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Abstract. Hypothesis generation in the life sciences is an empirical process in 
which obtaining and structuring knowledge from literature plays a significant 
role. Text mining and Information Extraction techniques are seen as key for 
programmatically accessing the knowledge captured in the form of free text. 
We describe progress towards an application that supports the task of 
generating a hypothesis about biomolecular mechanisms using Semantic Web 
technologies and a workflow to carry out text mining in a service-oriented 
architecture. The output is a semantic model with putative biological 
relationships that have been extracted from literature, with each relationship 
linked to the corresponding evidence. We present preliminary data that extends 
a model for chromatin (de)condensation. The methodology can be used to 
bootstrap the process of human-guided construction of semantically rich 
biological models using the results of knowledge extraction processes.
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1 Introduction

Conceiving or improving a hypothesis about a biomolecular mechanism usually 
implies integration of various types of information and distillation into a 
comprehensible model. This includes information from literature, our own 
knowledge, and interpretations of experimental data. Many Web resources such as
Entrez PubMed1 provide such information. However, the difficulty of information 
retrieval from literature reveals the scale of today’s information overload: over 17 
million biomedical documents are now available from PubMed. Support for 
extracting information from these resources is therefore a general requirement, with 
many scientists finding it increasingly challenging to ensure that all potentially 
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relevant facts are considered whilst forming a hypothesis. Developments in the area of 
information extraction promise to deliver applications that will more directly support
the task of hypothesis generation. The general approach requires retrieving relevant 
documents, recognizing named entities (e.g. proteins) and their relationships, and 
storing results for later inspection [6, 10]. 

In this study, we address the question of how the results of a knowledge extraction 
procedure should be stored to best support hypothesis conception for experimental 
biology. In particular, we focus on epigenetics and chromatin research, where typical
examples are qualitative hypothetical models that attempt to explain the role of 
various proteins in changing the level of condensation of DNA as a means to regulate 
transcription (see for instance [12]). To support the linking of a knowledge extraction 
process to this type of modelling, we present an approach that extracts information 
from text and populates an OWL-based knowledge base with the extraction results.

2 Methods and tools for knowledge extraction

Knowledge extraction was performed by web services from the Adaptive Information 
Discovery Application (AIDA) toolbox, a set of web services and infrastructure being 
developed for knowledge extraction and knowledge management in a virtual 
laboratory for e-science1. It contains services for document retrieval based on Lucene2

[7], entity and relation recognition applying conditional random fields [5], and access 
to Sesame [1], a RDF repository that serves as our knowledge base. Ontologies were 
created in Protégé and conform to the OWL1.1 specification.

The general steps of the knowledge extraction process [6, 10] were implemented as
a workflow in Taverna [3]. We added steps to provide a likelihood score, cross 
references to biological databases, and tabular results (Fig. 1). The likelihood of
finding a document with query (q) and discovery (d) was calculated by: 
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D, and QD are the frequencies of documents 
containing q, d, and q and d; QDexp is the 
expected frequency of documents containing 
q and d assuming independence of Q and D;
N is the total number of documents in 
MedLine. The workflow further contains a 
web service for adding protein name 
synonyms to the original query and 
providing UniProt identifiers for human, rat, 
and mouse that we also used to filter false 
positives. This service, kindly provided by 
Martijn Schuemie, wraps components from 
the text analysis tool Anni2.0 [4]. At each 
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Fig. 1 - Workflow to extract proteins from 
literature and store them in a knowledge base.



step in the workflow, the results are converted into OWL instance statements in RDF 
format in order to populate the ontologies pre-loaded in our knowledge base. 

References to our scientific research objects (ontologies, workflows, AIDA 
services) are stored as a pack on myExperiment.org that is available for download 
upon request (http://www.myexperiment.org/packs/27).

3 Model Representation in OWL

3.1 Different types of knowledge

In order to represent our biological hypothesis, we would like an OWL ontology of 
the relevant biological domain entities and their biological relationships. The purpose 
of our knowledge extraction procedure is to populate this model with instances. We 
would also like to model the evidence that has led to these instances. This leads to a 
clash between our intention of enriching a biological model, and representing the 
artifacts of a text mining procedure such as ‘term’, ‘interaction assertion’, or ‘term 
collocation’. For these, we have concrete instance but that have no direct meaning in 
the biological domain. Within our OWL representation, we purposefully kept five
distinct OWL models in order to avoid the conflation of knowledge from the different 
stages of our knowledge extraction process. Our models represent:

 Biological knowledge for our hypothesis (Protein, Association)
 Documents (Terms, PubMed Identifiers)
 Knowledge extraction process (Workflows, Processes)
 Mined results (Extracted terms, extracted relationships)
 Mapping model to integrate the above through references.
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Fig. 2 – Example biological model: cartoon representation of a hypothesis for a chromatin 
(de)condensation mechanism. HDAC and HAT refer to enzymes with histone deacetylase 
activity and histone acetylase activity, respectively. For more details see figure 3 in [12] on 
which this figure is based.



3.1.1 Biological model

In the context of our example hypothesis (Fig. 2) we start with a minimal set of 
classes for a biological model with proteins and protein-protein associations (Fig. 3).
We cannot directly inspect concrete instances of proteins or their interactions. We 
regard instances in the biological model as interpretations of certain observations, in 
our case, of text mining results. We also do not consider such instances as biological 
facts; they are restricted to a hypothetical model. The evidence for the interpretation is
important, but it is not within the scope of this model. In the case of text mining,
evidence is modeled by the document and text mining models.

