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Abstract. This paper focuses on the use of corpus-based machine learning 
(ML) methods for fine-grained semantic annotation of text. The state of the art 
in semantic annotation in Life Science as in other technical and scientific 
domains, takes advantage of recent breakthroughs in the development of natural 
language processing (NLP) platforms. The resources required to run such 
platforms include named entity dictionaries, terminologies, grammars and 
ontologies. The demand for domain-specific, comprehensive and low cost 
resources led to the intensive use of ML methods. The precise specification of 
the ML task goal and target knowledge, and the adequate normalization of the 
training corpus representation can notably increase the quality of the acquired 
knowledge. We argue in this paper that integrated ML-NLP architectures 
facilitate such specifications. We illustrate our demonstration with four 
representative NLP tasks that are part of the BioAlvis semantic annotation 
platform. Their impact on the quality of the semantic annotation is qualified 
through the evaluation of an IR application in Bacteriology. 

Keywords: Semantic Annotation, Machine Learning, Ontology Learning, 
Natural Language Processing. 

1 Introduction 

Despite the growing number of available structured databases dedicated to 
biomedicine, a large part of the domain knowledge is only available in documents in 
natural language. Besides, several services centralize publications in Health and Life 
Sciences. The main one, Entrez PubMed (NCBI), references over 16 millions of 
papers [1]. However, at the same time, the size of the bibliographic bases grows 
exponentially and the scope of the scientific questions crosses the traditional 
boundaries of biologist expertise fields, making classical Information Retrieval (IR) 
applications no longer sufficient to target the useful and relevant documents. 
Advanced techniques involving more semantics have to be applied to textual 
information processing in the biomedical domain.  

Life and Health sciences are recognized as critical knowledge-intensive domains 
for the Semantic Web [2]. Research efforts towards the Semantic Web aim “at 
replacing the current web of links with a web of meaning” [3] producing large-scale 
methods for automating deep semantic analysis and markup of Web pages in a 



machine-readable form suitable for information extraction (IE) or information 
retrieval (IR) applications in the biomedical domain. Semantic analysis methods 
involve more and more Natural Language Processing (NLP) and powerful 
representation languages that are reaching a maturity stage, where fine-grained 
semantic markup of large Web corpora of text in various domains and languages 
become possible. This is demonstrated for instance by the GATE [4], UIMA [5], and 
Alvis [6] NLP platforms that make an extensive use of linguistic knowledge. A large 
part of it is domain-specific and requires costly development and maintenance efforts 
that can be alleviated by Machine Learning (ML) methods. Corpus-based ML 
methods yield impressive knowledge acquisition results for a wide variety of NLP 
tasks such as named entity recognition (NER) [7, 8], POS tagging [9] and concept and 
relation tagging [10, 11]. However, the cost remains high for (i) the production of the 
appropriate features for representing the training examples, (ii) the manual annotation 
of the training examples and (iii) the evaluation of the quality of the ML results. The 
close integration of ML methods and end-user applications, e.g. IE or IR, into 
semantic annotation platforms gives a useful framework to overcome these 
limitations. Such efficient platform integration implies the proper characterization of 
the type and role of the knowledge that is used and produced by each platform 
component. This formalization step allows to avoid many cases of redundancy and 
inconsistency of semantic annotations. Translating this into ML concerns means that 
the learning target concept must be clearly specified according to the overall 
knowledge model and the design of the example representation should be derived 
accordingly. Following this principle, we have defined four representative and related 
learning steps and the NLP process that computes the necessary training corpora. 
Experimental results with the BioAlvis ML-NLP platform show that the appropriate 
normalization of the example representation according to the learning task improves 
ML performance and facilitates further knowledge integration. With the application 
of the BioAlvis platform to IR of biomedical documents, we measure the quality 
improvement of the semantic annotation performed with the learned knowledge. 

2 From Words to Concepts 

2.1 Semantic Annotation 

Automatic semantic annotation supplies a meaningful structure to free texts expressed 
in natural language with the purpose of allowing machine processing. In the Semantic 
Web framework, the semantic annotation consists in an interpretation of the text 
supported by an ontology, i.e. the assignment of concepts and relations of an ontology 
to fragments of text. The extent of the annotated text fragments is fairly variable 
depending on the target application. IE and IR target specific bits of information 
contained in short fragments of text, i.e. terms, words and multi-word units. Fig. 1 
shows an example of the semantic annotation of a sentence from a scientific article on 
Molecular Genetics. The word GerE denotes a protein and the word sigK denotes a 
gene. The negative interaction concept is supported by the inhibit verb. GerE (resp. 



sigK) and the verb inhibit are instantiations of the arguments of the ontology relation 
agent (resp. target) between the protein and the concept negative interaction. 

