
Realizability is controllability

Niels Lohmann and Karsten Wolf

Universität Rostock, Institut für Informatik,  Rostock, Germany
{niels.lohmann, karsten.wolf}@uni-rostock.de

Abstract. A choreography describes the interaction between services. It
may be used for specification purposes, for instance serving as a contract
in the design of an interorganizational business process. Typically, not
all describable interactions make sense which motivates the study of the
realizability problem for a given choreography.
In this paper, we show that realizability can be traced back to the
problem of controllability which askes whether a service has compatible
partner processes. This way of thinking makes algorithms for controlla-
bility available for reasoning about realizability. In addition, it suggests
alternative definitions for realizability. We discuss several proposals for
defining realizability which differ in the degree of coverage of the specified
interaction.

1 Introduction

Dumas et al. discuss in [1] compatibility between services and introduce a number
of related notions. Among these notions they mention realizability (the problem
whether a choreography can be implemented by services) and controllability (the
problem whether a service has a compatible partner), but state that “. . . a formal
relation between controllability and realizability is yet to be established”. This
paper is dedicated to the establishment of this relation.

In Sect. 2, we introduce a formal framework which allows us to reason about
choreographies in a formal and language-independent manner. In Sect. 3, we
recall different realizability notions and introduce the novel concept of distributed
realizability, which seamlessly complements existing notions. Section 4 formulates
the realizability problem in terms of controllability and shows how algorithms for
controllability can be used to proof realizability by synthesizing realizing services.
Section 5 discusses further research questions and concludes the paper.

2 A Formal Framework for Choreographies

Throughout this paper, fix a finite set of message channels M that is partitioned
into asynchronous message channels MA and synchronous message channels
MS . From M , derive a set of message events E := !E ∪ ?E ∪ !?E, consisting
of asynchronous send events !E := {!x | x ∈MA}, asynchronous receive events
?E := {?x | x ∈MA}, and synchronization events !?E := {!?x | x ∈MS}.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

Definition 1 (Conversation, choreography). A conversation γ is a finite
word over E such that, for all x ∈MA, #!x(γ) = #?x(γ) and for every prefix γ′

of γ holds: #!x(γ′) ≥ #?x(γ′). Thereby, #x(γ) denotes the number of occurrences
of the message event x in the word γ. A choreography is a set of conversations.

The requirements for a conversation state that asynchronous events are always
paired, and a send event always occurs before the respective receive event. A
choreography is a set of desired message event sequences. A choreography is
defined with respect to a set of peers which form a collaboration.

Definition 2 (Peer, collaboration). A peer P = [I,O] consists of a set of
input message channels I ⊆ M and a set of output message channels O ⊆ M ,
I ∩ O = ∅. A collaboration is a set {P1, . . . , Pn} of peers such that Ii ∩ Ij = ∅
and Oi ∩Oj = ∅ for all i 6= j, and

⋃n
i=1 Ii =

⋃n
i=1Oi.

The requirements ensure that communication in a collaboration is always bilateral,
yielding a closed system that models no message exchange other than that between
the peers.

There are various languages to specify collaborations and choreographies,
ranging from formal models such as Interaction Petri Nets [2] to industrial
notations such as Let’s Dance [3], UML collaboration diagrams, and BPMN.
While these languages differ in syntax and semantics, concepts such as an
underlying collaboration (i.e., the endpoints and the exchanged messages) and
the choreography (i.e., the intended global behavior) can be easily derived from
these languages.

To specify the behavior of a service (i.e., the concrete implementation of a
peer), again a variety of languages exist. In essence, they all share a concept
of a state (e.g., a state of a finite state machine, a marking of a Petri net, or
control flow tokens in BPMN) and ways to specify message transfer. These basic
concepts can be expressed with service automata.

Definition 3 (Service automaton). A service automaton A = [Q, I,O, δ, q0, F]
is a tuple such that Q is a finite set of states, [I,O] is a peer, δ ⊆ Q × (EI ∪
EO ∪ {τ})×Q is a transition relation, q0 ∈ Q is an initial state, and F ⊆ Q is
a set of final states. Thereby, EI := {?x | x ∈ I ∩MA} ∪ {!?x | x ∈ I ∩MS} and
EO := {!x | x ∈ O ∩MA} ∪ {!?x | x ∈ O ∩MS}.