3.1.2 Document model

A model of the structure of documents and statements therein is less ambiguous than 
the biological model, because we can directly inspect concrete instances such as 
(references to) documents or pieces of text (Fig. 4).  We can be sure of the scope of 
the model and we can be clear about the distinction between classes and instances 
because we computationally process the documents. For our knowledge extraction 
experiment, we have created classes for documents, protein or gene terms, and 
mentions of associations between proteins or genes. Unfortunately, we cannot make a 
distinction between proteins and genes at this stage due to the limits of biological text 
mining. 
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Fig. 3 - Biological domain model for hypothesis support with example instances. HDAC11 and 
PCAF2 are examples of proteins implied in chromatin (de)condensation and known to interact. 
In this and following figures, diamonds represent instances, dashed arrows connected from 
diamonds instance-of relationships. The other dashed arrows represent properties between 
classes or instances. For clarity inverse relationships are not shown.



3.1.3 Text mining model

Next, we want to structure what we know of the knowledge extraction process that 
may serve as evidence for the population of our biological model (Fig. 5).  The aim of 
this step is to create assertions about instances of text mining processes, which 
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Fig. 4 – Basic ontological model that represents the relationship between documents and terms 
and statements used in the text.
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Fig. 5 – The knowledge extraction model with defined classes that classify instances from the 
text model as text mining discoveries. For clarity, property restrictions between classes and 
model components of the text mining process are not shown.



process instances of documents that contain instances of terms. In addition, in this 
model we represent information about the likelihood of terms and relationships being 
found in the literature. We also gain valuable knowledge provenance that can be used 
to track down any conflicting statements later on. This allows us to qualify the 
uncertainty of the text mining procedure. For more complete knowledge provenance, 
we have also created a semantic model representing the implementation of the text 
mining process as a workflow of (AIDA) Web Services (not shown).

3.1.4 Mapping model

At this point, we have a clear framework for the description of our biological domain 
and the documents and the text mining results as instances in our document and 
process ontologies. The next step is to relate the mined information to the biological 
domain model. Our strategy is to initially keep the domain model simple at the class 
and object property level, and to map sets of instances from our results to the domain 
model. For this, we created an additional mapping model that defines reference 
properties between the models (Fig. 6). We can now see that an interaction between 
the proteins labeled ‘p68’ and ‘HDAC1’ in our hypothetical model is referred to by a 
mention of an association between the terms ‘p68’ and ‘HDAC1’, with a likelihood 
score for finding this combination in literature.

The difficulty of distinguishing between genes and proteins during text mining also 
presents a problem for mapping to the biological model. When the number of proteins 
is small enough we may choose to initially map the text mining results to proteins, or
we could create a perhaps more factual ‘gene or protein’ class in the biological model.
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Fig. 6 – Mined knowledge mapping strategy. Instances from the results set (right) refer to 
instances in the domain model (left).



4 Preliminary results

The final result of the knowledge extraction workflow is a knowledge base 
extended with text mining results captured in OWL. We performed an example 
experiment starting with the query ‘HDAC1 AND chromatin’. As a result we could
query our knowledge base to find an instance of our biological hypothesis model and 
its partial representation by the input query and its expanded form (35 synonyms were 
added for document retrieval). We could further find 257 proteins linked to this model
as putative components. We could also recover that these links were discovered
through 489 protein terms found in 276 documents, and by what process, Web 
Service and workflow. The data is per individual: for each we stored its specific links 
to other individuals within a domain (e.g. the biological) and between domains. For 
instance, NF-KappaB is linked to our initial hypothesis and ‘HDAC1’ within the 
biological model, and to its associated term which was found in 10 abstracts. As our 
knowledge base grows with instances and different types of evidence we can perform 
increasingly interesting queries in search of novel relations with respect to our nascent 
hypothesis. A prototypical example is the protein referred to by the term ‘p68’ that 
was found to be collocated with the query term ‘HDAC1’ and also in a direct mention
of this interaction in an abstract by Wilson et al. [13], suggesting p68 as a candidate 
for investigating its role in relation to HDAC1 and chromatin. 

5 Conclusion

We have demonstrated first steps towards automating support for the processes 
involved in the formation of scientific hypotheses, particularly in studying 
biomolecular mechanisms. Text mining supports a researcher by inspecting more 
papers than an individual could and without human bias, while the use of an OWL-
based knowledge base supports exploration of semantic relationships of one or many
experiments. Our focus is on modeling information that is extracted during a 
computational experiment, rather than on improving a particular text mining 
procedure.  The approach is not limited to the modeling of text mining results but 
could be applied to the results of other computational experiments. Our method shares 
some features with the general task of ontology learning from text [2, 9], and that of 
populating a predefined ontology with instances obtained from text mining [14]. 
However, our aim is to provide a method for improving and reusing a biological 
hypothesis. We do not aim to construct a comprehensive hierarchy for a domain, nor 
are we specifically interested in recall as long as the text mining is reasonably 
unbiased. Semantic Web standards and tools allow us to explicitly represent the 
biological knowledge, share it as a resource online, and make it interoperable with 
other knowledge resources. Models representing provenance add a layer of trust into 
the results because the biological assertions are verifiable. It will be interesting to see 
how much our approach can make use of the data provenance in future versions of 
Taverna [8]. The rich potential of Semantic Web technologies will support the future 
extension of the domain model to suit more complex knowledge; its exploration 
hopefully supported by increasingly user friendly query tools and DL-reasoners [11].
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