Fig. 1. Example of semantic annotation in Biology. 

Protein Negative
interaction Gene

of

agent

t arget

The GerE protein inhibits transcription in vitro the sigK gene  
 
As an illustration of the production and exploitation of a semantic annotation in the 

context of IR, we present the BioAlvis variant of the Alvis framework focused on 
bacteriology that performs as follows. The annotation pipeline enriches documents 
with fine-grained semantic annotations acquired through the successive application of 
NLP tools. The result is passed to the indexing component and exploited by the 
semantic search engine. The IR service normalizes the user queries in the same way 
as the documents: words are lemmatized, terms and named entities (NE) are replaced 
by their canonical forms and the concepts are replaced by their paths from the 
ontology root. This strategy differs from usual query expansion that consists in 
replacing each query term with the set of synonyms and sub-concepts. The Alvis 
method indeed drastically reduces the complexity queries and makes its interpretation 
legible for the user. The user can also directly benefit from the annotation of concepts 
by performing ontology-based facet refinement through a rich Web user interface. 

2.2 NLP/ML cooperation towards semantic annotation 

Software platforms for text corpus annotation integrate a common range of 
linguistic processes into pipelines, typically: tokenization, word and sentence 
segmentation, named entity and term tagging, part-of-speech tagging, syntactic 
parsing and semantic concept and relation annotation. Each process relies on 
linguistic resources relevant to the target domain, which requires important 
acquisition efforts. Most platforms do not specifically include automatic knowledge 
acquisition facilities (e.g. Luxid®, MedScan®, AKS2®, InGenuity®) or in a limited 
way (e.g. Luxid I2E® for NER), although corpus-based Machine Learning provides 
an attractive alternative to the manual acquisition of such resources. Technically, a 
single annotation pipeline can process documents for application purposes as well as 
for preparing training corpora with the intent of acquiring new linguistic resources. 
However, in most implementations, this virtuous feedback does not translate into 
close ML and NLP software integration. The input of the ML is usually computed by 
a subpart of the NLP pipeline but the output is not directly usable by subsequent NLP 
components.  This is the case in Gate / Amilcare [4]. 

We claim that semantic annotation can greatly benefit from a full integration of the 
ML components that feed the knowledge bases. Beyond format homogeneity, close 
integration compels the architecture designer to specify the respective roles of each 
NLP component involved in the semantic annotation process, to identify precisely all 



types of knowledge along with their interdependencies, and the target knowledge to 
be acquired by each ML component.  

Breaking down the semantic annotation task into well-identified NLP elementary 
steps has a positive effect on the production quality of the associated ML component. 
Relevant regularities are more easily identified by the ML system and human 
annotation of training examples is easier and of higher quality when it concerns a 
singled out knowledge type. For example, in formal knowledge representation 
frameworks, the tagging of semantic types and the tagging of properties are two 
distinct steps. In the phrase, “mouse synaptophysin gene”, the annotation of 
synaptophysin as an object of type gene is handled separately from the annotation of 
its property belongs to the species mouse. The knowledge acquisition goals for the 
recognition of gene names and their related species must be achieved by at least two 
distinct ML tasks applied to two different training corpora. The increased 
homogeneity of corpora that results from normalization reduces the number of 
examples to annotate manually. Unfortunately, many knowledge acquisition 
approaches to NER do not follow this principle [8]. 

Moreover, the clarification of dependencies among the different types of 
knowledge provides a basis for increasing knowledge modularity and reducing 
annotation inconsistencies. Operationally, the dependencies between knowledge types 
impose a constrained order of linguistic/semantic/acquisition processing steps that 
should be made explicit.  In a structured modular view of the linguistic knowledge 
base, higher level knowledge should encapsulate lower level knowledge. Then, in 
order to learn a given target knowledge K, the training example representation should 
be based on the knowledge on which K depends and no any lower level knowledge. 
For instance, for the sake of modularity, relation recognition rules should not be 
learned from shallow clues such as punctuation marks. Previous NLP steps should 
have interpreted the punctuation marks into relevant information such as sentence 
ends (sentence segmentation) or abbreviations (named-entity normalization).  

