CEUR-WS.org/Vol-436/paperl.pdf

Embedding a Test Tool in Eclipse Java Development
Environment

Maria Rosaria Morbidelli
IBM Software Group Rome Laboratory

00144 Rome, ltaly
rosa.morbidelli@it.ibm.com

Abstract. For delivering high quality software productsijsitimportant to test
them in environments very close to the typical oosr ones, where
unexpected events may perturb the normal runninpeofipplication. Running
tests in a realistic environment starting from ¢laely development phases helps
in reducing costs in terms of fixing. Moreover,ardistributed application, the
importance of testing each single component ine®asvhen Agile
methodologies are adopted because it can happen atheomponent is
developed when its pre-requisites are not available

Often the customer environments are very complek ra@plicating them in a
laboratory is difficult if at all possible.

The aim of this paper is to describe the integratiothe Eclipse IDE of a test
tool useful for simulating the operating conditiom$ typical customer
environments. This allows to seamlessly run compésts directly from the
Eclipse IDE without switching to a different envirment.

Keywords: Java, Eclipse, plug-in, random, unit test, injattiohook,
instrument, byte-code.

1 Introduction

In a commercial development organization, the pead identifying, correcting and
verifying defects during the software developmenbcpss is a very expensive
activity; the later the problems are found thedyetbsts increase.

Improving the effectiveness of software testingnirdhe early phases of the
development is an important aspect to increaseguhéty of a software application.
For a distributed application the efficiency of ttest of a single component (Unit
Test) is often affected by environment and confijon constraints: for user
interfaces it could be not easy to setup a devedmpranvironment that is connected
to the back end; for core components that interaitis a database, it could not be
easy simulating situations like concurrent accedsege numbers of data, loosing of
database connection, and so on.

CEUR
E\Norkshoz
Proceedings

Moreover, adopting the Agile methodology, the depetent of all the Software
Product application components may start at theesame, regardless the logical
sequence the components should be developed.

In all those cases, it could be useful having thesibility to use tools for scaffolding
data and simulating situations that could occura typical customer environment.

JITAT (Just-in-time Injector Test Automation Todd) a tool that can be used for
such purposes. It has been developed in the IBNMIM&oé Group Rome Laboratory
for internal test purposes and allows scaffoldirgfadand simulating complex
situations that usually may occur in a typical ousér environment (such as: loss of
network connectivity, unavailability of a neededvéee provider, JVM crashes) at
runtime and without modifying the application code.

JITAT is a tool that can also run independentlyrfr&clipse. Since in the IBM
Tivoli Rome Laboratory the standard developmentfpien is Eclipse, the solution to
integrate JITAT in the IDE plays a key role in Hatpus in executing, starting from
the Unit Test, a set of tests that normally woudperformed only in the later phases
of the test process.

This paper will describe the JITAT tool functiories (Section 2), how JITAT has
been integrated in the Eclipse IDE (Section 3),sdiTAT plug-in internals (Section
4), some possible future enhancements of the pl§ection 5).

2 What's JITAT

JITAT is a tool can be used for testing Java apfibos.
It allows to:

Emulate the presence of external components ndsdeee application that are

not available.

» Test the recovery mechanisms and fault managerapabdities of the
application in case of unattended environmentabsibns like abruptly
crashes, loss of network connectivity, shutdown sérver, temporary loss of
database connectivity and so on.

» Test the presence of conditions that may creatgetans deadlocks.

Obtain a deterministic behavior in presence of cam@vents, by a record/reply

mechanism that allows to record each generated eneino reproduce the
same event at the same instant in a subsequenitexeof the same test.

JITAT works by using a hooks mechanism: it instratselava classes at runtime,
doing the ‘just-in-time’ byte-code instrumentatiaf the application by injecting
predefined or customized hooks in well defined fimees of the application Java
classes when they are loaded into the memory aj\Vié.

In details, JITAT intercepts the entry, the exit méthods and the throwing of
exceptions and inserts its own code in order teratie behavior of the original
method.

JITAT allows instrument the Java classes by twes$ypf hooks:

Synchronous hooks: which are executed in the contéxa method
invocation; they are of two types:

0 Replacing hook: that provides the capability of rowdte at
runtime classes methods.

0 Augmenting hook: that allows to adding code at ltleginning
and at the end of a class method.

Asynchronous hooks: that are executed asynchropduosla separate
thread and allows simulating unattended situatidike network
interruption, database connection loosing, randeastes of the JVM
processes, etc.

Each hook can be bound to a specific set of classtlsods by user configurable
filters, which have to be specified in a configioatfile.

JITAT provides a library of predefined hooks (syrmitous and asynchronous
power-off simulator, a fault injector, a delay/tadeswitch injector) and allows the
user to define also its own hooks.

The configuration of the JITAT is XML-based.

3 JITAT and Eclipse

JITAT has been integrated into the Eclipse Javaeld@ment Environment as a

plug-in.

The JITAT Eclipse plug-in provides the developsairaple way to:

Manage (create, edit, delete) one or several JITAffigurations (see
Fig. 1.

