
Adopting the Eclipse Communication Framework:
The Case of eConference

Fabio Calefato1, Mario Scalas1

1 Università degli Studi di Bari, Dipartimento di Informatica, Bari, Italy

{calefato, scalas}@di.uniba.it

Abstract. eConference is a text-based conferencing tool, built upon the Eclipse
Rich Client Platform (RCP), which has evolved over four versions since its first
release in 2002. In the latest version, our tool has reached communication
protocol independency thanks to the adoption of the Eclipse Communication
Framework (ECF). This paper describes how the development of this new
release of eConference has unexpectedly evolved due to the underestimated
impact of adopting ECF as a network layer. The problems encountered have
been tackled by developing an aspect-based framework, which promises to be
applicable to other distributed applications built upon Eclipse RCP and with an
emphasis on communication. Future improvements to both our tool and
framework are also discussed.

Keywords: eConference over ECF, Eclipse, framework, design patterns, aspect
oriented programming, dependency injection, objects weaving.

1 Introduction

eConference is a text-based conferencing tool that supports distributed teams in
need for synchronous communication and structured discussion services. Other than
offering communication services, it integrates an agenda and minutes editor, plus
other control and coordination features like hand raising. Our tool has been
successfully used at the University of Bari and at the University of Victoria, both as a
training aid and in laboratory experimentations conducted to validate our hypothesis
about the adequateness of synchronous lean communication media for distributed
requirements workshops [3].

To date, three stable versions of eConference have been released. Since the third
version our tool is a pure-plugin system, built on top of the Eclipse Rich Client
Platform (RCP). Currently, a fourth version is being developed and it is near to
completion. In [3] we have already reported on our work in progress to implement
communication protocol independency thanks to the adoption of the Eclipse
Communication Framework (ECF) [6]. ECF provides RCP-based applications with an
abstract communication layer and some of the most common collaborative features,
either in terms of API or visual components, such as whiteboarding and file transfer.
Thus, ECF was chosen for replacing the communication layer of eConference and
some domain-specific parts of our tool, with the promise of relieving us from the

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

burden of maintaining an abstract network layer to be communication-protocol
independent and cope with future evolutions.

In this paper we describe how the development of this new release of eConference
has unexpectedly evolved due to the underestimated impact of adopting ECF as a
network layer. The problems encountered have been tackled by developing an aspect-
based framework, which promises to be applicable to other distributed applications
built upon Eclipse RCP and with an emphasis on communication, thus easing the
adoption of ECF.

The remainder of this paper is organized as follows. Section 2 will outline the
design of the previous version in order to summarize the design decisions made and
lessons learned. Section 3 will deal with the architectural problems and solutions
encountered when integrating ECF in the application, discussing how ECF has been
integrated and Dependency Injection [21] has been implemented. Section 4 will
outline the conclusions and future works.

2 The Motivation and Cost of Adopting ECF

eConference 3 was built upon Eclipse RCP with a strong focus on extensibility and
flexibility. Eclipse RCP is a pure-plugin platform and, hence, fully extensible by
architectural design since it is based on Equinox, the Eclipse implementation of the
OSGi specs, which define a Java-based dynamic component model, making it
possible to write new plugins for missing functions [5]. Besides achieving functional
modularity through RCP, we also added network protocol independency by
developing an abstract communication network infrastructure on our own, so that we
would be able to add support to several protocols in the future, other than XMPP [27],
without a severe impact on the code base.

However, eConference 3 suffered from some architectural drawbacks, namely 1) a
low-level, abstract network layer too expensive to maintain on our own; 2) a
burdensome publish/subscribe subsystem, in which every bundle implemented the
Observer pattern [13] without taking advantage of the Event Admin Service, i.e., the
Eclipse/OSGi internal mechanism for appropriately handling events dispatching in a
dynamic pure-plugin environment [15], [22]. While the second drawback was due to
our initial inexperience with the development of the Eclipse RCP platform, the first
one was instead imputable to a design choice of ours.

All the domain-specific features were built on the internal API of the abstract
network layer. As a side effect, the low-level network layer had to be maintained in
addition to the application itself, although our main intention was to focus the effort
on the development of domain components. Upon completing the development of
eConference 3 we realized that we were not able to sustain the cost of maintaining
network layer abstraction.