Hereafter, we present the results obtained by applying these principles to the 
development and the integration of knowledge acquisition facilities into the Alvis 
platform. We focus on the acquisition of critical resources that are required by 
semantic annotation, with respect to the variety of learnable linguistic knowledge, i.e. 
named entities, terms, concepts and relations. We demonstrate their learnability 
(section 3) and the benefit of fine-grained semantic annotation in terms of quality and 
density of annotations for a given domain and application: IR in Biology (section 4).  

3 The BioAlvis Experience 

3.1 Architecture 

The Alvis annotation/acquisition pipeline (A3P in the following) has been 
developed within the Alvis project [12]. Alvis aimed at developing an open software 
platform that supports the quick development of distributed semantic search engines 
in specific domains. Alvis platform integrates a semantic crawler, the 
annotation/acquisition pipeline and a semantic search engine based on Zebra [13]. As 



a proof of flexibility, various instances of Alvis have been deployed in a short time 
for different languages (e.g. Chinese, Slovene, English and French) and different 
genres and domains (e.g. textbooks, news, patents, Wikipedia entries, MedLine 
abstracts, Agrobiotechnology patents). The Biology instance, BioAlvis developed by 
us, is presented here. Following the principles advanced in section 2.2, A3P is 
composed of a sequence of modules, based on Ogmios [14],  that produce a layered 
annotation of the input document (central area of Fig. 2). The modules communicate 
by the means of a common layered XML annotation format.  

Fig. 2. BioAlvis architecture. 

 
 
The XML annotation format relies on a layered representation where each layer 

gathers the annotations from a single type of knowledge, in a similar way as described 
in [15]. The first annotation steps identify semantic units, i.e. named entities and 
terms, that denote the reference concepts of the domain in the document (Semantic 
Units box of Fig. 2.). Their recognition, their normalization and their disambiguation 
require prior word and sentence segmentation and word lemmatization. The next 
annotation steps assign ontology categories to the semantic units (Conceptualization 
box of Fig. 2). This includes fine-grained sense disambiguation based on selectional 
restriction of the semantic units (section 3.3). Prior syntactic parsing produces the 
required syntactic dependencies. Finally, ontology relations among the semantic units 
are identified by the application of Information Extraction rules. The rules use the 
semantic categories and the syntactic dependency context of the semantic units. 

A3P bootstraps by providing an annotated corpus for the acquisition of the 
knowledge for the next components in the pipeline sequence. As shown in Fig. 2, the 
linguistic analysis modules are fed by knowledge bases (drums). Their acquisition is 
achieved by an array of corpus-based acquisition tools involving ML methods. 

The next subsections describe four representative acquisition tasks of BioAlvis, 
their target knowledge, the example representation and the principles of the 
integration of the learned knowledge into the knowledge bases. Most of the learning 
results described in the following were obtained from a representative training corpus 
in bacteriology of 2,397 scientific paper references from MedLine referred to as the 
Bacillus corpus designed in 2001. It is the result of the following query to PubMed: 
“Bacillus subtillis AND (transcription OR promoter OR sigma factor)”. 



3.2 Semantic Units 

3.2.1 Named Entities 
The term named entity usually designates proper names associated to an 

ontological category or semantic type (e.g. place, person). The proper names are rigid 
designators that denote a referential entity in an unambiguous way [16]. 

BioAlvis NER component, RenBio focuses on protein/gene and species 
recognition. It achieves NE tagging by GenBank-based dictionary mapping and by the 
application of disambiguation and variation rules. The disambiguation rules specify 
what contexts are required for each type of named entity. In parallel, variant 
dictionaries and variation rules in the form of hand-crafted regular expressions deal 
with common typographic alterations. Rules for disambiguation and recognition of 
new entities are automatically acquired by supervised machine learning from a 
reference training corpus. For example, the simple rule,  

A word, followed by the word protein, 4 letters long, starting and ending with an 
upper-case letter, is a protein name.  

applied to the text, “The GerE protein inhibits transcription” assigns GerE to the 
protein category, even if GerE is not in the protein dictionary. 

