
Supporting Process Development in Bio-jETI by
Model Checking and Synthesis

Anna-Lena Lamprecht1, Tiziana Margaria2, and Bernhard Steffen1

1 Chair for Programming Systems, Dortmund University of Technology,
44227 Dortmund, Germany,

anna-lena.lamprecht@cs.tu-dortmund.de, steffen@cs.tu-dortmund.de
2 Chair for Service and Software Engineering, Potsdam University,

14482 Potsdam, Germany,
margaria@cs.uni-potsdam.de

Abstract. Bio-jETI is a platform for the intuitive graphical design and
execution of bioinformatics workflows composed from heterogeneous re-
mote services. In this paper we use a simple phylogenetic analysis process
to show how formal approaches like model checking and process synthesis
can be applied to further support the workflow development in Bio-jETI.
To unfold their full potential these methods need a comprehensive knowl-
edge base about the domain, containing semantic information about the
single services as well as ontological classifications of the used terms. We
outline how to systematically integrate these semantic web concepts into
our framework and discuss the implications on checking and synthesis.

Key words: bioinformatics workflows, process verification, compliance,
model checking, workflow synthesis

1 Introduction

More than in other domains the heterogeneous services world in bioinformatics
demands for a good methodology to classify and relate resources in a both human
and machine accessible manner. The development of semantically annotated
services and comprehensive service and data ontologies in the domain is already
very promising. Yet software is needed that fully utilizes the available semantic
information in order to provide helpful tools to the in silico researcher.

In the last two years we introduced Bio-jETI [1] as an environment for service
integration, service orchestration, process execution, and process deployment in
the bioinformatics domain. Technically, Bio-jETI builds on the jABC modeling
framework [2] that has been used so far in several different domains of science,
education, and industry. We have, however, not yet exploited some techniques
that are available in the jABC framework and would enable Bio-jETI to support
the development of processes in terms of service semantics.

For instance, the jABC provides model checking techniques [3] that can be
used for reasoning about properties of process models, and workflow synthesis
methodology [4–6] that allows for the automatic creation of workflows according



2 Lamprecht, Margaria, Steffen

to formal specifications. Considering a simple phylogenetic analysis workflow,
we show an example for problem detection via model checking (section 2.1) and
for subsequent service insertion by means of synthesis (section 2.2).

It is essential for our methods to have proper semantic information available.
On the one hand, we need predicates characterizing the single services, i.e. their
function and their input/output behaviour. On the other hand, taxonomies or
ontologies are required which provide the domain knowledge against which the
services (their predicates) are classified. We discuss the open issues and future
work regarding the integration of semantic information about web services, and
implications on model checking and synthesis in section 3. Finally, section 4
draws a short conclusion.

2 Example: Developing a Phylogenetic Analysis Workflow

Using the jABC technology, Bio-jETI provides a framework for the graphical
orchestration of bioinformatics processes. Process models, called Service Logic
Graphs (SLGs) are constructed graphically by placing process building blocks,
called Service Independent Building Blocks (SIBs), on a canvas and connecting
them according to the flow of control. These SLGs are directly executable by an
interpreter component, and they can be transformed into stand-alone applica-
tions via the GeneSys code generation framework [7], or compiled and deployed
as a new web service using jETI [8]. Furthermore, they are accessible to other
techniques that exploit the structure of the control-flow process models, such as
model checking [3] and workflow synthesis [4–6].

For our example we assume a small SIB collection as presented in figure 1,
comprising various remote and local services. It contains data retrieval services
provided by the European Bioinformatics Institute, sequence analysis algorithms
offered by the Bielefeld Bioinformatics Server, homology search services hosted
by the DNA Data Bank of Japan, and some tools of the EMBOSS suite, as well as
some locally available services, such as a specialized visualizer for phylogenetic
trees or a workflow component realizing user interaction.

Utilizing these SIBs, a workflow developer (a biologist, for example) can de-
fine the following simple process (see figure 2): show an input dialog where the

Fig. 1. Exemplary Bio-jETI SIB Collection.



Model Checking and Synthesis in Bio-jETI 3

Fig. 2. Initial Process.

user enters a query sequence, then run a BLAST (Basic Local Alignment Search
Tool) query with this sequence to find homologous sequences, and finally visu-
alize the phylogenetic tree for this set of sequences with ATV (A Tree Viewer).