The Eclipse foundation hosts an internal project meant just to address this problem
for any RCP-based application. In fact, ECF provides rich-client applications with an
abstract communication layer that can replace the whole network infrastructure layer.
The goal of this project is to introduce within the Eclipse platform typical
collaborative services and features (e.g., presence, IM, file transfer, white-boarding),

bundled as set of plugins that can be reused by any RCP-based applications. Such
components include core API definitions, graphical user interface widgets, and
interfaces for specific network protocols. The ECF core includes an extensible
framework, the Shared Object API, which provides a way for sharing data at
application-level, without having to bother with protocol-specific details that are
transparently handled by the underlying framework. ECF, in fact, already provides the
implementations (called providers) of abstract interfaces for the most used
communication protocols (e.g., MSN, Yahoo, and Skype), although, being already an
IETF standard, XMPP is the most stable and advanced provider.

Hence, we decided to develop the fourth version of eConference using ECF to
replace the communication layer and relieve us from the burden of maintaining an
abstract network layer to cope with future evolutions. Initially, we thought to have
two alternative solutions, i.e., either porting the earlier version to ECF or developing
the new version from scratch. The preferred alternative was the porting because it was
alleged to be faster and it would have allowed to retain a larger portion of the
codebase we had already developed. Instead, a porting of eConference to ECF turned
out not to be feasible for the proper adoption of ECF [4].

One of the aspects we overlooked when we decided to adopt ECF was that it is a
“vertical” communication middleware, since it does not come only with a set of
network services. Instead, ECF already provides several out-of-the-box graphical
components, along with the respective services (e.g., contacts roster, chat editors, and
user account management), which can be embedded in any Eclipse-based application.
Consequently, between eConference 3 and ECF a large overlapping was found among
the basic communication features they both provided, in terms of API’s, visual
components, and model objects. Thus, due to the larger than expected impact of
adopting ECF, the efforts of porting and redeveloping were almost equivalent, since
only a limited portion of GUI could be retained. Hence, we decided to rewrite the
application from scratch, building upon the ECF API and services, only reusing the
existing GUI code where possible. The cost of rewriting was partially paid back by
employing a standard network technology, maintained separately from our tool.

3 eConference over ECF: Architectural Design

In this section we will discuss the architecture of eConference over ECF (ver. 4),
which is depicted in Figure 1. eConference 4 is built on top of several other plugins
coming from the Eclipse ecosystem, such as RCP and ECF, and other third party
sources, such as Guice/Peaberry and AspectJ.

RCP/SWT, OSGi and the Java platform are mandatory parts of any Eclipse-based
application. At least Java 5.0 is required since we do heavy usage of annotations
within our codebase. The ECF components currently used are the core and presence
sub-systems, the object-sharing infrastructure, and the XMPP provider, which we
employ as the default communication protocol.

OSGi R4 G
u
ic
e/
Pe
ab

er
ry

Eclipse (RCP)

SWT

Java Runtime Environment (JRE) 5

A
sp
e
ct
J

ECFShared
Object

XMPPPresence

eConferenceConference
Core

Hand Raise

FrameworkObject
Sharing

Dependency
Injection

Figure 1. eConference architectural blocks.

The key to understand the rationale behind our design choices concerning ECF is
the adoptions of two other well-known design patterns, described in the following
subsections. First, the Proxy pattern was used for more easily handling the
synchronization across remote clients through the ECF Shared Object API. Second,
the Dependency Injection pattern was used to solve the problem of properly wiring
together objects and favor a decoupled design and a better separation of concerns.
AspectJ [18] and Peaberry [23] (an extension of Guice [16] capable of handling the
specifics of OSGi) were used to provide the Dependency Injection solution.

Our tool, like any Eclipse RCP-based application, consists of a set of plugins, each
providing the actual features. Most of those internally developed plugins are expected
to comply with a basic MVC-pattern [12]. In fact, in eConference a plugin typically
has one or more views, to show or edit data through user-accessible actions, a model
representing the data on which the application operates, and finally has some logic for
controlling and reacting to user interaction and model changes. MVC is a well-known
design pattern and is not detailed here for the sake of space. However, it is worth
noting that in eConference the model part is made more complicated by the need of
keeping shared model objects in synch across the network between all the remote
instances.