The linguistic features of the training examples are computed by segmentation, 
lemmatization and typographic analysis (e.g. length, case, presence of symbols and 
digits, co-occurring words) of the training corpus performed by the annotation 
pipeline. The annotation of positive examples is done by first mapping the NE 
dictionary and then its manual correction by domain experts. Negative examples are 
automatically generated under the closed-world assumption.  

The RenBio rules for gene and protein name annotation in BioAlvis were learnt 
from the Bacillus corpus. The dictionary mapping on the training corpus tagged 7,185 
occurrences. 10 biologists analyzed, corrected and completed the tagging. They found 
12% false positives due to ambiguities and 12% false negatives due to new names. 
We applied the C4.5 algorithm of induction of decision trees (J48 WEKA library 
version [17]) to the revised training corpus. The cross-validation evaluation reported 
in Table 1 showed significantly better results in terms of recall and precision 
compared to the best results of the two gene/protein recognition challenges NLPBA 
[18] and BioCreative II [19]. 

Table 1. NER performances (recall-precision). 

Best NLPBA Best  BioCreative II RenBio Bacillus 

76% - 69% 86% - 88% 94% - 92% 

We claim that the example representation features and accurate specifications of 
the learning goal permitted higher quality of the training examples, thus improving 
the conditions for the learning algorithms. The good results were not due to any 
breakthrough in ML since we apply a regular well-known algorithm. 

On the one hand, the automatic linguistic pre-processing by BioAlvis of the 
examples has contributed to drastically reduce the dimension of the example 
description space and to remove potential sources of errors. Moreover in order to 
discriminate between NE and non-NE by their context, we picked the most relevant 



trigger words by feature selection. For instance, words like gene, operon or 
transcription are more likely present around gene names than any other word. 

On the other hand, the learning goal was specified according to the role of the NER 
in the semantic annotation process. This strongly determines the guidelines for the 
manual annotation of the training examples by experts. Our strict annotation 
guidelines address several phenomena that could hinder the quality of the annotation. 
The principles are as follows: NE annotation should be restricted to single entities for 
learnability and knowledge modeling reasons, it should exclude terms that denote 
general semantic categories and properties and the entity span should exclude the 
description of entity qualifiers (e.g. in “recA gene”, only “recA”  is annotated). The 
detailed description of the guidelines can be found in [20].  

Our experiments demonstrate that the combination of the appropriate 
normalization of the data with the consistent annotation of training examples by 
experts improve machine learning performance in terms of precision, recall and size 
of training sample (see [20] for more details).  

3.2.2 Terms 
The BioAlvis term analysis component identifies the phrases that represent 

semantic units. These are single or multi-word nominal or verbal expressions that 
refer to specific domain concepts (e.g. plant pest). The term analysis module achieves 
term recognition and normalization, which consists in tagging the term with its 
canonical form. Semantic ambiguities are processed afterwards by the semantic 
typing module (section 3.5), while inflections are handled beforehand by the 
lemmatization module. Similarly to NE, off-the-shelf lists of terms are not sufficient 
to annotate documents because terms may be ambiguous and subject to variation. 
Moreover, in scientific and technical domains, terminologies are generally incomplete 
with respect to the specific application needs [21]. Thus less than 1% of the 410 000 
terms of MeSH [22] and Gene Ontology [23] occur in the 16,000 sentences of the 
Bacillus corpus. In addition to being mostly related to eukaryotes, those terms are 
suitable for manual indexing as they do not appear as such in NL documents. 

BioAlvis includes two acquisition modules for enriching the terminology with new 
terms and variants from a training corpus. The term acquisition component is the 
YaTeA term extractor [24]. It takes as input a training corpus with segmented 
sentences and words, lemmas and POS tags. YaTeA identifies candidate terms in an 
unsupervised way. Its strategy is based on declarative linguistic rules for boundary 
detection and term analysis and on endogenous disambiguation. Extracted candidate 
terms are usually validated by domain experts.  

Variation spectrum is much larger for terms than for NE. In addition to minor 
graphical variations, it includes morpho-syntactic alterations that can deeply modify 
the form of the term (e.g. plant pest, pests on plants and pests that attack plants). 
Term normalization involves complex linguistic and domain knowledge encoded in 
variation rules. BioAlvis integrates FASTR [25], a tool that computes candidate term 
variants from training corpora and controlled terminologies as produced by YaTeA 
and experts. For instance, FASTR insertion rule extracts genetic competence from the 
Bacillus corpus, as a variation of competence. Domain experts then validate the 
proposed variation relations as synonymy, hyponymy or other relations. Note that sets 



of synonym variants of the same term are similar to WordNet synsets. A canonical 
form is chosen for normalization purposes to represent the synonym set.  

