�
��� �,���,	 ����
������

��	
��� ����) � �
����+�������� �.-�/"
�0��
�� 0 0 ��	 ������� �����1��'����,����	 ������� ��	

�2	
��� ����) � �
������������� �.3�4657
�0
�.�� 0 0 ��	 ���8��� �+���*�9'����.����	 ������� ��	

Fig. 7. Logic for Removing Entity Instance After Operation Invocation

of Aspirin is 10, there is no sign of stomach erosion. When the quantity of Aspirin
increases to 40 in Fig. 8 (b), the quantity of stomach cell drops to around 30
after 150 iterations of operation invocation. This confirms the user hypothesis
that Aspirin has a side effect on the stomach. In addition, we also noticed that
given a fixed quantity of Aspirin, the reduction of the initial quantity of COX1

also has a negative effect on the stomach (Fig. 8 (c) and (d)). When the initial
quantity of COX1 is high, it takes longer for all the COX1 to get acetylated by
Aspirin. As a result, enough PGG2 and consequently PGH2 and PGI2 will be
built up to feed into the produceMucus operation of the StomachCellService. As
the initial quantity of COX1 becomes smaller and while the depletion rate of
Mucus by GastricJuiceService remains the same, less Mucus is being produced
by the StomachCellService as less PGI2 becomes available.

While Figures 8 (a) to (d) clearly illustrate the relationships between Aspirin
and Stomach Cell, the relationship between the dosage amount of Aspirin and
the sensation of pain is less obvious in these Figures. Except for Fig. 8 (a), which
shows some accumulation of PainSignal when the quantity of Aspirin is 10, the
rest of plots show no pattern of such accumulation or the variation thereof. A
closer look at the highlighted pathway in Fig. 6 reveals that this is actually con-
sistent with the way the simulation is set up. Since PainSignal is created and
then converted by the Brain to ReliefSignal, which disappears after it is sensed
by Nociceptor, this whole path at the bottom actually acts as a ‘leaky bucket’.
To examine exactly what is going on along that path, we decided to make two
changes in the simulation setting. First, we reduce the maximum frequency of
invoking the Brain service to half that of Nociceptor. This creates a potential
imbalance between the production rate of PainSignal and ReliefSignal since the
processPain operation from the BrainService will be consequently invoked less
frequently than the sensePain operation from the NociceptorService. Second, we
disable the senseRelief operation of the NociceptorService. This essentially stops
the leaking of the ReliefSignal that are generated as a result of the PainSignal.
When we apply only the first change to the simulation, the imbalance of the
processing rates for PainSignal and ReliefSignal results in a net accumulation of
PainSignal when the quantity of Aspirin is 10 (Fig. 8 (e)). When the quantity

� �������	��
 �
 ����	� � ����������
 �
 ������

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90
10

0
11

0
12

0
130 14

0
15

0

� ����������
 �
 ������ � � ��������
 �
 ������

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

� ����������
 �
 ������ � ����� ����
 �
 !�����

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90
10

0
11

0
12

0
130 14

0
15

0

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100 11
0

120 130 14
0

150

" #$
% &
'()
*+ ,(
+ -
*.,/
0+ .-
)(
1 2,
(
13
45 /
67

89&
89
: 9;
% 9
< =
>?
@A =
B

" #$
% &
'()
*+ ,(
+ -
*.,/
0+ .-
)(
1 2,
(
13
45 /
67

89&
89
: 9;
% 9<
BC D?
@A =
B

� E��GF �
 H
 ��I�JLKNMO�P���	Q��

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

� R��SF �
 H
 ��ITJUKNMN�P�!V��

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

W -+
0+ /
6X
YZ[
\]^

_ '`
+)
+ -
\a^

Fig. 8. Simulation Results

is increased to 40 (Fig. 8 (f)), we see there are some occasional and temporary
accumulation of PainSignal. Finally, we apply the second change along with
the first one. Consequently, we notice that while the pattern of PainSignal’s
accumulation hasn’t changed much, there is a consistent accumulation of Re-

liefSignal. Since each PainSignal is eventually converted to a ReliefSignal by the
Brain according to the highlighted pathway in Fig. 6, the rate of ReliefSignal’s
accumulation actually provides a much better picture on how fast PainSignal

has been generated. We see that as the dosage amount of Aspirin increases, less
ReliefSignal is generated, an indication that less PainSignal has been generated.
Thus it is obvious that the increase of the dosage amount of Aspirin has a posi-
tive effect on the suppression of PainSignal’s generation. This confirms the other
half of user’s original hypothesis.

Simulation results such as these presented in Fig. 8 provide information to a
pathway analyst who would otherwise get such information from in vitro and/or
in vivo exploratory mechanisms. Using the service-oriented simulation environ-
ment, the interrelationships among various entities involved in the pathway net-
work can now be exposed in a more holistic fashion than traditional text-based
pathway discovery mechanisms, which inherently lack the simulation capability.