3.1 Integration of the Eclipse Communication Framework

Adopting ECF in an application rewritten from scratch is less troublesome than
integrating it with an existing application that makes heavy use of other frameworks,
as in the case of eConference 3. This happens because frameworks are typically
designed for extension rather than for integration [19]. In addition, frameworks are in

general hard to learn and developers need some amount of time before they can use
them effectively and efficiently [24]. In this sense, ECF is not an exception. However,
its learning curve turned out to be particularly high due to the lack of documentation,
which forced us to trace the framework source code to fully understand its behavior.
Tracing is by itself a time-consuming activity, but in this case it took up even more
because ECF code is designed to be multi-threaded and highly asynchronous. All the
effort spent in understanding the ECF framework resulted in an internal document,
initially meant for helping master students catching up with the eConference 4
project, which was later contributed back to the ECF community in form of an official
Wiki page [7].

The main need we have in eConference is to share through the Shared Object API
a common set of objects, containing information about the conference status across
several clients. Another hurdle that we encountered was that a large amount of
boilerplate code, devolved to standard initialization and monitoring of communication
events, had to be cloned in every custom plugin that we were going to develop. Code
cloning is a severe error-prone practice, which was avoided altogether by designing a
common facade to be used for the task of sharing objects. This facade is implemented
applying the Proxy adapter pattern [13], which can handle the ECF remote events,
that is, notify remote clients about local changes and, vice versa, change local model
according to remote changes.

Fundamentally, in eConference over ECF there are plugins that provide
application-wide services and are exported to other plugins as OSGi services, thus
providing access to eConference functionalities by the means of a public API. For
example (see Figure 2), the ConferenceManager service provides clients with the
possibility to create a new conference, join an existing one or leave an actual
conference. The ConferenceManager API is exposed by a public interface,
IConferenceManager, not shown in the figure, but assumed to be present. The
ConferenceManager mainly has the duty to handle the model, which is an abstract
Conference object containing all the conference information (e.g., participants,
conference topic, agenda). Changes to the model are propagated to remote clients by
the means of a transparent proxying mechanism. The manager just uses the
Conference model's interface API and the underlying proxy changes the actual local
model and propagates changes to the remote clients. Changes happening on remote
hosts are handled in a similar way. The proxy listens for remote clients’ change events
and replicates by executing the methods on the local client.

The ConferenceManager object can listen to standard ECF events (thanks to a
reference to the IChatRoomContainer object that is passed to it when a new
conference is started) and also to model events by the means of SharedObjectProxy
objects which is completely transparent to the manager since this can access the
IConference interface methods.

Figure 2. The conference manager provides a public API for managing a conference while the
Shared object proxy object transparently keeps in synch changes to the Conference model
object.

The designed proxies completely adhere to ECF Shared Object API with respect to
the concept of primary and secondary clients: the former is a client that has initially
created and shared an object (e.g., the case of a client starting a new conference),
while the latter just waits for some remote primary client to notify about the
availability of such objects (e.g., clients that have just joined to a chat room).

Using a proxying mechanism has made code simpler to write, understand, and
maintain because the network synchronization concern is now encapsulated without
having to the change the business logic on the client side. In fact, clients continue to
use the model's API in a completely transparent manner. However, there is still the
limitation that a manager must be explicitly aware about the existence of the proxy.
We are currently working on an Aspect-based solution that will make proxy existence
transparent.

3.2 Integration of the Dependency Injection

Although across the three previous releases of eConference the MVC architectural
pattern had proven successful to cleanly separate the different concerns of software
implementation, we were not completely satisfied because we had to manually
assemble the MVC triplets together by the means of setter methods, thus generating
much boilerplate and error-prone code.

Dependency Injection [21] is a software design pattern that separates the problem
of objects collaboration from the problem of wiring them together. Dependency
Injection ensures two main benefits: 1) less code to write to wire objects together; 2)
the ability to provide different wiring configurations (e.g., one for testing and one for
production).

This is possible because the software is composed by aggregating simpler, loosely-
coupled objects that are more easily unit-testable [21], [26]. Additionally, by
separating the clients by their dependencies, we also make their code simpler because
there is no need for them to search for their collaborators. A third actor, called a
Container, is configured to inject them into clients (see Figure 3).

Configuration

Object

Collaborator

Collaborator

2. Container configures
the object …

1. Request an object

3. … and returns it

4. Client starts
using the object

Figure 3. The client requests to the container a configured object. The container uses the
configuration to build the object, find its dependencies and return it to the client.

For implementing a comprehensive Dependency Injection solution that would also
fit well in the Eclipse technology ecosystem, we needed:

1. A container that allows configuring objects created out of container's control,
like Eclipse views, editors, and user interface commands.

2. A way to decouple the clients from the container itself so as to avoid objects to
be tied to a particular container instance.