Applied to the Bacillus corpus, YaTeA extracted 6,699 candidate terms occurring 
at least twice, among which 3,560 were validated by a group of 3 experts in 
terminology and biology, yielding 52% precision. The recall evaluated on a gold 
standard subset of Bacillus was 67%. FASTR then extracted 2,335 variants. The 
validation by two experts was done in a few days and resulted in 676 synonym sets 
and 1,569 hyponyms. Additionally, from 715 MeSH terms found to occur in the 
Bacillus corpus, FASTR identified 1,899 new variants among which 397 hyponyms 
and 117 synonyms.  

Such methods, when integrated in a pipeline, appear to be very competitive 
compared to manual acquisition. The approach offers exhaustiveness regarding to a 
corpus that is a clear advantage for knowledge-based application.  

3.3 Semantic Types 
Semantic typing relates concepts from the ontology to semantic units in the text 

after their identification by the term and NE recognition components. The ontology 
concepts are organized into hierarchies. Semantic typing annotates the semantic units 
with the whole concept path to the hierarchy root without any a priori assumption on 
the concept level relevance. In A3P, the ontology-lexicon relation is explicit: the 
concepts of the ontology are represented at the lexical level by the canonical forms of 
terms and named entities. In case a given semantic unit is polysemic, disambiguation 
rules select the right concept in the ontology with respect to its syntactic context in 
the document; BioLG [26, 27], the dedicated version of Link Grammar, is integrated 
in BioAlvis for computing the syntactic contexts.  

The acquisition of concept hierarchies and disambiguation rules is supported by the 
ML hierarchical conceptual clustering tool Asium [10]. Asium takes as input a 
training corpus annotated in the same manner as the input of the semantic typing 
module, i.e. semantic unit tagging and parsing. The formation of concept classes by 
Asium is based on distributional analysis assuming that semantic units occurring in 
similar syntactic contexts in specific domain corpora are semantically close. Asium 
suggests their corresponding concepts as candidate members of a same semantic 
class. The disambiguation rules are automatically learned together with the semantic 
classes. They are expressed as restrictions of selection stating the syntactic 
dependency constraints on the context of the semantic unit being typed. For instance, 
cat may both denote a mammalian or a gene as defined by the ontology. In the phrase 
hypokalaemaic myopathy of Burmese cat, cat must be tagged as mammalian rather 
than as gene. myopathy is a disease and the disambiguation constraints express the 
knowledge that mammalians have diseases, but genes have not. Semantic classes are 
successively merged according to Asium distance formula. Asium includes a user 
cooperative interface to validate, revise and name the learned classes and hierarchies 
on the fly as they are built. This iterative process avoids error amplification along the 
hierarchy formation. Like all distributional semantics-based methods, Asium produces 
large coverage classes that may include three types of errors: the input syntactic 
dependencies computed by the parser may be incorrect, (e.g. between 20 and 30 % of 
the dependencies computed by BioLG [27]); the syntactic context may reflect 
different meanings (e.g. the preposition in expresses either time or place relation as in 



transcription in mitotic cell cycle / transcription in cell), which implies splitting the 
class; the semantic relation may not represent only close meanings but antonyms or 
lexical variations that were missed by the term and variants analysis.  

A large part of the potential learning errors is avoided upstream by choosing an 
appropriate representation of the training examples. Terminology and NE 
normalization significantly improve the quality of the learned classes by increasing 
the homogeneity of the training data. It also decreases the number of parsing errors 
and reduces the computation time, since the parser avoids computing dependencies 
inside the terms as detailed in [26]. Indeed, normalization removes irrelevant 
variations by a factor of 3 to 4. Moreover, syntactic contexts as used in Asium reflect 
more accurately the semantic roles than typographic windows can do. Extensive 
evaluation of the quality of the semantic classes acquired by distributional semantics 
based methods has not been conducted yet. However, a general comparison of Asium 
with other systems can be found in [28]. 