We say that A implements [I,O], and for (q, x, q′) ∈ δ, we also write q x−→ q′. Beside
internal (i.e., silent, non-communicating) τ steps and synchronous communication,
service automata also model asynchronous communication, in which messages
may overtake each other, but will never get lost. We claim that is — compared
to FIFO queues for communicating finite state machines [4] — a more natural
approach to model asynchronicity, because it makes less assumptions about the
underlying infrastructure. In the composition of two or more service automata,
pending asynchronous messages are represented by a multiset. Denote the set of
all multisets over MA with Bags(MA). Further denote the empty multiset with [],
and the multiset containing only one instance of x ∈MA with [x]. Addition of
multisets is defined pointwise.

Definition 4 (Composition of service automata). Let A1, . . . , An be service
automata such that their peers form a collaboration. Define the composition
A1⊕· · ·⊕An as the automaton [Q, δ, q0, F] with Q := Q1×· · ·×Qn×Bags(MA),
q0 := [q01 , . . . , q0n , []], F := F1 × · · · ×Fn ×{[]}, and, for all i 6= j the transition
relation δ contains excactly the following elements:

– [q1, . . . , qi, . . . , qn, B] τ−→ [q1, . . . , q′i, . . . , qn, B],
iff [qi, τ, q′i] ∈ δi (internal move by Ai),

– [q1, . . . , qi, . . . , qn, B] !x−→ [q1, . . . , q′i, . . . , qn, B + [x]],
iff [qi, !x, q′i] ∈ δi (asynchronous send by Ai),

– [q1, . . . , qi, . . . , qn, B + [x]] ?x−→ [q1, . . . , q′i, . . . , qn, B],
iff [qi, ?x, q′i] ∈ δi (asynchronous receive by Ai), and

– [q1, . . . , qi, . . . , qj , . . . , qn, B] !?x−−→ [q1, . . . , q′i, . . . , q
′
j , . . . , qn, B],

iff [qi, !?x, q′i] ∈ δi and [qj , !?x, q′j] ∈ δj (synchronization between Ai and Aj).

A run of A1⊕· · ·⊕An is a sequence of events x1 · · ·xm such that q0
x1−→ · · · xm−−→ qf

with qf ∈ F . For a run ρ, define the conversation of ρ as ρ|E. The choreography
of A1⊕ · · · ⊕An, denoted Chor(A1⊕ · · · ⊕An), is the union of the conversations
of all runs of A1 ⊕ · · · ⊕An.

The composition is finite iff, for each state, the number of pending asynchronous
messages is bounded. The choreography of a composition of service automata
is the set of all observable event sequences that are produced by runs of the
composition.

3 Realizability Notions

With the notion of realizability, the conversations generated by a composition
of services can be related to a specified choreography. Bultan et al. [5, 6] define
realizability of choreographies as follows:

Definition 5 (Complete realizability). A choreography C is completely re-
alizable w.r.t. a collaboration {P1, . . . , Pn} iff there exists a tuple of service
automata [A1, . . . , An] such that, for all i, Ai implements Pi, and Chor(A1 ⊕
· · · ⊕An) = C.

Complete realizability is a strong requirement, because it demands that the
observable behavior of the endpoints exactly matches the choreography. In reality,
it is often the case that not all aspects of a choreography can be implemented.
To this end, Zaha et al. [7] introduce a weaker notion called local enforceability
(or partial realizability) which only demands that a subset of the choreography is
realized by the peer implementations:

Definition 6 (Partial realizability). A choreography C is partially realizable
w.r.t. a collaboration {P1, . . . , Pn} iff there exists a tuple of service automata
[A1, . . . , An] such that, for all i, Ai implements Pi, and Chor(A1⊕· · ·⊕An) ⊆ C.

Obviously, complete realizability implies partial realizability. Though this weaker
notion ensures that all constraints of the choreography are fulfilled, it still fixes a
single tuple of service automata. If there does not exist such tuple of automata that
realizes the complete choreography, there might still exist a set of tuples — each
partially realizing the choreography — which distributedly realizes the complete
choreography:

Definition 7 (Distributed realizability). A choreography C is distributedly
realizable w.r.t. a collaboration {P1, . . . , Pn} iff there exist tuples of service
automata [A11 , . . . , An1], . . . , [A1m

, . . . , Anm
] such that, for i = 1, . . . , n and

j = 1, . . . ,m, (i) Aij implements Pi, (ii) Chor(A1j
⊕ · · · ⊕ Anj

) ⊆ C, and
(iii)

⋃m
j=1 Chor(A1j

⊕ · · · ⊕Anj
) = C.