3. Support for non-delegating classloaders used in Eclipse/OSGi.

As far as the first point is concerned, because eConference over ECF is an Eclipse
RCP-based, many framework objects that we used were out of our control. Hence, we
also needed a way to configure these objects out of container’s control (e.g., the
Eclipse UI items like toolbar buttons or menu items), which need additional
dependencies to be satisfied before they could be properly used. Such objects need to
find the container instance and ask to it to configure them. To make things clearer,
their constructors will be similar to the following:

public MyActionDelegate() {
 Container.getInstance().configure(this);
 // Any other initialization code …
}

There are several Dependency Injection containers, mostly open source, like the
Spring Framework Container [25]. Yet, we selected Guice/Peaberry [16], [23], which
is a completely Java-based solution that uses annotations to mark dependencies,
allowing field, method, and constructor injection. In fact, Guice/Peaberry container
configurations, called modules, are simple Java classes, which results particularly
helpful in terms of ease of refactoring. The other option, the Spring Dynamic Modules

for OSGi Service Platforms, was also taken into account at the time of architecture
definition but it was discarded because configuration happens via XML files and no
stable or complete release was available yet.

This approach, however, has one main limitation in the sense that it couples the
object to the way the container actually works. Hence, with respect to the second
point, we resorted to Aspect Oriented Programming (AOP) [17], and in particular to
AspectJ [18], and implemented an aspect to overcome it. Such aspect captures
injectable instances and weaves in the code necessary to call the container for
configuring any new instance. By packaging the Dependency Injection aspect,
support classes and bundle metadata together, we modularized the Dependency
Injection concern and, thus, we are now able to reuse it across multiple Eclipse-based
plugins, or even applications, without establishing any hard dependency at compile-
time.

Finally, the third points regards the classloading policy of Eclipse that differs from
the default Java policy, which dictates that the classloader, before attempting to load a
class itself, should ask to the parent classloader first. In Eclipse, instead, each plugin
has its own classloader, which can be called as a non-delegating classloader, that
exhibits a different behavior, dictated by the OSGi specifications. A bundle
classloader delegates to the classloaders from required and imported bundles first.
Because of this particular behavior within Eclipse, the standard AspectJ
implementation, which is unaware of the change in the classloading policy, is not able
to find the classes to be woven. In fact, a cyclic dependency problem arise when
AspectJ runtime tries to weave an aspect from one bundle to a class in another target
bundle since the target bundle needs to depend on the aspect bundle, which at the
same time needs to have the class to be woven within its own class scope.

Equinox Aspects [9] is an incubator project of the Eclipse community that fixes
this kind of issues and, thus, makes real weaving possible in an Eclipse-based
application. More importantly, from our perspective, we can now write aspects that
can access the BundleContext object of each bundle and track services by a per-
bundle policy. This means that we can inject OSGi services, that is, objects whose
lifetime is linked to the lifetime of their hosting bundles. In fact, we already
encountered this kind of problem when, in order to inject OSGi services, the OSGi
API required registering listeners objects that can be only accessed through the
BundleContext API. The OSGi framework passes this object to the bundle’s activator
life-cycle methods only. Then, our aspect has to capture such methods as well and
track the bundle context object for the dependency injection mechanism to work.

In our solution (see Figure 4), we have defined an AbstractDependencyInjection
aspect where the only the withinScope() pointcut is to be defined by sub-aspects in
order to define which Java packages must be woven in the target bundle.

When used at compile time (e.g., for creating a new aspect by inheriting from the
abstract dependency injection aspect), sub-aspects can provide their own
configuration by overriding the getModules() method, which also means that the
AspectJ compiler must be used to compile code (classes and aspects). By using
Equinox Aspects, the sub-aspect is synthesized at load-time by the AspectJ runtime
weaver. At the cost of a bit slower start-up time, this solution eliminates the need for

Figure 4. Compile-time weaving requires client code to define a concrete aspect that can be
woven with the other classes and/or aspects belonging to a bundle.

compile-time dependency upon AspectJ and allow using any Java 5-compliant
compiler.

4 Conclusions & Future Work

In this paper we have described the problems encountered for integrating the
Eclipse Communication Framework (ECF) in the fourth release of the eConference
project. The issues of weaving objects together and remote object synchronization
were respectively overcome using two design patterns, namely, the Dependency
Injection and Proxy patterns, and Aspect Oriented Programming (AOP).

