
Model-driven Generation of Graphical Maps
for e-Contents

Antonio Natali1, Enrico Oliva1 and Cristina Bonanni2

1ALMA MATER STUDIORUM–Università di Bologna, Cesena, Italy
antonio.natali,enrico.oliva@unibo.it

2IBM Italia, Tivoli Software, Roma, Italy
cristina.bonanni@it.ibm.com

Abstract. In this paper we present the application of a model driven software
development approach (MDSD) to the generation of graphical (interactive)
maps. The approach is rooted on the Eclipse Modeling Framework (EMF) and
on a textual representation of the metamodel handled by the
openArchitectureWare (oAW) suite of plug-ins. The metamodel represents our
domain-specific language (DSL), which extends the concepts of e-Content
organization defined in the Darwin Information Typing Architecture (DITA).
While the usage of a textual representation is chosen to facilitate the task of the
e-Content designer, graphical maps are introduced to enhance understanding
and to improve the ability to acquire knowledge. The MDSD approach allowed
us to hide into code generators all the details required to overcome the
abstraction gap between the domain language and the implementation platform.

1 Introduction

Model driven software development (MDSD) [1] represents a strategic issue in
modern software development for two main reasons; first of all it makes explicit
(trough the models) knowledge that usually remains implicit during a conventional
process and secondly it promotes automatic generation of (well structured) code to
overcome the abstraction gap between the models and the implementation platform.

The Eclipse Model Framework (EMF) [2] supports the development of platform
independent models by means of Ecore [3] which is the implementation of the
Object Management Group’s (OMG) Meta Object Facility (MOF) specification [4]. A
model expressed in Ecore is usually introduced to define a meta-model, i.e. the
abstract syntax of a domain specific language (DSL)

Domain specific languages are at the centre of MDSD in order to capture the key
aspects of an application domain and to promote the automatic generation of platform
dependent layers.

We have adopted the MDSD approach in the context of a joint project between the
University of Bologna and the IBM Rome Tivoli Laboratory. The main aim of this
project is to exploit the Darwin Information Typing Architecture (DITA) [5] and
Eclipse to build a Manual Management System (MMS) intended as a specialized
version of a modern eLearning Management System (LMS). As implementation
platform we make reference to the Eclipse UA Infocenter - the Internet-based scenario

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

of the Eclipse user assistance (UA) - and a conventional eLearning platform like
Moodle [6].

Working with a domain specific language poses the problem of the concrete syntax
of the language. The editors automatically generated by EMF are tree-based editors;
these editors, like those based on the graphical interface provided by Graphical
Modeling Framework (GMF) [7] could be quite handy to use for a software developer;
however the end user could feel more comfortable working with a textual
representation, once it can be automatically associated to a graphical map tailored to
the essential concepts in the domain. The graphical map provides both a more
understandable vision of the model and a set of general-purpose interactive
functionalities as zooming, filtering and detailing-on-demand that can improve
understanding.

For this reason we have decided to define a textual editor for a DSL devoted to the
specification of the organization and semantic properties of contents represented in
machine-readable forms (e-Contents) and to exploit MDSD to generate in automatic
way one or more graphical maps intended as different views of the user model. To
achieve the goal, we are using the Xtext framework of the oAW [8] suite and the
Prefuse [9] library as the operational implementation framework for map drawing.

In this paper we discuss the usage of EMF-oAW for the construction of a textual
editor with code completion, syntax highlighting, together with the automatic
generation of the artifact required for the specific operational platform, with particular
reference to the Prefuse visualization engine.

The work is structured as follows: section 2 presents an overview of system
functionality from the user point of view; section 3 describes the rules to construct the
grammar and the editor; section 4 focuses on the map generation and section 5 draws
some conclusion.

2 Overview of the system functionalities

The organization and navigation of e-Contents has a dramatic impact on the user’s
ability to acquire knowledge; in particular, the usage of graphical maps for structuring
and organizing information to enhance understanding and learning is an open
research issue [12].

