
Embedding a Test Tool in Eclipse Java Development
Environment

Maria Rosaria Morbidelli

IBM Software Group Rome Laboratory

00144 Rome, Italy
 rosa.morbidelli@it.ibm.com

Abstract. For delivering high quality software products, it is important to test
them in environments very close to the typical customer ones, where
unexpected events may perturb the normal running of the application. Running
tests in a realistic environment starting from the early development phases helps
in reducing costs in terms of fixing. Moreover, in a distributed application, the
importance of testing each single component increases when Agile
methodologies are adopted because it can happen that a component is
developed when its pre-requisites are not available.
Often the customer environments are very complex and replicating them in a
laboratory is difficult if at all possible.
The aim of this paper is to describe the integration in the Eclipse IDE of a test
tool useful for simulating the operating conditions of typical customer
environments. This allows to seamlessly run complex tests directly from the
Eclipse IDE without switching to a different environment.

Keywords: Java, Eclipse, plug-in, random, unit test, injection, hook,
instrument, byte-code.

1 Introduction

In a commercial development organization, the process of identifying, correcting and
verifying defects during the software development process is a very expensive
activity; the later the problems are found the better costs increase.
Improving the effectiveness of software testing from the early phases of the
development is an important aspect to increase the quality of a software application.
For a distributed application the efficiency of the test of a single component (Unit
Test) is often affected by environment and configuration constraints: for user
interfaces it could be not easy to setup a development environment that is connected
to the back end; for core components that interacts with a database, it could not be
easy simulating situations like concurrent accesses, huge numbers of data, loosing of
database connection, and so on.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

Moreover, adopting the Agile methodology, the development of all the Software
Product application components may start at the same time, regardless the logical
sequence the components should be developed.
In all those cases, it could be useful having the possibility to use tools for scaffolding
data and simulating situations that could occurs on a typical customer environment.

JITAT (Just-in-time Injector Test Automation Tool) is a tool that can be used for
such purposes. It has been developed in the IBM Software Group Rome Laboratory
for internal test purposes and allows scaffolding data and simulating complex
situations that usually may occur in a typical customer environment (such as: loss of
network connectivity, unavailability of a needed service provider, JVM crashes) at
runtime and without modifying the application code.

JITAT is a tool that can also run independently from Eclipse. Since in the IBM
Tivoli Rome Laboratory the standard development platform is Eclipse, the solution to
integrate JITAT in the IDE plays a key role in helping us in executing, starting from
the Unit Test, a set of tests that normally would be performed only in the later phases
of the test process.

This paper will describe the JITAT tool functionalities (Section 2), how JITAT has
been integrated in the Eclipse IDE (Section 3), some JITAT plug-in internals (Section
4), some possible future enhancements of the plug-in (Section 5).

2 What’s JITAT

JITAT is a tool can be used for testing Java applications.
It allows to:

• Emulate the presence of external components needed by the application that are

not available.
• Test the recovery mechanisms and fault management capabilities of the

application in case of unattended environmental situations like abruptly
crashes, loss of network connectivity, shutdown of a server, temporary loss of
database connectivity and so on.

• Test the presence of conditions that may create dangerous deadlocks.
• Obtain a deterministic behavior in presence of random events, by a record/reply

mechanism that allows to record each generated event and to reproduce the
same event at the same instant in a subsequent execution of the same test.

JITAT works by using a hooks mechanism: it instruments Java classes at runtime,

doing the ‘just-in-time’ byte-code instrumentation of the application by injecting
predefined or customized hooks in well defined locations of the application Java
classes when they are loaded into the memory of the JVM.

In details, JITAT intercepts the entry, the exit of methods and the throwing of
exceptions and inserts its own code in order to alter the behavior of the original
method.

JITAT allows instrument the Java classes by two types of hooks:

• Synchronous hooks: which are executed in the context of a method
invocation; they are of two types:

o Replacing hook: that provides the capability of overwrite at

runtime classes methods.
o Augmenting hook: that allows to adding code at the beginning

and at the end of a class method.

• Asynchronous hooks: that are executed asynchronously in a separate
thread and allows simulating unattended situations like network
interruption, database connection loosing, random crashes of the JVM
processes, etc.

Each hook can be bound to a specific set of classes/methods by user configurable

filters, which have to be specified in a configuration file.
JITAT provides a library of predefined hooks (synchronous and asynchronous

power-off simulator, a fault injector, a delay/thread-switch injector) and allows the
user to define also its own hooks.

The configuration of the JITAT is XML-based.

3 JITAT and Eclipse

JITAT has been integrated into the Eclipse Java Development Environment as a
plug-in.

The JITAT Eclipse plug-in provides the developer a simple way to:

• Manage (create, edit, delete) one or several JITAT configurations (see
Fig. 1).

• Create custom hooks by providing pre-defined templates for the hook
classes and compile them (see Fig. 2).

• Bind the Java classes/methods of an application to a JITAT hook directly
from the Eclipse Java perspective.

• Run a Java application instrumented by JITAT from the Eclipse platform
(see Fig. 3).

Fig. 1. This figure shows the editor of the XML JITAT configuration file: it allows to define
general configuration parameters (Configuration tab), synchronous (Synchronous Hooks tab)
and asynchronous hooks (Asynchronous Hooks tab) and the methods and Java classes where the
defined hooks apply (Hook Filters tab).

Fig. 2. This figure shows the hooks section of the JITAT configuration file: in this section it is
possible to define the hooks and, eventually, their parameters.