Create custom hooks by providing pre-defined tetepldor the hook
classes and compile them (3€g. 2).

Bind the Java classes/methods of an applicatian X0 AT hook directly
from the Eclipse Java perspective.

Run a Java application instrumented by JITAT frém Eclipse platform
(see Fig. 3).

& JITAT - JITAT Editor - Eclipse SDK

Fle Edt Mavigats Search Project Run Window Help
2@ %d- & 55 omar &lava
= B[Bz outine 527\ = mi)|
£ 125 JitatE: - . [= L asy |
£ & JtaExampie Global Configuration -8t asynchranous hooks
[¥] .classpath i i AsynchavMCrashinjector
(8 .project Log Class Loader =¥ synchranous haoks
= bin —_— _ 1 bl WMCrashsimulator
{22 hooks log levl: [cespathm i+ P DelayInjector
o 1E B D: funtme -EdioseApplcation UitatExample hooks | & SmoRRepiacelethodo
a1 lbs log max fie size: [10000000 - Exczovonimertor
& log £ # SmpleAugmentiethodHe
2§ hooks fiters
| o myFilter3
pavent dasslosders [suts L E myFiter2
3 myFitert
Trace Remote Control
dracedevels [telnet server enabled
tracemaxfiesze: | 10000000 feletserverport: [4518
trace max fie number: [5 =i b
httpserverport: |
Tuning Bytecode Transformer
execution mode; [normal = dass®) ‘com ibrn. tvoll jitat. transformer, BCEL Clas
O et on error dump transformed dasses
instantiate dissbled hooks O dump synthetic classes
dumped dasses directory: [transformed_dasses
] : T —=] sl
Asynchronaus Hooks | Synchronous Hooks | Hook Fiters | Configuration | jtat, xmi | |
= = = |
| B problems 23 ® L --O)= -
| . i o == e = |
E | |
12 i

Fig. 1. This figure shows the editor of the XML JITAT cagdration file: it allows to define
general configuration parameteGoffiguration tab), synchronousSgnchronous Hooks tab)

and asynchronous hook&synchronous Hooks tab) and the methods and Java classes where the
defined hooks applyHook Filters tab).

ITAT Editor - Eclipse SDK

Bie Edit Navigate Search Project Run Window

telp

T et Elave

SOjfFoie sz =0

Hook Details

Specify the details of the selected hook

B

dass™ |

type: Jaugment method

fters: |

[enzbied
Agditonzl Parameters:

Hame. [value

L = :
Asynchranous Hooks | Synchronous Hooks | Hook Filters | Configuration | jitat.xmi |

Es - |#Z] @ |% &~
—F
B JITAT Editor X%
o —————
E“j‘m‘: Synchronous Hooks
| classpath
[¥) project Synchronous Hooks
L@ bin cabt e ko
& hadks Specify the st of the asynchronous
%) stat.xml ks
VMCrashSimulator
& log DelayInjectar
SmpleReplacehethodH
Exceptioninjector
simpleAugmentMethodH
¢ 3
‘ES; Prablems 52

=
XD

synchronous hooks
: AsynchIVMCrash
=19, synchronous hooks
A VMCrashSimulate
A DelavInjector
A simpleReplaceie
AP Exceptioninjector
A SimpleAugmentie
¥ hooks fiters

-3 myFiter3

3 myFiter2

o myFilter1

Fig. 2. This figure shows the hooks section of the JITAnfeuration file: in this section it is

possible to define the hooks and, eventually, thefameters.

& Run
Create, manage, and run configurations Y
&3 [Mair]: Main type not specified IE ;;J

Canfigurations: pame: | JIITATConfiguration
o 2% Apache Tomcat
clipse Application

eric Server
Seneric Server [~ Save as -

a2 Applet &+ Local fie
iava Application

b= Argumants] B JRE] . Classpath] B2 source | M8 Environment = Common l a1

JITATConfiguration " Shared file: |
ig
t Plug-n Test [~ Display in favorites menu - 5 [~ Console Encoding
LR OGun " Defaut (Cp1253)
O % Debug ot [fSo2seo0 =1

—Standard Input.and Output
W allocate Console {necessary forinput)
I Ale: |

= enpent

sginch i background
JITAT
W RBun using JITAT

JITAT project: | JitatExampie

Nesy Delete Apply Revert

Fig. 3. This figure shows how to run a Java applicatiortrimeented by JITAT just setting a
flag and choosing the JITAT configurationthe Eclipse Launch Configuration dialog.

Using the JITAT plug-in it is possible defining seal configurations; this
provides a friendly way for proceeding by stepshi@ Unit Test and for starting the
test of components that usually needs other commpsraevailable before be tested,
such as the user interfaces when back end compoasnhot been developed yet.

As a first step, the developer can define a JITAffiguration for scaffolding data
that could come from the back end. This is posstedefining Synchronous
Replacing hooks that provides the data to the Epetasses methods.