In our approach, the conventional navigation loop “select a topic from an index,
open the topic, and read the content” is replaced with the concept of semantic,
customizable navigation into reading paths, either pre-planned by the e-Content
designer or even dynamically built by the reader. Thus, our DSL provides the
following main concepts (that extend those introduced in DITA [5]):
• Each content Unit is composed of a set of logical contents called Items or Topics;

each Item is associated to one or more resource File that can be written in any
format readable by a conventional browser.

• Each Item can be associated to a (empty) set of metadata including binary logical
relations with other items.

• The author can define one or more reading paths.
• Graphical maps are exploited to arrange the items into custom-related highly-

readable contexts.

The usage of maps enhances the semantics aspects related to the e-Contents and
allows the creation of content views tailored to specific user needs. A conventional
index can be considered as one of several, possible pre-planned reading paths that
can be offered to the reader in order to achieve specific learning goals, such as
theoretical background rather than practical skill, etc.

At the centre of our approach there is a formal model of e-Content organization [11],
expressed in MOF [4]; a subset of the model is shown in the figure hereunder:

Fig. 1. Part of the metamodel expressed as an Ecore diagram.

One of the key-concepts introduced in the formal model is the possibility to express
binary logical relation between items. The set of relation types is open; for example,
with reference to a relation statement such as S relTypeT possible relType values could
be:
• Preknowledge-of: S assumes that the reader knows what is written in T
• Clarification-of: T should make the content of S more clear;
• Conceptualization-of: T presents the content of S in more formal way;
• Widening-of: T is a study in depth of S;
• Experiment-of: T is an experiment related to S;
• Exercise-of: T is an exercise related to S;
• Test-of: T is an evaluation of the student understanding of S.

Besides reading paths and semantic relations, the model allows users to associate
metadata values to the items. Metadata can represent educational data (e.g.
semanticDensity, difficulty, etc), audience-related information (e.g.
beginner, expert), and so on.. A relation can be also associated with one or more
conditions involving the metadata; in other words the concept of relation is not absolute,
but can depend on (meta)data values.

The MOF model is meta-model that provides our DSL. Thanks to the concrete
textual syntax associated to the language, users can specify their content structure in a
textual form like the following:

econtent Computer Science

item func title "Function" meta difficulty high audience beginner

item stat title "Statement" meta difficulty low audience beginner

item prog title "Programming" meta difficulty medium audience expert

item val title "Evaluation" meta difficulty medium audience beginner

item adt title "Abstract Data Type" meta difficulty

item java title "Java" meta difficulty high audience beginner

item jadt title "Java ADT" meta difficulty high audience expert

item list title "List" meta difficulty medium audience expert

item arr title "Array" meta difficulty medium audience expert

readingpath labpath { java prog jadt adt list }

readingpath thpath { func stat val adt list arr }

relation func preknowledge-of prog

relation stat preknowledge-of prog

relation stat widening-of val

relation adt preknowledge-of prog

relation list example-of adt

relation arr example-of adt

This toy example describes the organization of a computer science course. Each

item represents a knowledge unit; the items can be arranged in two different reading
paths, one (thpath) intended for theoretical background and the other (labpath)
for the laboratory. Each item can be associate to one or more metadata introduced by
the key word meta; in the example, the metadata specify the kind of user (expert,
beginner) for which the item content is written and the difficulty level of an item
(low, medium, high).

The model written in textual form is the only artifact that should be produced by
the author. The content specification file must be given as input to the generator
system shown in figure 2; the generator produces in automatic way both the run time
support for in the chosen platform of content delivery and a set of graphical maps

Fig. 2. Map generation system.

2.1. The role of the maps

Maps are visual methods for understanding and representing knowledge. Visual
methods could be used for learning purpose helping human to articulate implicit

knowledge and to formulate new thinking. Typically, most of the visual methods are
interactive and provide an overview of the data, including functionalities like
zooming, filtering and detailing-on-demand in order to promote cognition; other
kinds of maps help users to elaborate concepts, ideas and plans.