Although the concepts are validated along their construction by Asium, they 
cannot be integrated as such in the ontology. Their structure does not necessarily 
represent the model needed for the application and may require validation and 
revision. The alignment between learned ontology and existing ones also remains a 
critical problem. The modeling strategy we adopted for the development of 
BacteriOntology is based on an ontology skeleton crafted by hand by biologist experts 
and computer scientists from MIG-INRA laboratory. The hierarchical model results 
from the integration of several existing resources: (1) the highest levels of the 
ontologies and thesauri GO and MeSH; (2) relevant domain-specific information 
resources (Riley and Subtilist function classifications and NCBI species taxonomy); 
(3) concepts denoted by the 300 most frequent terms (section 3.2.2) acquired from our 
corpus. Asium results were then used to extend this core ontology and populate its 
classes. The current version of the resulting BacteriOntology defines 5,888 concepts, 
structured into 6 generality levels (excluding the extremely deep species hierarchy). 
The quality of BacteriOntology acquired with Asium support was globally evaluated 
through IR (section 4). 

3.4 Domain-specific Relations 

Domain specific relations are usually more difficult to identify in the text than 
concepts because they are less directly supported by contiguous text fragments. 
BioAlvis annotation of relations focuses on gene interaction and relies on relation 
extraction rules. For a given relation, the rules check the type of the semantic units in 
the ontology in order to spot candidate relation arguments, and the type of the 
syntactic dependencies between them. For instance, in the text: GerE inhibits the 
expression of sigK, the gene interaction between the protein agent GerE and the target 
gene sigK is identified in the simplest case, by the rule expressed in first-order logic: 

gene_interaction (X,Z) :- type(X,Protein), subject(X,Y), type(Y,Interaction_action), 
obj(Z,Y), type(Z, Gene). 

where Protein, Interaction_Action and Gene are ontology concepts, and obj and 
subject are syntactic dependencies. Many complex gene interaction cases are handled 
with the same method including those involving regulon membership and promoter 



binding (detailed method in [29]). Relation extraction rules are learned by the 
supervised Inductive Logic Programming method, LP-Propal. The training examples 
are expressed in the same way as the input corpus of the relation tagging component: 
typed semantic units and syntactic dependencies. The sentences are selected by the 
naïve Bayes classifier STFilter [30], so that manual annotation focuses on the relation 
arguments in the sentences that most probably express a genic interaction. The 
successive filtering, disambiguation and normalization of the lexicon and syntactic 
analysis improve the training set homogeneity.  

The LLL dataset on genic interaction [31] has been designed from the Bacillus 
corpus for evaluation. Experiments on the subset action without coreference (70 
positive examples) yielded 89.4% F-measure. This result is significantly better than 
the 65.5% best LLL challenge score on the same dataset [32] and than the 
BioCreative II result (48%) on the protein-protein interaction task [33]. We tested our 
system with an altered representation of the same data, where syntactic dependencies 
were replaced by word neighborhood relations. Considering the poor results (34.7% 
recall and 22.8% precision), we proved that syntactic dependencies convey major 
semantic relation information. 

4 IR Experimentation in Biology 

We have designed the BioAlvis version of Alvis for the evaluation of ML-based 
semantic annotation benefit and the delivery of knowledge-based application to 
biologists (e.g. IR). This section reports on the experimental evaluation of the 
BioAlvis semantic annotation for semantic search and its comparison to other 
indexing and search models. We characterize Alvis search as semantic in the sense 
that it automatically interprets the meaning of the query with respect to the 
terminology and the ontology: Alvis searches for more specific and variant terms and 
it assists query refinement by ontology and terminology navigation (see [34] for more 
details). We compare Alvis retrieval capabilities to three representative IR services 
that are intensively used by specialists in specific domains and particularly in 
Biology: (1) Google and (2) Google Scholar represent automatic full-text indexing 
with shallow linguistic processing and (3) PubMed Entrez is representative of hand-
crafted indexing by thesaurus keywords and full-text indexing without linguistic 
processing. The comparison focuses on the effect of semantic annotation and query 
expansion on the answer set quality. We exclude the effects of result sorting (ranking) 
and of interface facilities (query refinement). Although they are obviously important 
features, they are outside the scope of the evaluation. 

