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Abstract. In a network of services, external and internal decisions,
asynchronous message exchange, and concurrency induce complex in-
teraction protocols. In this paper we introduce the notion of a message
profile of a service that is modeled as a special kind of Petri net.
The message profile is obtained solely from properties of the given net
without requiring knowledge of interacting nets. It provides insight into
the interactional behavior of the service. The information may then be
used to enhance existing service analysis techniques as well as to verify
the service model on a message basis.

1 Introduction

The central part of the evolving paradigm of Service-Oriented Computing (SOC)
are services. A service represents a self-contained software unit that offers an
encapsulated functionality over a well-defined interface. The promising goal of a
SOC architecture is to ensure for each participating service to be loosely coupled
with another service with little effort [1] and thus, creating a network of services,
that is able to handle certain tasks. In contrast to other paradigms it is possible
to create a heterogenous network that crosses organizational boundaries.

In general, a service is not designed to be used stand-alone. It is the stateful
interaction of different services that adds significant value to SOC. Therefore,
with respect to SOC, we are interested in whether every service instance will
eventually terminate in a well-defined state with no useless (dead) activities be-
ing pending. This idea has already been formalized as usability in [2]. We use the
term controllability instead of usability to avoid misunderstandings w.r.t. other
well established meanings of “usability”. We analyze whether two services S and
S′ can interact properly [3]. A service S′ that properly interacts with service
S is a controller of S. In our approach, we model a service as an open net [4,
5], which is a special class of Petri nets that extends classical Petri nets by an
interface for communication with other open nets. We assume an asynchronous
setting in which the order of sending messages does not necessarily correspond
to the order of receiving those messages.

In a network of two or more services, external and internal decisions, asyn-
chronous communication, and concurrency induce complex interaction protocols.
In this paper, we introduce techniques that can be used to create a message pro-
file of a given service S. This profile may then serve as a guide for a controller
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C with respect to which messages may be sent to S as well as how often S
accepts a particular message. The message profile is gained from analyzing the
open net model of S. Thus, knowledge of C is not required. With the help of the
behavioral properties stored in the message profile, we are able to characterize
possible controllers. So, we can exclude certain controllers before-hand which
enhances established methods such as partner synthesis [6] or the computation
of the operating guidelines of S [5]. Furthermore, we enable the modeler of S to
verify that the model mirrors its designated interactional behavior.

This paper is structured as follows. First, we briefly introduce open nets and
controllability notions in Sect. 2. In Sect. 3, we present techniques to build up
the message profile and show how it can be obtained by analysis of an open net.
Finally, we conclude our results in Sect. 4.

2 Open Nets and Controllability

We model services with open nets [4], which enhance classical Petri nets. An open
net is a tupel N = (P, T, F, Pin, Pout,m0, Ω) with P being the set of places, T the
set of transitions and F the flow relation. The set Pin ⊆ P (Pout ⊆ P ) represents
the input channels (output channels) of the service. For the rest of this paper,
we call Pin (Pout) input (output) places and Pin ∪ Pout the interface of N . For
node n ∈ P ∪T the set •n = {x | (x, y) ∈ F} (n• = {y | (x, y) ∈ F}) is the preset
(postset) of n. We demand that •p = ∅ (p• = ∅) for every p ∈ Pin (p ∈ Pout) and
Pin ∩ Pout = ∅. Transition t ∈ T with •t ⊆ Pin / t• ⊆ Pout / •t ∪ t• 6⊆ Pin ∪ Pout

is called a receiving / sending / internal transition. m0 is the initial marking and
Ω is the set of final markings, which constitute the set of final states that the
service should reach. The inner of a net N is obtained from N by removing the
input/output places and adjacent edges from N . The set LL = {mk, . . . ,mn} is
a livelock iff all mi ∈ LL are mutually reachable and from no mi an mj 6∈ LL is
reachable.

Figure 1 depicts our example open net N1. The net has got five input places,
namely a, b, c, d, e and one output place F. The initial marking of N1 is [p0]
(depicted as a black token on place p0) and the set of final markings is {[p2], [p7]}.
We can easily see that from [p0] N1 is not able to reach a different marking unless
there is an additional token either on input place a, b or e. A token on an input/
output place represents a message. The open net N1 is able to send a message
to the output place and to receive messages from its input places. Therefore, we
are able to model the interaction between different open nets and thus have a
formal notion for modeling the interaction of services.

The interaction of two different open nets N and C is expressed by their
composition N ⊕C which is obtained by merging every input place of one open
net with the equally labeled output place of the other net (if that one is present).

Intuitively, controllability of an open net N means that N can properly in-
teract with some other net. So, N is controllable if there exists an open net C,
such that the composed open net N ⊕ C fulfills certain properties. Throughout
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Fig. 1. Example open net N1.

this paper we will call C a controller of N . We distinguish between DF-, WT-,
and RI-controllers based on the following notions [3].

Deadlock-Freedom (DF) states that all deadlocks of the composition N ⊕
C are final states of N ⊕ C and Weak-Termination (WT) (equal to Livelock-
Freedom) specifies that from every marking of N ⊕C a final marking of N ⊕C
is reachable. The property of open nets called responsiveness [3] can easily be
mapped to the composition of two services – Responsive Interaction (RI). A
composition is responsive if either from every marking m of N⊕C a final marking
of N ⊕ C is reachable, or from m a marking m′ is reachable such that either N
or C has sent or received a message. We further demand that each message sent
will eventually be received.

Controllability is only decidable for those open nets whose reachability graph
of the inner net is finite [7]. We also demand that the communication between
two open nets is limited – there are no more than k messages (k ∈ N) on any
interface place at any reachable marking of the composition [5, 7].