There are several map styles that can be pragmatically classified as in [12] through
two relevant dimensions: complexity of visualization and application area. Each map
style can emphasize different aspects of a model by allowing users to perceive
concepts in different ways; different styles can be used in combined, complementary
way to achieve better results. For example:
• tree view : is a map style organized like classical hierarchical index where the

contents are open/closed dynamically according to users requests. This style can
be used to show reading paths;

• radial graph : is a map style that highlights hierarchies or semantic networks of
information centered on a specific item. The selection of an item produces a re-
configuration of the map, by focusing on the selected item. This kind of map
promote a qualitative elaboration of the information and is well suited, together
with filtering/selection features, to represent item relations;

• tree-based map : is a space-filling approach to display data as set of nested
rectangles. This map style is useful to organize and represent complex structure of
information with several connections, categories and users. Typically it is possible
to display in a unique map a multiplicity of items so to recognize patterns or
content characteristics in few seconds. . This kind of map can be used to organize
the views by keeping into account metadata values.

With reference to the toy example, the left part of Figure 3 shows a classical tree view
in which the image changes when the user navigates into the structure; the right part
shows a radial map including an overview-part of the e-Content and a detailed part
centered on Programming topic.

Fig. 3. Generated Map: Direct Radial Map with Overview (left); Tree View (right).

The left part of Figure 4 shows the tree-based map related to a reading path; the
selected item is represented by the area on the left-up corner, while the dimension and
color of rectangles are related to difficulty metadata of the corresponding item;
the right part of figure 4 shows a radial map centered on the Programming item
that highlights (by using a filter) the items written with reference to expert people.

Fig. 4. Generated Map: Tree Map (left); Radial Map with meta filter (right).

Once made interactive, the maps could also be used by the user as a new form of
input device for his/her specifications.

3 Editor and Grammar Construction

The construction of a text editor for a specific grammar is not an easy task. Tools
like parser generators (javaCC, ANTLR) allow the construction of a parser and the
data structure used by the parser to build the AST (Abstract Syntax Tree) leaving to
the user the creation of the whole editor, with syntax highlighting, code completion,
model checking, etc.
oAW is an Eclipse Project written in Java that supports the parsing of models and a

set of tools to check and transform the models as well as to generate code. XText
[10] is a component of oAW that allows the textual definition of DSLs using Extended
Backus-Naur-Form (EBNF) notation. The framework supports the automatic
generation of a parser, an Ecore metamodel and a specific text editor for Eclipse.

Starting from the Ecore metamodel defined in our previous work [11], we have
defined a grammar so that the transformation performed by oAW generates the same
Ecore metamodel. Since the definition of such a grammar cannot be performed by
an automatic process, our approach was to introduce a set of guide-rules in order to
achieve the goal in the most systematic way as possible.

3.1 From the model to a grammar

An Ecore metamodel represents the abstract syntax of a (domain specific)
language. XText allows describing both the abstract (i.e. the metamodel) and the
concrete syntax of a DSL. A grammar specification consists of a list of production
rules written in a EBNF notation of form RuleName:Description.

The RuleName is both the name of the rule and the name of the class (metatype)
in the metamodel corresponding to this rule (e.g. Unit, Item, etc. of figure 1). A

Description is made up of tokens that can be a built-in token ID that represents a
unique identifier or KeywordTokens, IdentifierTokens, and AssignmentTokens of the
form: Lpart Op Rpart.

Each assignment token is not only used to create a corresponding assignment
action in the parser, but also to compute the properties (represented by the Lpart)
of the current metatype. Properties can refer to the simple types such as String,
Boolean or Integer as well as other complex metatypes (i.e. other rules); what
the type actually is depends on the assignment operator Op and on the type of the
token on the right; with the standard assignment form (=) the property type is
computed from the token in the Rpart; in the += form the type is a List of
elements whose type depend on the token in the Rpart.