Distributed realizability allows for build time coordination between peers. While
being a stronger notion than partial realizability (i.e., more of choreography’s
behavior is implemented), it is still a weaker notion than complete realizability.

A B
x

y

(a) collaboration

?! x

?! y

(b) completely realizable choreography

! x

! y

?x

?y

(c) distributedly realizable choreography

! y

?x

?x! x

! y

?y

(d) partially realizable choreography

Fig. 1. Example choreographies with respect to a collaboration.

As an example, consider the collaboration depicted in Fig. 1(a) in which two
peers, A and B, communicate via message channels x and y. The choreography
{!?x, !?y} in which the peers communicate synchronously (b) is completely re-
alizable by a set of peers which synchronously decided whether to synchronize
via message x or y. In case the messages are sent asynchronously (c), this is no
longer possible. This choreography is not completely realizable, because there
does not exist a single pair of service automata that implement the specified
behavior. Instead, the implementations have to be coordinated: either peer A
sends a message and peer B is quiet or the other way around. These two pairs
distributedly realize the whole choreography. Finally, choreography (d) can only
be partially realized, because the conversation !x!y?x?y cannot be implemented
even if the peers are coordinated at build time. This is because the requirement
that message x is sent before message y cannot be enforced, because the peers
cannot coordinate this.

4 Synthesizing Realizing Peer Implementations

In this section, we show how the different realizability notions are related to
controllability [8]. Controllability is a correctness criterion for services: a service
A is controllable iff there exists a service B such that A⊕B is compatible (i.e.,

deadlock free). Controllability can be extended to multi-port services. In the
following, we will transform a choreography into a multi-port service which is
controllable if and only if the choreography is realizable.

For a regular1 choreography C, there exists a deterministic finite state machine
that accepts exactly the sequences of the choreography. We call this state machine
the monitor for C [9]. It unobtrusively monitors the interaction between the
peers and reaches a final state iff the monitored conversation was part of the
choreography.

Definition 8 (Monitor, monitored composition). Let C be a regular chore-
ography w.r.t. a collaboration {P1, . . . , Pn}. Define the deterministic finite state
machine accepting C (the monitor for C) as M = [QM , δM , q0M

, FM]. Thereby,
QM is a finite set of states, δM : QM × E → QM is a transition function,
q0M
∈ QM is an initial state, and FM ⊆ QM is a set of final states.

Let A1, . . . , An be service automata implementing P1, . . . , Pn. Define the mon-
itored composition M ⊗ (A1 ⊕ · · · ⊕ An) as the automaton [Q, δ, q0, F] with
Q := QM × Q1 × · · · × Qn × Bags(MA), q0 := [q0M

, q01 , . . . , q0n , []], F :=
FM × F1 × · · · × Fn × []], and, for all i 6= j, the transition relation δ contains
excactly the following elements:

– [q, q1, . . . , qi, . . . , qn, B] τ−→ [q, q1, . . . , q′i, . . . , qn, B], iff [qi, τ, q′i] ∈ δi (internal
move by Ai),

– [q, q1, . . . , qi, . . . , qn, B] !x−→ [q′, q1, . . . , q′i, . . . , qn, B + [x]], iff [qi, !x, q′i] ∈ δi
and [q, !x, q′] ∈ δM (asynchronous send by Ai, monitored by M),

– [q, q1, . . . , qi, . . . , qn, B + [x]] ?x−→ [q′, q1, . . . , q′i, . . . , qn, B], iff [qi, ?x, q′i] ∈ δi
and [q, !?, q′] ∈ δM (asynchronous receive by Ai, monitored by M),

– [q, q1, . . . , qi, . . . , qj , . . . , qn, B] !?x−−→ [q′, q1, . . . , q′i, . . . , q
′
j , . . . , qn, B], iff

[qi, !?x, q′i] ∈ δi, [qj , !?x, q′j] ∈ δj, and [q, !?x, q′] ∈ δM (synchronization be-
tween Ai and Aj, monitored by M).

The monitor synchronizes with the message events of the service automata, but
does not constrain their behavior. The monitor only has an effect on the final
states of the composition. Only if all service automata and the monitor reach a
final state, this state is final in the monitored composition.

We can now change the point of view and regard the monitor as a service that is
communicating with several other services by synchronous message events. Again,
this service will reach a final state iff the message events from the environment
are observed in the correct order.