In example, let's consider a User Interface that ftashow data retrieved from a
databasegetDataFromDB is the method that establishes the database coomectd
run the query for getting the data from the datapasing the JITAT plug-in, the user
can easily define a replacing hook that simulatespresence of the database reading
the data from a file; let's call this hodimulateDataRetrievingHook. Binding the
SmulateDataRetrievingHook with the getDataFromDB method in the JITAT
configuration file, and running the User Interfaggth such defined JITAT

configuration, the user interface will run alsolwatit the data base since it will show
the data in the file instead of the data in theldase.

As a second step, the user can define a JITAT gordtion for simulating errors
and the occurrence of unattended situations, likenection failures, network
interruption, and so on. This is possible by defini custom
Synchronous/Asynchronous hooks or using some dbtilein hooks provided in the
JITAT library.

As a third step, the developer can define a JITARfiguration for making
scalability and performance tests by simulatinghildta coming from backend. This
is possible by defining custom Synchronous/Asyncbus hooks.

This solution allows achieving high test coverafa software application starting
from the Unit Test development phase. Moreover, dhpability to store several
JITAT configurations and to switch in a simple wagm one configuration to
another one and the record/replay capability predithy the tool, allows a simple
way to test problems’ fixes to test problem fixeghwa deterministic method, also
when the test could require the recreation of ramdibuations.

4 JITAT Plug-in Internals

JITAT plug-in interacts with Eclipse Java Developmenvironment by defining
the extension points listed in tiMable 1.

Table 1 JITAT plug-in extension points.

Extension Point Java Class Description

org.eclipse.ui.perspective Defines a new
perspective specific to
the JITAT plug-in

org.eclipse.ui.view JITATNavigatorView Defines tNavigator
View of the JITAT
perspective.

org.eclipse.ui.editor JITATFormEditor Defines tHeAIT
configuration file editor

org.eclipse.ui.newWizard NewProjectWizard Providesizard for

creating specific projects
where defining JITAT
configurations and
custom hooks
org.eclipse.ui.popupMenusLinkToHookAction Contributes with new
menus and actions, like
binding a method of an
application Java class to
a JITAT Hook (built-in
or custom)

org.eclipse.debug.ui.launch]JITATLaunchConfigurati Contributed with the

ConfigurationTabGroups onTabGroup JITAT options in Java
Launch Config. tab

org.eclipse.core.resources.dITATProjectNature Defines the specific
atues nature for a JITAT
Project

The class diagram below (s&&. 4) describes how the JITAT plug-in interacts
with the Java Launch Configuration in order to atié JITAT settings in the
Common tab. This has been implemented by extendimg Java Launch
Configuration tab group by th@l TATCommonConfigurationTab tab group, that
extends the Jav@ommonTab by adding the JITAT settings.

LocalJavalpplicatio
nTabGroup CommonTab

A A

JTATLaunchConfigurationTabGroup J.lTATCommoﬁCunﬁgutaionTab

-cre_ale,Tab_s.[)

Fig. 4. This class diagram shows how the JITAT plug-intdbates in Launch Configuration
Common Tab.

JITATLaunchConfigurationTabGroup is the class that implements the
org.eclipse.debug.ui.launchConfigurationTabGroups extension point: in the
createTabs() method, it creates the tabs shown in the Eclipse
LaunchConfigurationDialog: in details, it createsI&RATCommonConfigurationTab
that overwrites the CommonTab and provides the JIdgtion.

5 Open points

There are some possible enhancements to JITAT ipltigat could improve the
usability of the tool:

e Add a Console view where showing live the log & HTAT.

 Add a view for showing charts representing theistias provided by
JITAT about some interesting execution informatitike the number of
instrumented methods/classes, the number of tla¢ itotocations of the
different kinds of hook events, the number and typthe generated hook
events for each method and so on.

6 Conclusions

This paper described how a tool for test has besbedded as a plug-in into
Eclipse Java Development Environment.

This allowed increasing the power of the Unit Tpabviding an easy way for
scaffolding data and for simulating realistic eowiment situations, without
modifying the Java application code and withouttsling off from the development
environment.

Adopting this solution we were able to execute taofeomplex tests as a routine
starting from the first development phases, wiieasible reduction of costs in terms
of fixing.

A future possible extension of the use of JITAT golo should be a further
integration with JUnit.

The ‘Open Points’ section has promising ideas alutiher improvements of the

plug-in.

References

1. Mauro Arcese, Design for Testability put intaétice, Supplementary Proceedings of the
17th IEEE International Symposium on Software Ruliz Engineering (ISSREO06),
November 2006.

2. Marcel Christian Baur, Instrumenting Java Byterdo Replay Execution Traces of
Multithreaded Programs.

(http://research.nii.ac.jp/~cartho/papers/mbaur-2088.pd}

3. Joseph Coha, Byte-code Instrumentation Revealed
(http://bdn.borland.com/borcon2004files/32628/326¥221213 S.PPT

4. Dennis Sosnoski, the “Java programming dyndnsieses on developerWorks.
(http://www-106.ibm.com/developerworks/java/libratghyn0429/)