In order to re-produce exactly our metamodel [11], the Description part of
the rule related to a specific metaclass has been defined according the following set of
criteria:
1. For each attribute define a keyword token (which is exploited by the editor to

suggest text completion) through a standard assignment.
2. For each composition define a += assignment in which the Rpart is the rule

associated to the related metaclass.
3. For each association (cardinality 1) define a standard assignment that makes

reference to the rule associated to the related metaclass.
4. For each aggregation define a += assignment in which the Rpart is a

crossreference to the rule associated to the related metaclass D (denoted with[D]).
5. For each generalization define an abstract rule made of a sequence of alternatives

that reflects the type hierarchy; all the properties defined in all subtypes are
automatically moved to the common supertype.

6. For each enumeration type, define an enumeration rule Enum composed of a
sequence of choices with all literals as terminal symbols.

 For example, the rules corresponding to the simplified version of or metamodel
depicted in figure 1, can be defined as follows:

Unit :
 "econtent" title=STRING
 ("version" version=ID)?
 (contents += Item)*
 (readingpaths += ReadingPath)*
 (relations += ItemRelation)* ;
Item :
 "item" name=ID
 "title" title=STRING
 ("path" files += File)+
 (metadata += Metadata)* ;
Metadata : "meta"
 ("difficulty" difficulty=DifficulType)?
 ("audience" audience=Audience)? ;
File : STRING(Dita | Html) ;
Dita : ".dita";
Html : ".html";
ReadingPath :
 "readingpath" id=ID title=STRING "{"
 (items += [Item])+ "}";
ItemRelation :
 "relation" firstel=[Item] rel=RelationType secondel=[Item];
Enum RelationType :
 A1="widening-of" | A2="preknowledge-of" | A3="clearification-of"
 | A4="example-of" | A5="parent-of " | A6="composed-by";
Enum DifficulType : dt1="low" | dt2="hight" | dt3="medium";
Enum AudienceType : at1="expert" | at2="beginner" ;

• The rule Unit defines the whole content with its name, identification and

optionally with a version. The declaration based on the += operator corresponds to
the containment reference of the same name shown in the model of fig. 1.

• The rule ReadingPath corresponds to the concept of reading path composed of
a list of item references. It is an example of aggregation.

• The rule Item allows the user to add the concrete information about the content as
the title, the optional level of difficulty and the reference to one or more files.

• The rules File allows to insert the reference to a file in two different formats (as
DITA or html). It is an example of generalization.

• The rule Itemrelation allows to specify the semantic relations between two
items. It is an example of association with the use of cross reference.

Fig. 5. Code completion with use of cross-reference

In figure 5 we report an image of the GUI provided by the textual editor
automatically built from the Xtext specification by oAW, together with parser and
the Ecore metamodel. The figure shows in particular the execution of
ItemRelation rule where the editor suggests a list of id from the inserted item.

4 Map Generation

Our drawing reference platform is Prefuse, a Java open source project that
simplifies the creation of custom visualization. Prefuse is based on data state
model [12] that is a reference model for information visualization maps. It introduces
abstractions for filtering data and actions to perform over the contents as layout,
assignment color, search and zoom. Programmers can create custom interactive views
from the visual data exploiting the highly-configurable rendering engine.
Prefuse supports several visualization methods as radial layout, force-direct

layout, tree map, tree view and fisheye menu. The first step to generate the map is to
load a graph or tree data set from a XML file; the second step is to associate to each
entity, nodes and edges, a renderer; the third step is to specify a sequence of actions in
order to assign visual properties (position, color, size) and filter data; the final step is
to create the display by adding interactive functionalities as zoom, focus control and
animate transitions.

4.1 Code Generation: from Model to Maps

To overcame the gap between the model and the platform we exploit automatic
generation of code of oAW, which is based on the declarative language Xpand based
on templates (DEFINE blocks) that can be associated to each element of the
metamodel. A portion of the templates introduced to generate the XML file for a
Radial map is reported hereunder:

