
Do We Need Internal Behavior in
Choreography Models?

Oliver Kopp and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart, Germany
Universitätsstraße 38, 70569 Stuttgart, Germany

{lastname}@iaas.uni-stuttgart.de

Abstract. Choreographies capture the message exchanges between multi-
ple processes. Certain choreography languages ignore the internal behavior
completely, other languages offer the possibility to model internal behav-
ior. This paper presents an example modeled in both types of languages
and discusses the need to integrate internal behavior in choreographies.

1 Introduction

A choreography defines the message exchanges between several processes. While it
is fundamental that a choreography language has to include the ability to express
message exchanges, it is an open question whether a choreography language
should offer constructs to model internal behavior. In this paper, we present a
sample choreography and use this example to discuss, whether internal behavior
should be modeled in a choreography.

The example is introduced in Sect. 2. Afterwards, it is modeled in Let’s Dance
(Sect. 3) and BPMN (Sect. 4). An overview on the support of modeling internal
behavior of the most prominent choreography modeling languages is given in
Sect. 5. Finally, Sect. 6 provides a conclusion and points out future work.

2 Drop-dead Order Scenario

Fig. 1 presents the drop-dead order scenario, where a customer requests a
distributor to ship products until a given drop-dead date. The distributor neither
produces the products by himself nor owns a delivery. Therefore, the distributor
asks a supplier whether he can produce the requested products in time and the
distributor asks a carrier whether he can carry the produced products by time.
If the supplier and the carrier agree, then the customer’s order is accepted and
rejected otherwise. The example itself was first presented in [1] and is used in [2]
to develop transaction requirements for services. We use this example in this
paper to illustrate the difference between different choreography languages.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073



drop-dead-
order

Customer Distributor

arrange 
delivery

order

products

Supplier

Carrier

Fig. 1. Drop-dead oder (adapted from [1])

3 Let’s Dance Model

Let’s Dance [3] is a choreography language having the interaction as basic building
block. Therefore, the model is called “interaction model” [4]. A choreography
model of the drop-dead order scenario is presented in Fig. 2. The topmost box
denotes that a customer sends an order to a distributor. Control flow is modeled
using directed arcs. The first arc points to a group, labeled with a circled A
in the figure. In this group, the message exchange between the customer and
the shipper and between the customer and the carrier happens in parallel. The
crossed line between the acceptance and the rejection denotes that exactly one of
the two message exchanges may happen. After both the supplier and the carrier
have sent an answer, they have either accepted or rejected. Afterwards, group
B is active. In case both the supplier and the carrier accepted the request of
the distributor, they receive an acceptance of the distributor and the products
are built and delivered to the customer. Otherwise, the order is rejected at the
supplier and the carrier. The client’s order is rejected, too.

In the presented choreography, there is no internal behavior modeled. The
messages in the choreography suggest that the supplier is somehow produc-
ing products and that the carrier delivers them. However, there is no explicit
description of these tasks.

4 BPMN Model

Figure 3 presents the drop-dead order scenario using BPMN [5]. BPMN is a
choreography language belonging to the category of interconnection models [4].
In interconnection models, the control flow is modeled per participant. While the
interaction is one building block in interaction models, the interaction is split up
in send and receive activities in the case of interconnection models. To provide a
better overview on the model, one path through the model is highlighted. This
path denotes the case, where both the supplier and the carrier accept the request
of the distributor. First, the customer sends an order to the distributor, which
asks the supplier and the carrier in parallel, whether they can produce/deliver in
time. The supplier and the carrier decide and both accept the order. Since both
have accepted, they are notified that the distributer accepted, too. Finally, the



Order

Customer Distributor

Request Product

Distributor Supplier

Request Delivery

Distributor Carrier

Acceptance

Supplier Distributor

Rejection

Supplier Distributor

Acceptance

Carrier Distributor

Rejection

Carrier Distributor

Acceptance

Distributor Supplier

Acceptance

Distributor Carrier

Products Ready

Supplier Carrier

Products

Carrier Customer

Rejection

Distributor Customer

Rejection

Distributor Supplier

If Supplier accepted (Distributor)

Rejection

Distributor Carrier

If Carrier accepted (Distributor)

If Supplier or Carrier rejected (Distributor)

Fig. 2. Drop-dead order scenario modeled in Let’s Dance



producer produces, notifies the carrier, which picks up the products and delivers
them to the customer.

Besides the split of the interactions into interconnections of send and receive
activities, two internal activities of the supplier and the carrier are shown. In
case of the supplier, the choreography model shows the decision activities and
the produce activity. When it comes to implement a supplier based on the
choreography description, the internal behavior can be used as basis for an
executable BPEL process [6]. In case the choreography model is detailed enough,
an IT export just has to add concrete WSDL information to the activity to turn
the process into an executable BPEL process.