4.1 Test Data 

The reported experiments concern the adaptation of enterobacteria to changes in 
their environment. Enterobacteriaceae is a large family of bacteria of the intestine, 
including many human pathogens, like the well-known Salmonella that causes 
inflammation of the intestine (Gastroenteritis). Their virulence is due to their capacity 
to survive and grow in hostile environment conditions imposed by their hosts (acidity, 



high temperature or oxidative stress induced by iron starvation and superoxide 
radicals). Part of these conditions is due to the response of the host organisms to 
pathogen infection. The deep understanding of the bacteria response mechanisms at a 
molecular level to these stress factors is a key point toward the design of more 
efficient drugs. The goal of the search is to find descriptions of pathogen reactions 
and was translated into the following query: enterobacteria stress genome component.  

In order to test BioAlvis, the Bacteriology document collection was built by first 
querying PubMed with all bacterial genera names from the GenBank taxonomy. Then 
we used a Bayesian filter to exclude documents that were not bacteriology stricto 
sensu. The result is a medium-size corpus containing 322,982 references of 70 words 
on average. This corpus was processed by BioAlvis in 60 hours on a cluster of 20 
processors. The resulting semantic annotation was indexed and supplied to the Alvis 
search engine. Table 2 summarizes the main figures of the acquired linguistic 
resources (as described in section 3) and tagging features. 

Table 2. Annotation of the Bacteriology corpus. 

Type of resource Size of the resource Tagging 

 
Gene/protein names 

 

1,686,244   different forms 
666,797    canonical forms 

2,046,262 occurrences 
200,225 different names 
12% of the dictionary 
Avg. 6 gene or prot. names/doc. 

Species names 
748,262    different forms 
270,159   canonical forms 

1,309,801 occurrences 
30,985 different names 
4% of the dictionary 
Avg. 4 species names / doc. 

 
Terms 

 
7,279 canonical forms 

2,449,669 occurrences 
5,804 different terms 
80% of the dictionary 
Avg. 7 terms / doc. 

Conceptual hierarchy 
5,888 concepts 
(831 > level 0) 

2,305,747 occurrences 
740 concepts of level > 0 
89% of the concepts > 0 
Avg. 11 concepts / doc. 

The annotation is dense due to the type of documents and the corpus-based strategy of 
the lexicon acquisition. For instance, the BioCreative II corpus contains on average 
4.6 gene or protein names per document while there are 6 in our corpus.  

4.2 Compared Systems 

Google and Google Scholar index very large collections. Google references around 
24 billions of web pages. The size of Google Scholar is estimated at more than one 
billion references. Both systems perform simple stemming on documents and queries. 
Our hypothesis is that in specific domains, they will (1) retrieve more incorrect results 



compared to semantic search, because they do not disambiguate words; (2) miss 
relevant documents by not exploiting synonymy and related terms.  

In Entrez PubMed, each indexed reference is manually assigned a set of terms 
representative of the document topic from the MeSH thesaurus. The manual 
annotation avoids ambiguities in document indexing but is quite expensive to 
maintain since it requires highly-trained experts who read the full-text articles. Entrez 
PubMed searches query terms in the full-text without any linguistic analysis as well 
as in the MeSH term index by expanding the query with synonyms and more specific 
terms according to the MeSH thesaurus. In all cases, the resolution of query 
ambiguity is postponed to query refinement by the user.  

To illustrate the strategy of BioAlvis, we detail how the example query 
enterobacteria stress genome component is processed: the words are lemmatized; the 
recognized semantic units are normalized and assigned to the BacteriOntology 
concepts that belong to taxonomies: enterobacteria, stress and genome component. 
BioAlvis expands the search to documents where sub-concepts of the query term 
occur. For instance, the taxonomic group of enterobacteria contains Escherichia coli 
and Salmonella enterica among hundreds of other bacteria species. In the same way 
stress defines 17 different types of stress such as heat-shock and phosphate 
starvation. Again, genome component represents 62 different sub-concepts (e.g. 
operon and promoter). Each of these concepts references its variants and synonyms. 
For instance, heat-shock is synonym of temperature upshift, thermal upshock, and 
temperature upshock according to our terminology. Additionally, query 
lemmatization allows BioAlvis to search regardless of word inflections and 
derivations (stress / stressing / stresses). The interface displays the detail of the 
interpretation so that the result is understandable.  