«IMPORT coursedsl»
«DEFINE main FOR Unit»
«FILE title+".xml"»
 <?xml version="1.0" encoding="UTF-8"?>
 <!-- Radial graph -->
 <graphml xmlns="http://graphml.graphdrawing.org/xmlns">
 <graph edgedefault="directed">
 <!-- data schema -->
 <key id="name" for="node" attr.name="name" attr.type="string"/>
 <key id="type" for="edge" attr.name="type" attr.type="string"/>
 <key id="diff" for="node" attr.name="diff" attr.type="Real"/>
 <key id="audi" for="node" attr.name="audi" attr.type="string"/>
 <!-- nodes -->
 «EXPAND node FOREACH this.contents»
 <!-- edges -->
 «EXPAND edge FOREACH this.relations»
 </graph>
 </graphml>
«ENDFILE»
«ENDDEFINE»
«DEFINE node FOR Item»
 <node id="«this.name»">
 <data key="name">«this.title»</data>
 «EXPAND meta FOREACH this.metadata»
 </node>
«ENDDEFINE» ...

The first template (main) is associated to the Unit class (or ule); the EXPAND
statement “expands” another DEFINE block (node, edge) in a separate variable
context. Since a platform like Prefuse requires different data input format for each
map type, different templates are required.
Some customization of maps, such as colors, labels on edges or interactive
functionalities are possible only through commands written in the implementation
language. To this end Xpand allows to include Java expressions into templates by
means of extensions.

The generation process, including model checking based on OCL-like expressions
is driven by a workflow specification written in a declarative language provided by
oAW.

5 Conclusions

Thanks to Eclipse EMF and to features like those provided by the plug-in suite of
oAW, model driven software development is going to become an effective approach
in the field of software construction. In this approach a fundamental role is played by
the metamodel that defines the domain-specific language. But the key-point is related
to the possibility to exploit tools in order to create in automatic way the code that
supports the intended language semantics on different implementation platforms. In
this work an user model represents the specification of e-Content organization and

can be written in textual form; the abstraction gap between the language and the
platform has been overcome through a set of code generator rules, each related to a
specific class of the metamodel.

While a proper design of the metamodel is fundamental to capture the relevant
logical aspects of the applications in the reference domain (business logic), the
specification of code-generation rules can lead to the systematic production of high
quality code, by hiding into the generators all the stuff required to make things really
working. In order to achieve such a goal, we have designed and developed the
generators using agile methods [13] by facing in a systematic way the main “forces”
in the domain as suggested by the pattern languages approach [14]. This aspect will
be described in a forthcoming paper.

References

1. Stahl, T., Vötler, M.: Model-Driven Software Development. (2005)
2. Budisnsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.: Eclipse Modeling

Framework. (2004)
3. Ecore. http://www.eclipse.org/modeling/emf/?project=emf
4. Mof. http://www.omg.org/technology/documents/formal/mof.htm
5. Harrison, N.: The Darwin Information Typing Architecture (DITA): Applications for

globalization. In: Professional Communication Conference IPCC 2005. Volume 10-13., Ieee
(2005) 115 – 121

6. Moodle. http://docs.moodle.org/en/Main_Page
7. Eclipse gmf. http://wiki.eclipse.org/GMF_Documentation
8. openArchitectureWare. http://www.openarchitectureware.org/
9. Heer, J., Card, S.K., Landay, J.: Prefuse: a toolkit for interactive information visualization.

(2005)
10.Efftinge, S., Völter, M.: oAW xText - A framework for textual DSLs. of Conference Eclipse

Summit - Modeling Symposium (2006)
11.Natali, A., Del Cinque, A., Oliva, E.: Using eclipse in building model-driven e-learning

supports. In Maresca, P., ed.: Eclipse: a Great Opportunity for Industry and Universities in
Italy. Volume 1., Cuzzolin Editore (October 2007) 27–42 1st International Conference on
Eclipse Technologies (Eclipse - I 2007), Napoli, Italy.

12.Chi, E.H.: A taxonomy of visualization techniques using the data statereference model.
(2000) 69 – 75 15. Cockburn, A.: Agile Software Development. 2 edn. (2007)

13.Alistair Cockburn: Agile Software Development, 2° edition, Addison-Wesley, 2007
14.Franck Bushmann, Kevin Henney, Douglas C. Schmidt: Pattern-Oriented Software

Architecture: Volume 5 On Patterns and Pattern Languages, John Wiley & Sons, 2007