While an experienced bioinformatician might be aware of the problem within
this process immediately (because of his familiarity with the involved tools),
many users will only realize at runtime that there must be some undesired be-
haviour, since the execution comes to an unexpected halt. In the following we
illustrate how to automatically detect and fix such issues already at design time
using model checking and model synthesis.

2.1 Using Model Checking to Detect Problems

In this phylogenetic analysis process two services use data: BLAST uses the blast
query entered in the input dialog, and ATV at the very end uses the result of the
preceding steps. We can now, e.g., check the type correctness of these uses:

If a service uses a data item x of type y, x must have been defined before with
precisely this type, without having been overwritten since.

This property can be expressed in a temporal logic and given to a model
checker. While the model checking detects no problems for the first use, it reveals
a property violation for the second, as can be seen in figure 3: the rightmost SIB
is marked by a red frame, indicating that the property is violated at that node.
The cause is that the process does not provide the appropriate input type for
the tree visualizer.

Once detected, there are different ways to fix the problem. One possible
approach is to search for a sequence of additional services that resolve the type

Fig. 3. Error Detection via Model Checking.



4 Lamprecht, Margaria, Steffen

Fig. 4. Input and Output Characterization of the Services.

mismatch and insert them into the process. This data mediation sub-workflow is
usually linear. It can consist of type conversions that simply adapt the involved
data, or also of real computational services when they can not be related too
easily. The next section shows how to use process synthesis to find an adequate
sequence of services automatically.

2.2 Synthesis

The knowledge base needed for the process synthesis consists of input and output
information for each service as well as service and type taxonomies that classify
the services and types, respectively.

We assume a simple type taxonomy for our example, which has a generic
type type at the root and refines the data types downwards. The basic input
and output information for the services is defined in terms of the concrete data
types, i.e. the leaves of the taxonomy tree. The corresponding information for
our exemplary SIB collection is shown in figure 4.

Having all required knowledge available, the synthesis algorithm must now
be provided with a specification for the desired service sequence. For instance,

Take a BLAST result as input and finally produce a phylogenetic tree.

is such a specification that can be formulated in a temporal logic.
Computing the shortest tool combination that satisfies the specification, the

synthesis returns a sequence of three services that can be used to complete
the erroneous process (figure 5, bottom): a BlastParser extracts the database

Fig. 5. Extension of the Initial Process.



Model Checking and Synthesis in Bio-jETI 5

IDs of the homologous sequences from the BLAST result, the corresponding
sequences are fetched from a database using WSDBFetch, and emma (an interface
to the ClustalW multiple sequence alignment algorithm) is invoked to obtain an
alignment and the corresponding phylogenetic tree.

3 Discussion and Perspectives

The previous section demonstrated the model checking and synthesis method-
ology that is currently available in the jABC framework. We are now tailoring
these techniques and underlying development methodologies to the bioinformat-
ics application domain. This work spans three dimensions: domain modeling
(section 3.1), model checking (section 3.2), and model synthesis (section 3.3).

3.1 Domain modeling

This dimension is the heart of making information technology available to bi-
ologists, as it enables them to formulate their problems in their own language
terms - on the basis of adequately designed ontologies.

This raises the issue where the domain knowledge ideally comes from. It is,
of course, possible for each user to define custom service and type taxonomies,
allowing for exactly the generalization and refinement that is required for the
special case. However, as the tools and algorithms that are used are mostly
third-party services, it is desirable to retrieve domain information from pub-
lic knowledge repositories as well. Therefore we plan to incorporate knowledge
from different publicly available ontologies and integrate it into service and type
taxonomies that can be used by our synthesis methodology.

Significative examples for a relevant and popular knowledge bases of bioin-
formatics data types and services are the constantly evolving namespace, object
and service ontologies in BioMoby [9]. Originating from the early 2000s, the 1.0
BioMoby Semantic Web Service specification, however, does not adhere to the
ontological standards that have been developed for the Semantic Web in the last
years. Thus we follow with interest and hope to benefit from the development
of the S(emantic)-Moby framework and also the SSWAP (Simple Semantic Web
Architecture and Protocol) [10] project, which aims at providing this knowledge
using standard RDF/OWL technology and plans, for instance, to provide the
BioMoby domain knowledge accordingly.