Fig. 3. This figure shows how to run a Java application instrumented by JITAT just setting a
flag and choosing the JITAT configuration in the Eclipse Launch Configuration dialog.

Using the JITAT plug-in it is possible defining several configurations; this

provides a friendly way for proceeding by steps in the Unit Test and for starting the
test of components that usually needs other components available before be tested,
such as the user interfaces when back end components are not been developed yet.

As a first step, the developer can define a JITAT configuration for scaffolding data

that could come from the back end. This is possible by defining Synchronous
Replacing hooks that provides the data to the specific classes methods.

In example, let’s consider a User Interface that has to show data retrieved from a
database; getDataFromDB is the method that establishes the database connection and
run the query for getting the data from the database; using the JITAT plug-in, the user
can easily define a replacing hook that simulates the presence of the database reading
the data from a file; let’s call this hook SimulateDataRetrievingHook. Binding the
SimulateDataRetrievingHook with the getDataFromDB method in the JITAT
configuration file, and running the User Interface with such defined JITAT

configuration, the user interface will run also without the data base since it will show
the data in the file instead of the data in the database.

As a second step, the user can define a JITAT configuration for simulating errors

and the occurrence of unattended situations, like connection failures, network
interruption, and so on. This is possible by defining custom
Synchronous/Asynchronous hooks or using some of the built-in hooks provided in the
JITAT library.

As a third step, the developer can define a JITAT configuration for making
scalability and performance tests by simulating bulk data coming from backend. This
is possible by defining custom Synchronous/Asynchronous hooks.

This solution allows achieving high test coverage of a software application starting

from the Unit Test development phase. Moreover, the capability to store several
JITAT configurations and to switch in a simple way from one configuration to
another one and the record/replay capability provided by the tool, allows a simple
way to test problems’ fixes to test problem fixes with a deterministic method, also
when the test could require the recreation of random situations.

4 JITAT Plug-in Internals

JITAT plug-in interacts with Eclipse Java Development environment by defining
the extension points listed in the Table 1.

Table 1. JITAT plug-in extension points.

Extension Point Java Class Description

org.eclipse.ui.perspective Defines a new
perspective specific to
the JITAT plug-in

org.eclipse.ui.view JITATNavigatorView Defines the Navigator
View of the JITAT
perspective.

org.eclipse.ui.editor JITATFormEditor Defines the JITAT
configuration file editor

org.eclipse.ui.newWizard NewProjectWizard Provides a wizard for
creating specific projects
where defining JITAT
configurations and
custom hooks

org.eclipse.ui.popupMenus LinkToHookAction Contributes with new
menus and actions, like
binding a method of an
application Java class to
a JITAT Hook (built-in
or custom)

org.eclipse.debug.ui.launch
ConfigurationTabGroups

JITATLaunchConfigurati
onTabGroup

Contributed with the
JITAT options in Java
Launch Config. tab

org.eclipse.core.resources.n
atues

JITATProjectNature Defines the specific
nature for a JITAT
Project

The class diagram below (see Fig. 4) describes how the JITAT plug-in interacts

with the Java Launch Configuration in order to add the JITAT settings in the
Common tab. This has been implemented by extending the Java Launch
Configuration tab group by the JITATCommonConfigurationTab tab group, that
extends the Java CommonTab by adding the JITAT settings.

Fig. 4. This class diagram shows how the JITAT plug-in contributes in Launch Configuration
Common Tab.

JITATLaunchConfigurationTabGroup is the class that implements the
org.eclipse.debug.ui.launchConfigurationTabGroups extension point: in the
createTabs() method, it creates the tabs shown in the Eclipse
LaunchConfigurationDialog: in details, it creates a JITATCommonConfigurationTab
that overwrites the CommonTab and provides the JITAT option.

5 Open points

There are some possible enhancements to JITAT plug-in that could improve the
usability of the tool:

• Add a Console view where showing live the log of the JITAT.
• Add a view for showing charts representing the statistics provided by

JITAT about some interesting execution information, like the number of
instrumented methods/classes, the number of the total invocations of the
different kinds of hook events, the number and type of the generated hook
events for each method and so on.

6 Conclusions

This paper described how a tool for test has been embedded as a plug-in into
Eclipse Java Development Environment.

This allowed increasing the power of the Unit Test providing an easy way for
scaffolding data and for simulating realistic environment situations, without
modifying the Java application code and without switching off from the development
environment.

Adopting this solution we were able to execute a set of complex tests as a routine
starting from the first development phases, with a sensible reduction of costs in terms
of fixing.

A future possible extension of the use of JITAT plug-in should be a further
integration with JUnit.

The ‘Open Points’ section has promising ideas about further improvements of the
plug-in.

References

1. Mauro Arcese, Design for Testability put into Practice, Supplementary Proceedings of the
17th IEEE International Symposium on Software Reliability Engineering (ISSRE06),
November 2006.

2. Marcel Christian Baur, Instrumenting Java Bytecode to Replay Execution Traces of
Multithreaded Programs.
(http://research.nii.ac.jp/~cartho/papers/mbaur-2003-instr.pdf)

3. Joseph Coha, Byte-code Instrumentation Revealed.
(http://bdn.borland.com/borcon2004files/32628/32628_09221213_S.PPT)

4. Dennis Sosnoski, the “Java programming dynamics” series on developerWorks.
(http://www-106.ibm.com/developerworks/java/library/j-dyn0429/)