6 Conclusion

We proposed to model biological processes as Web service to bridge the gap
between free-text description and traditional computer models of these processes.
We presented our service mining tool named PathExplorer and demonstrated the
feasibility of applying our service mining strategy to the discovery of pathways
linking service models of biological processes. We described how PathExplorer
identifies interesting segments in a pathway graph and automatically establishes
a fully connected graph linking nodes that the user is interested in exploring. The
graph, which is highlighted inside the discovered pathway network provides the
user the basis for formulating hypothesis, which can then be tested out through
simulation.

References

1. Apache axis2/java - next generation web services. http://ws.apache.org/axis2/.
2. Aspirin. http://www3.interscience.wiley.com:8100/legacy/college/boyer/

0471661791/cutting edge/aspirin/aspirin.htm.
3. Bps: Biochemical pathway simulator. http://www.brc.dcs.gla.ac.uk/projects/bps/.
4. Copasi. http://mendes.vbi.vt.edu/tiki-index.php?page=COPASI.
5. Jetty. http://www.mortbay.org/.
6. Nf-kappab pathway. http://www.cellsignal.com/reference/pathway/NF kappaB.jsp.
7. Uniprotkb/swiss-prot. http://www.ebi.ac.uk/swissprot/.
8. The web service modeling language wsml. http://www.wsmo.org/wsml/wsml-

syntax.
9. The web service modeling toolkit (wsmt). http://sourceforge.net/projects/wsmt.

10. Web services execution environment. http://sourceforge.net/projects/wsmx.

11. Web services semantics - wsdl-s. http://www.w3.org/Submission/WSDL-S/.
12. yed - java graph editor. http://www.yworks.com/en/products yed about.htm.
13. Owl-s: Semantic markup for web services. November 2004. http://www.w3.org/

Submission/OWL-S/.
14. Sunny Y. Auyang. From experience to design - the science behind aspirin.

http://www.creatingtechnology.org/biomed/aspirin.htm.
15. Roger Brent and Jehoshua Bruck. Can computers help to explain biology? Nature,

440(23):416 – 417, March 2006.
16. Jacques Cohen. Bioinformatics: An introduction for computer scientists. ACM

Computing Surveys, 36(2):122 – 158, 2004.
17. H. de Jong and M. Page. Qualitative simulation of large and complex genetic

regulatory systems. In Proceedings of the 14th European Conference on Artificial
Intelligence, ECAI, pages 141 – 145, Amsterdam, 2000.

18. Daming Yao et. al. Pathwayfinder: Paving the way toward automatic pathway
extraction. In Proceedings of the Second Conference on Asia-Pacific Bioinformat-
ics, volume 29, pages 52 – 62, Dunedin, New Zealand, 2004. Australian Computer
Society, Inc.

19. Craig Freudenrich. How pain works. http://health.howstuffworks.com/pain.htm.
20. Horst Ibelgaufts. Cope - cytokines online pathfinder encyclopaedia. http://

www.copewithcytokines.de/.
21. M. Kanehisa, S. Goto, M. Hattori, K. F. Aoki-Kinoshita, M. Itoh, S. Kawashima,

T. Katayama, M. arki, and M. Hirakawa. From genomics to chemical genomics:
new developments in kegg. Mucleic Acids Research, 34:354 – 357, January 2006.

22. Peter D. Karp, Suzanne Paley, and Pedro Romero. The pathway tools software.
Bioinformatics, 18:S1 – S8, 2002.

23. Kanehisa Laboratories. Kegg: Kyoto encyclopedia of genes and genomes.
http://www.genome.jp/kegg/.

24. Misia Landau. Inflammatory villain turns do-gooder. http://focus.hms.harvard.
edu/2001/Aug10 2001/immunology.html.

25. NCBI. Genbank. http://www.ncbi.nlm.nih.gov/Genbank/.
26. See-Kiong Ng and Marie Wong. Toward routine automatic pathway discovery from

on-line scientific text abstracts. volume 10, pages 104 – 112, 1999.
27. Masaru Tomita, Kenta Hashimoto, Koichi Takahashi, Thomas Simon Shimizu, Yuri

Matsuzaki, Fumihiko Miyoshi, K. Saito, S. Tanida, Katsuyuki Yugi, J. C. Venter,
and C. A. Hutchison III. E-cell: software environment for whole-cell simulation.
Bioinformatics, 15(1):72–84, 1999.

28. UCLA. Database of interacting proteins. http://dip.doe-mbi.ucla.edu/.
29. George Zheng and Athman Bouguettaya. Mining web services for pathway discov-

ery. In 2007 VLDB Workshop on Data Mining in Bioinformatics, Vienna, Austria,
September 2007.

30. George Zheng and Athman Bouguettaya. A web service mining framework. In
2007 IEEE International Conference on Web Services (ICWS), Salt Lake City,
Utah, July 2007.

31. George Zheng and Athman Bouguettaya. Discovering pathways of service oriented
biological processes. In The Ninth International Conference on Web information
Systems Engineering (WISE 2008), Auckland, New Zealand, September 2008.