The approach taken suffers from no particular drawbacks, apart from the additional
dependencies on third party software, such as Guice as dependency injection
container. Nevertheless, our solution is general enough to the point that we have
developed it as a general purpose framework, called Penelope because of its ability to
weave objects together, which can be reused by any Eclipse-based application.

Although the presentation of our Penelope framework’s specifics is beyond the
scope of this paper, our next goal is aimed to improve it by 1) providing an
infrastructure to ease up the usage of the Model-View-Presenter [11] architectural
pattern within Eclipse RCP and, consequently, adopt a Presenter-first [1] approach to
support test-driven development; 2) adding support to Guice/Peaberry for Eclipse
extensions that hook up into views, editors, commands, and similar.

References

1. Alles, M., Crosby, D., Harleton, B., Pattison, G., Erickson, C., Marsiglia, M., Stienstra, C.,
“Presenter First: Organizing Complex GUI Applications for Test Driven Development”,
Proceeding of the Agile Conference, 23-28 July 2006.

2. AspectJ Development Tools, http://www.eclipse.org/ajdt
3. Calefato F., Lanubile F., and Scalas M. “The Evolution of the eConference Project”, Proc.

Int'l Conf. on Eclipse Technologies (Eclipse-IT 2007), Naples, Italy, 4-5 October, 2007.

4. Calefato F., Lanubile F., and Scalas M. “Porting a Distributed Meeting System to the
Eclipse Communication Framework”, Proc. OOPSLA Workshop on Eclipse Technology
eXchange (ETX 2007), Montréal, Canada, October 21-22, 2007.

5. Clayberg E., and Rubel D., “Eclipse: Building Commenrcial-Quality Plug-ins”, 2nd
edition, Addison Wesley Professional, 2006.

6. Eclipse Communication Framework (ECF), http://www.eclipse.org/ecf
7. Eclipse Communication Framework Wiki, “Sharing Objects over XMPP”,

http://wiki.eclipse.org/Sharing_objects_over_XMPP
8. eConference over ECF, http://econf.di.uniba.it/econference-over-ecf/
9. Equinox Aspects, http://www.eclipse.org/equinox/incubator/aspects/
10. Fowler, M, “Inversion of Control Containers and the Dependency Injection pattern”,

http://martinfowler.com/articles/injection.html
11. Fowler, M., “Model View Presenter”, http://martinfowler.com/eaaDev/

ModelViewPresenter.html
12. Fowler, M., “Patterns of Enterprise Application Architecture”, Addison Wesley

Professional, 1st edition, 2002.
13. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.M., “Design Patterns: Elements of

Reusable Object-Oriented Software”, Addison-Wesley Professional, 1994.
14. Garlan, D., Allen, R., Ockerbloom, J., “Architectural Mismatch or Why it’s hard to build

systems out of existing parts”, Proceedings of the 17th International Conference on
Software Engineering, Seattle WA, April 1995.

15. Gruber, O., Hargrave, B.J., Mcaffer, J., Rapicault, R., and Watson, T. “The Eclipse 3.0
platform: Adopting OSGi technology,” IBM Systems Journal, Vol. 44, No. 2. (2005), pp.
289-299.

16. Guice Container, http://guice.googlecode.com
17. Kiczales,G., Lamping, J. et Al., “Aspect Oriented Programming”, Proceedings of the

European Conference on Object-Oriented Programming, vol.1241, pp.220-242, 1997
18. Laddad, R., “AspectJ in action”, Manning, 2004.
19. Mattson, M., Bosch, J., Fayad, M. E., “Framework Integration: Problems, Causes,

Solutions”, Communications of the ACM, October 1999, Vol. 42, No. 10.
20. McVeigh, A., “The Rich Engineering Heritage Behind Dependency Injection”,

http://www.javalobby.org/articles/di-heritage/
21. Meszaros, G., “xUnit Test Patterns”, Addison Wesley, 2007.
22. Open Service Gateway initiative (OSGi), http://www.osgi.org
23. Peaberry, http://peaberry.googlecode.org
24. Schmidt, D.C., Gokhale, A., Natarajan, B., “Leveraging Application Frameworks”, Queue,

July/August 2004.
25. Spring Framework, http://www.springframework.org
26. Weiskotten, J., “Dependency Injection and Testable Objects”, Dr. Dobbs Journal,

http://www.ddj.com/development-tools/185300375
27. XMPP - eXtensible Messaging and Presence Protocol, http://xmpp.org