C
us

to
m

er

Due 
date,
items

D
is

tri
bu

to
r

decide accept

reject

produce

Supplier

decide accept

reject

Carrier

supplier accepted

carrier accepted

rejection

rejection

accept

accept

rejection

products 
are ready

delivery
y

pickup
product

Fig. 3. Drop-dead order scenario modeled in BPMN



5 Support of Internal Actions

Language Model Type Constructs for Internal
Behavior Available?

BPEL4Chor interconnection +
BPMN 1.2 interconnection +
iBPMN interaction –
Let’s Dance interaction –
WS-CDL interaction +

Table 1. Support of modeling internal actions in choreography languages

Table 1 lists five choreography languages and their support of internal actions.
The languages are chosen, because they are the most prominent choreography
languages. The second column denotes whether the language allows to model
interaction models or interconnection models.

BPEL4Chor [7] is a choreography language extending BPEL with choreogra-
phy constructs. Since BPEL is re-used, so called opaque activities can be used to
model internal behavior. The Business Process Modeling Notation Version 1.2
(BPMN 1.2) has been used in Sect. 4 to model the drop-dead order example. It
has been shown that this language supports internal behavior. iBPMN [8] is an
extension for BPMN to support interaction modeling. Each message exchange
is atomic and does not have to be modeled with two distinct send and receive
operations. iBPMN does not support the inclusion of internal behavior. It is
shown in Sect. 3 that Let’s Dance does not support the inclusion of internal
behavior. The Web Services Choreography Language (WS-CDL, [9]) provides the
“silent action activity” to express internal behavior. Thus, WS-CDL is the only
language following the interaction approach and providing support for internal
actions.

6 Conclusion and Outlook

In this paper, we gave an overview on the support of modeling internal behavior
in choreography languages. The drop-dead order scenario was introduced and
modeled using Let’s Dance and BPMN. Finally, we showed the support of internal
actions in five choreography languages. All languages supporting interconnection
models also support the modeling of internal behavior. In the case of interaction
models, two of the three languages do not support modeling internal behavior. WS-
CDL is the only language based on interaction models, where internal behavior
can be modeled.

The examples suggest that it depends on the use-case of the choreography
whether internal actions are needed. If the choreography is used to serve a basis



for executable processes, the internal actions can be seen as placeholders for calls
to internal services. Thus, the effort to build executable BPEL processes seems
less. We are going to describe concrete scenarios and to use them as basis for a
comparison.

Acknowledgments This work is supported by the BMBF funded project
Tools4BPEL (01ISE08B).

References

1. Haugen, B., Fletcher, T.: Multi-Party Electronic Business Transactions. Technical
report, UNCEFACT (2002)

2. Sun, C., Aiello, M.: Requirements and Evaluation of Protocols and Tools for
Transaction Management in Service Centric Systems. In: 31st Annual International
Computer Software and Applications Conference (COMPSAC 2007), IEEE Computer
Society (2007) 461–466

3. Zaha, J.M., Barros, A.P., Dumas, M., ter Hofstede, A.H.M.: Let’s Dance: A Language
for Service Behavior Modeling. In: CoopIS 2006: Proceedings 14th International
Conference on Cooperative Information Systems. Volume 4275 of Lecture Notes in
Computer Science., Springer (2006) 145–162

4. Decker, G., Kopp, O., Barros, A.: An Introduction to Service Choreographies.
Information Technology 50(2) (2008) 122–127

5. Object Management Group (OMG): Business Process Modeling Notation (BPMN)
Version 1.2. (2009) http://www.bpmn.org/.

6. OASIS: Web Services Business Process Execution Language Version 2.0 – OASIS
Standard. (2007)

7. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL
for Modeling Choreographies. In Society, I.C., ed.: Proceedings of the IEEE 2007
International Conference on Web Services, IEEE Computer Society (2007) 296–303

8. Decker, G., Barros, A.P.: Interaction Modeling Using BPMN. In ter Hofstede,
A.H.M., Benatallah, B., Paik, H.Y., eds.: CBP: Proceedings of the 1st International
Workshop on Collaborative Business Processes. Volume 4928 of Lecture Notes in
Computer Science., Springer (2007) 208–219

9. Kavantzas, N., Burdett, D., Ritzinger, G., Lafon, Y.: Web Services Choreography
Description Language Version 1.0. W3C. (2005) http://www.w3.org/TR/ws-cdl-10.

All links were followed on 2009-02-19.