It is, of course, also necessary that the services themselves are equipped with
meta-information in terms of these ontologies. Again, we are looking at BioMoby
with interest: numerous institutions have registered their web services at Moby
Central, describing functionality and data types in pre-defined structures us-
ing a common terminology. Although BioMoby does not yet use standardized
description formalisms like WSDL-S, it is already clear that there is semantic
information available that we can use as predicates for automatic service classi-
fication.



6 Lamprecht, Margaria, Steffen

Furthermore it will be interesting to consider the incorporation of more
content-oriented ontologies like the Gene Ontology [11] or the OBO (Open
Biomedical Ontologies) [12] into our process development framework. This would
enable the software to not only support the process development on a technical
level, but also in terms of the underlying biological and experimental questions.
Additional sources of information, like the provenance ontologies of [13], could
also be exploited by our synthesis and verification methods.

3.2 Model Checking

This dimension is meant to systematically and automatically provide biologists
with the required IT knowledge in a seamless way, similar to a spell checker
which hints at orthographical mistakes - perhaps already indicating a proposal
for correction. Immediate concrete examples of detectable issues are (2.1):

– mismatching data types: a certain service is not able to work on the data
format provided by its predecessor.

– missing resources: a process step is missing, where a required resource is
fetched/produced.

However, this is only a first step. Based on adequate domain modeling, made
explicit via ontologies/taxonomies, model checking can capture semantic prop-
erties to guarantee not only the executability of the biological analysis process
but also a good deal of its purpose, and rules of best practice, like:

– all experimental data will eventually be stored in the project repository,
– unexpected analysis results will always lead to an alert, or
– chargeable services will not be called before permission is given by the user.

On a more technical side, model checking allows us to apply the mature pro-
cess analysis methodology that has been established in programming language
compilers in the last decades and has shown to be realizable via model checking
[14]. Similar to the built-in code checks that most Integrated (Software) De-
velopment Environments provide, this would help Bio-jETI users to avoid the
most common mistakes at process design time. In addition the list of verified
properties is extendable by the user, and can thus be easily adapted to specific
requirements of the application domain.

3.3 Model Synthesis

This dimension can be seen as a step beyond model checking: The biologist does
not have to care about data types at all - the synthesis automatically makes the
match by inserting required transformation programs (see section 2.2). This is
similar to a spell checker which automatically corrects the text, thus freeing the
writer from dealing with orthography at all.3

3 In our model-based framework, things are well-founded, without the uncertainties of
natural language. So please do not be put off by this example because of annoying
experiences with spell checkers!



Model Checking and Synthesis in Bio-jETI 7

The potential of this technology goes even further: ultimately, the biologist
will be able to specify her requests in a very sparse way, e.g. by just giving the
essential corner stones, and the synthesis will complete this request to a running
process. For instance, consider the following process description:

Having a single (genetic) sequence, I want to find similar sequences and get a
hypothesis about their evolutionary relationship.

Typically there are many processes that solve such a request. In the example
under consideration each solution would consist of a different set of similarity
search services and tools for estimating phylogenies, as well as the required con-
versions, data retrievals etc. in between. Thus our synthesis algorithm provides
the choice of producing a default solution according to a predefined heuristics,
or proposes sets of alternative solutions for the biologist to select.

4 Conclusion

The Semantic Web is currently one of the most ambitious projects in computer
science. Collective efforts have already lead to a basis of standards for service
descriptions and meta-information. It is now mainly the service provider’s task to
extend the already available technology according to more specific requirements
of their application domain and build up a semantics knowledge base.

The challenge for user-side software is to abstract from the underlying Seman-
tic Web technology again and provide the achievements in an intuitive fashion.
Some ontology-aware service browsers and clients are already available in the
scope of the BioMoby project. With the MOBY-S Web Service Browser it is, for
instance, possible to search for a matching next service, while in addition the
sequence of actually executed tools is recorded and stored as a Taverna work-
flow [15]. However, these solutions demand quite some technical understanding
from the user. This hampers the uptake by a larger biological community.

Our approach aims at lowering the required technical knowledge according
to the ”easy for the many, difficult for the few” paradigm. After an adequate
domain modeling, including the definition of the semantic rules to be checked by
the model checker or to be exploited during model synthesis, biologists should
ultimatively be able to profitably and efficiently work with a world-wide dis-
tributed collection of tools and data, using their own domain language.