4.3 Experiment and Evaluation 

As we could benefit from Bacteriology expert analysis, we opted for a qualitative 
evaluation of our system. Beyond rough figures, a comparative study of the answer 
sets has characterized the missing and irrelevant documents retrieved by each service. 
More complete results can be found in [34]. Table 3 summarizes the features of the 
answer set for the four IR services, including Alvis. 

The very large answer set of Google (245,000) was expected because of the 
document collection size and the generality of the query. Google and Google Scholar 
search for the stemmed query words in the documents. As no semantics is used, all 
documents with sub-concepts of the query words were missed. We tested the query 
with a replacement of genome component by (gene OR promoter) that are two 
productive sub-concepts and found that 50 % more documents were retrieved. As 
Google and Google Scholar make use of stemming, they find 8 times more documents 
than with exact matches. For instance, documents with enterobacterial were found 
thanks to stemming. 

Table 3. Size of the query answer sets for tested search service. 

Google 
Google 

Scholar 
Entrez 

PubMed 
Entrez 

PubMed 
BioAlvis 



w/o MeSH 

245,000 2,740 1031 0 1,870 

Entrez Pubmed expands queries in a similar way as BioAlvis by following MeSH 
relations top-down. The term enterobacteria is expanded into tens of subconcepts as 
well as genome component. The query yields 1,031 relevant answers, but documents 
about specific stresses, such as phosphate starvation (97) were missed because stress 
is not defined in MeSH despite of its importance in Biology and it is then searched 
without any specialization. Five more documents could have been found if Entrez 
PubMed had lemmatized the documents. When MeSH term index is disabled, no 
document is retrieved as no paper full-text contains all the query words.  

BioAlvis retrieved fewer documents than Google Scholar for two reasons: (1) its 
document collection is smaller (2) Google Scholar indexes scientific papers full text 
whereas BioAlvis only indexes abstracts and titles. It does not question the semantic 
annotation approach but the document collection preparation. BioAlvis missed also 
relevant documents because of the lack of some relevant sub-concepts of stress in the 
ontology like acid shock. This can be addressed by completing the ontology from a 
larger training corpus.  

Regarding relevance of the documents, the accuracy of the answer sets varies a lot 
among the services. Google and Google Scholar results contain a vast amount of false 
positives. This is mainly due to the fact that the answer set contains many documents 
that mention only a subset of the query terms. The rank of these documents is very 
low but they are however counted in the answer set. The amount of false positives in 
Google Scholar is less important because the indexed corpus is smaller and more 
focused. Beyond the main problem of spurious co-occurrence of the query words 
mentioned above, the indexing of irrelevant subparts of the document caused many 
errors. For instance, citations of the document as occurring in Citeseer or 
SpringerLink sites are indexed with the document itself. BioAlvis retrieves false 
positives to a much lesser extent. Most of the irrelevant documents were papers about 
organisms other than Enterobacteriacea, many of them including a mention of a 
homology with the extensively studied enterobacterium Escherichia coli. This 
observation stresses the importance of filtering semantic annotations for IR purposes, 
so that semantic annotation focuses on the main topics of the paper. 

5 Conclusion 

While formal languages for ontology representation have made great advances, there 
are few formal or operational proposals designed to tie ontologies to linguistic 
knowledge [35]. Ontologies can no longer be considered as organized vocabularies or 
hierarchies of terms that can be simply mapped to the text for semantic markup. 
Intermediate linguistic knowledge levels are necessary to connect the textual 
information to the conceptual knowledge. Sophisticated and operational NLP 
platforms such as Alvis are available for developing such integrated applications. 
Still, the cost of maintaining and configuring them exponentially increases with the 
complexity of the linguistic knowledge. As highlighted above, the linguistic 



knowledge is scattered into various heterogeneous resources in order to feed distinct 
successive linguistic analyses.  
In this paper, we pointed out the challenge of integrating ontology knowledge and 
linguistic knowledge into a consistent model.  In order to alleviate the lack of 
specialized knowledge to feed NLP tools, knowledge acquisition and ML methods are 
applied to training corpora. This raises the problem of integrating the processes of 
knowledge resource acquisition and the exploitation of these resources. We proposed 
an operational approach based on the clear specification of the learning task and the 
normalization of the example representation. Following these principles, we 
developed large resources in Biology for each linguistic step and demonstrated their 
efficiency through the semantic annotation of a representative Web corpus and its use 
in an IR application [36]. 
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