Definition 9 (Monitor service automaton). Let C be a regular choreography
w.r.t. a collaboration {P1, . . . , Pn} and let M = [QM , δM , q0M

, FM] be a monitor
for C. Define the monitor service automaton AM := [Q, I,O, δ, q0, F] with
Q := QM , I := {I1, . . . , In}, O := {O1, . . . , On}, q0 := q0M

, and F := FM .
Define δ : Q× {!?〈x〉 | x ∈ E} → Q with δ(q, !?〈x〉) := δM (q, x).

1 Choreographies specified by interaction Petri nets, UML collaboration diagrams,
BPMN, or Let’s Dance are always regular if they assume synchronous communication.

Due to the nature of a choreography to exist of message events (not the messages
itself), all message events of the monitor service automaton are synchronous.
The original nature of the event (synchronous or asynchronous) is, however,
encoded in the events by using the event ?!〈x〉 for event x. The existence of
service automata that are compatible to this monitor service automaton proof
realizability of the choreography:

Theorem 1. Let C be a regular choreography w.r.t. a collaboration {P1, . . . , Pn}
and AM a monitor service automaton for C.

1. C is partially realizable iff AM is decentralized controllable.
2. C is distributedly realizable iff AM is decentralized controllable and for the

set of strategies S holds:
⋃

[A1,...,An]∈S Chor(A1 ⊕ · · · ⊕An) = C.
3. C is completely realizable iff AM is decentralized controllable and there exists

a strategy [A1, . . . , An] such that Chor(A1 ⊕ · · · ⊕An) = C.

A strategy for the monitor service automaton is a set of service automata such
that the overall composition is compatible. While these automata communicate
solely synchronously with the monitor service automaton, a tuple of service
automata that actually realize the original choreography can be derived by
changing every message event !?〈x〉 back to x (e.g. “!?〈!x〉” to “!x”). These
service automata then can also communicate asynchronously with other peers,
yet still follow the specified choreography.

5 Conclusion

In this paper, we linked the realizability problem to controllability, making ex-
isting tools and algorithms applicable to check choreographies. In particular,
our approach allows for specification and synthesis of asynchronous peer imple-
mentations. This avoids a subsequent analysis and correction when trying to
“asynchronize” peer implementations [10]. The current results are independent
of a concrete choreography or service description language, but can be easily
adapted.

In future work, we plan to study how choreography and service design can be
mixed. For example, the realizability of a choreography can be checked w.r.t. some
already completely specified peers. Such an approach would nicely complement
the participant synthesis introduced in [11] by using controllability for both
interaction models and interconnection models.

Acknowledgements This work is funded by the DFG project “Operating
Guidelines for Services” (WO 1466/8-1).

References

1. Dumas, M., Benatallah, B., Nezhad, H.R.M.: Web service protocols: Compatibility
and adaptation. IEEE Data Eng. Bull. 31(3) (2008) 40–44

2. Decker, G., Weske, M.: Local enforceability in interaction petri nets. In: BPM 2007.
LNCS 4714, Springer (2007) 305–319

3. Zaha, J.M., Barros, A.P., Dumas, M., Hofstede, A.H.M.t.: Let’s dance: A language
for service behavior modeling. In: OTM 2006. LNCS 4275, Springer (2006) 145–162

4. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2)
(1983) 323–342

5. Fu, X., Bultan, T., Su, J.: Conversation protocols: a formalism for specification
and verification of reactive electronic services. Theor. Comput. Sci. 328(1-2) (2004)
19–37

6. Bultan, T., Fu, X.: Specification of realizable service conversations using collabora-
tion diagrams. SOCA 2(1) (2008) 27–39

7. Zaha, J.M., Dumas, M., Hofstede, A.H.M.t., Barros, A.P., Decker, G.: Service
interaction modeling: Bridging global and local views. In: EDOC 2006, IEEE
Computer Society (2006) 45–55

8. Wolf, K.: Does my service have partners? LNCS ToPNoC II(5460) (2009) 152–171
9. Lohmann, N., Massuthe, P., Wolf, K.: Behavioral constraints for services. In: BPM

2007. LNCS 4714, Springer (2007) 271–287
10. Decker, G., Barros, A., Kraft, F.M., Lohmann, N.: Non-desynchronizable service

choreographies. In: ICSOC 2008. LNCS 5364, Springer (2008) 331–346
11. Lohmann, N., Kopp, O., Leymann, F., Reisig, W.: Analyzing BPEL4Chor: Verifi-

cation and participant synthesis. In: WS-FM 2007. LNCS 4937, Springer (2008)
46–60