This goal differentiates us from other related projects like Taverna [16], Ke-
pler [17] or Triana [18], which address a bioinformatics user, and not the biologist
herself. We believe that our control-oriented approach has a much better poten-
tial to address non-IT personnel: it allows them to continue to think in ’Dos’ and
’Don’ts’, and steps and sequences of action in their own terms at their level of
domain knowledge. In contrast, the three dataflow-oriented tools above require
their users to change the perspective to a resource point of view, which, in fact,
requires implicit (technical) knowlegde in order to profitably use them.



8 Lamprecht, Margaria, Steffen

References

1. Margaria, T., Kubczak, C., Steffen, B.: Bio-jETI: a service integration, design,
and provisioning platform for orchestrated bioinformatics processes. BMC Bioin-
formatics 9 Suppl 4 (2008) S12 PMID: 18460173.

2. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-Driven De-
velopment with the jABC. In: Hardware and Software, Verification and Testing.
(2007) 92–108

3. Bakera, M., Margaria, T., Renner, C., Steffen, B.: Verification, Diagnosis and
Adaptation: Tool-supported enhancement of the model-driven verification process.
In: Revue des Nouvelles Technologies de l’Information (RNTI-SM-1). (December
2007) 85–98 (Journal version to appear in ISSE).

4. Steffen, B., Margaria, T., Beeck, M.: Automatic synthesis of linear process models
from temporal constraints: An incremental approach. In ACM/SIGPLAN Int.
Workshop on Automated Analysis of Software (AAS’97) (1997)

5. Margaria, T., Steffen, B.: Backtracking-Free Design Planning by Automatic Syn-
thesis in METAFrame. In: Fundamental Approaches to Software Engineering.
(1998) 188

6. Margaria, T., Steffen, B.: LTL Guided Planning: Revisiting Automatic Tool Com-
position in ETI. In: Proceedings of the 31st IEEE Software Engineering Workshop,
IEEE Computer Society (2007) 214–226

7. Jörges, S., Margaria, T., Steffen, B.: Genesys: Service-Oriented Construction of
Property Conform Code Generators. Innovations in System and Software Engi-
neering - a NASA Journal (to appear)

8. Margaria, T., Nagel, R., Steffen, B.: jETI: A Tool for Remote Tool Integration.
In: Tools and Algorithms for the Construction and Analysis of Systems. Volume
3440/2005 of LNCS., Springer Berlin/Heidelberg (2005) 557–562

9. Wilkinson, M.D., Links, M.: BioMOBY: an open source biological web services pro-
posal. Briefings in Bioinformatics 3(4) (December 2002) 331–41 PMID: 12511062.

10. Gessler, D.: SSWAP – Simple Semantic Web Architecture and Protocol. http:

//sswap.info/docs/SSWAP.pdf
11. Ashburner, M., Ball, C.A., Blake, J.A., et al.: Gene ontology: tool for the unification

of biology. Nature Genetics 25(1) (May 2000) 25–9 PMID: 10802651.
12. Smith, B., Ashburner, M., others, C.R.: The OBO Foundry: coordinated evolu-

tion of ontologies to support biomedical data integration. Nat Biotech 25(11)
(November 2007) 1251–1255

13. Sahoo, S.S., Sheth, A., Henson, C.: Semantic Provenance for eScience: Managing
the Deluge of Scientific Data. IEEE Internet Computing 12(4) (2008) 46–54

14. Steffen, B.: Data Flow Analysis as Model Checking. In: Theoretical Aspects of
Computer Software, International Conference TACS ’91, Sendai, Japan, September
24-27, 1991, Proceedings, London, UK, Springer-Verlag (1991) 346–365

15. Dibernardo, M., Pottinger, R., Wilkinson, M.: Semi-automatic web service com-
position for the life sciences using the BioMoby semantic web framework. Journal
of Biomedical Informatics (March 2008) PMID: 18373957.

16. Oinn, T., Addis, M., Ferris, J., et al.: Taverna: a tool for the composition and
enactment of bioinformatics workflows. Bioinformatics 20(17) (2004) 3045–3054

17. Altintas, I., Berkley, C., Jaeger, E., et al.: Kepler: An Extensible System for Design
and Execution of Scientific Workflows. In SSDBM (2004) 21—23

18. Taylor, I., Shields, M., Wang, I., Harrison, A.: The Triana Workflow Environment:
Architecture and Applications. In: Workflows for e-Science. Springer, New York,
Secaucus, NJ, USA (2007) 320—339