3 Message Profile

In this section, we introduce techniques that analyze the net N in order to create
a message profile of N . All methods avoid state space exploration and do not
require knowledge of a controller C of N .

In the message profile we store different kinds of information – how often
a specific message can be received, dependencies between messages, and which
messages are not to be sent to N by a controller.



Intuitively, there are two requirements for an arbitrary service S to receive
a message x: (1) S is in a state in which it accepts x, (2) a message x has been
sent by controller C already. These requirements can easily be mapped to an
open net N . Thus, (1) a receiving transition for x is enabled in the inner of N
and (2) a token is available on the corresponding input place.

When analyzing a receiving transition t in the inner ofN one less precondition
for t to be enabled has to hold – the edge to its corresponding input place has
been removed. Thus firing t does not depend on the number of tokens on that
input place any more. So, we conclude that t can not fire more frequently in
N ⊕ C than in the inner of N . Knowing how many times a receiving transition
fires in the inner of N can thus lead to insights regarding the receiving behavior
of N in N ⊕ C. A firing limit for a transition t is a natural number n such
that there exists no path in the reachability graph with t occurring more than
n times.

There exist methods to compute the firing limit of a transition in a Petri net
that avoid state space exploration. Currently, we are looking for an approach
that fits best w.r.t. to the open net models of real processes. In this paper, usage
of the term firing limit will refer to some firing limit determined by an arbitrary
method. In the inner of our example open net N1 (Fig. 1) 1 is a firing limit for
{t0,t1,t2,t3,t9,t10} and ∞ for transitions {t4,t5,t6,t7}.

We can use the firing limit for receiving transitions in the inner of the net
as a basis and as an additional constraint for the creation of the message profile
without requiring any knowledge about C.

3.1 Receiving Limit

The idea behind the receiving limit n of a message x is to determine how often
x can be received by a service N at most, i.e. how often a receiving transition
for x fires in N ⊕ C. As we aim at being as general and controller-independent
as possible, we make use of the firing limit for receiving transitions in the inner
of N .

We calculate the receiving limit of message a of the example net N1 (Fig. 1).
The only receiving transition for message a is t0. The firing limit for t0 is 1.
Obviously, there is no guarantee that N1 will actually receive a, but it is safe to
say that N1 will receive a only up to once. We set the receiving limit for a to 1.

Let us take a look at transitions t4 and t6 with •t4 = •t6 = {p3}. Due to the
cycle, the firing limits for both t4 and t6 are ∞. Thus, we cannot determine a
finite number for the receiving limit of message d. So, we set it to ∞.

In N1 there exists exactly one receiving transition for each input place. Gen-
erally, for a message x, we set the receiving limit to the sum of the firing limits
of all receiving transitions of x. If there exists no receiving transition for x, the
receiving limit is 0 – N does not accept x in any marking. If we set the receiving
limit for x to ∞, there are two possible reasons – (1) There exists no bound
for N receiving x. Or, (2) we can not narrow down a finite number for such a
bound. Either way, a receiving limit of ∞ does not allow further conclusions.



Finding a finite receiving limit n for a message x proves to be very useful. Al-
though n might not be precise, as there is no guarantee that x will be received
exactly n times, it is always safe to say that sending x more than n times leads
to x being ignored. Therefore, we can conclude that every RI-controller respects
the receiving limit of each message. Thus, we include it in the message profile.
Summarizing, the receiving limits of the example net N1 are a:1,b:1,c:1,d:∞,e:1.

3.2 External one-time Decisions

So far, the message profile consists of a static number – the receiving limit for
each input message, only. In an open net N , however, there might exist depen-
dencies between messages that influence the actual acceptance of them. From
the structure of N we are able to extract conflicting receiving transitions. The
set of external one-time decisions contains all messages that these transitions
receive, {x, y, z}. Basically, a controller C influences the further course of N by
sending a message x, for instance. Because {x, y, z} are in conflict, messages
{y, z} will now be ignored by N . We include such a set of messages into the
message profile.

We will take a look at the open net N1 of Fig. 1 again. Examining the
transitions t0, t3 and t8 in the inner of N1, we can easily see that there exists
a conflict between them: •t0 = •t3 = •t8. The decision between t0, t3 and t8 is
non-deterministic in the inner of N1. But, considering the interface, the choice is
made by the controller – by sending one of the messages {a, c, e}. Assume message
a is received by N1. Then, no marking is reachable where one of {t0, t3, t8} is
enabled again. Thus, sending message c or e would result in N1 ignoring that
message.

In general, we construct such a set of messages M of an open net N as
follows. We start by finding a set of receiving transitions that are in conflict
with each other in the inner of N , set D. Then, we remove all transitions with a
firing limit of 0 from D, set D′. From the receiving transitions in D′ we extract
the corresponding messages, set M . Set M does not necessarily reflect a global
situation. Hence, we check whether the receiving limit of every message m ∈M
is 1. This way we ensure that there exists no receiving transition t ∈ T \D for m.
If that condition does not hold for a message, we remove it from M . We repeat
that process until the condition holds for each message of M . The resulting set is
now globally valid. So, sending more than one message from M always leads to N
ignoring at least one message. Therefore, no RI-Controller sends more than one
message from M which we include in the message profile. The set of conflicting
messages {a, c, e} forms an external one-time decision of N1.

3.3 Internal Decisions

Internal decisions describe dependencies between receiving transitions and in-
ternal or sending transitions. They potentially induce that messages cannot be
received. Based on the receiving limit we can decide if such a conflict leads to
ignored messages or not.



We look at t1 and the internal transition t2 in N1 (Fig. 1). In the inner of
N1, we find •t1 = •t2 = {p1}. Suppose marking m with m(p1) = m(b) = 1. The
decision between firing t1 or t2 is non-deterministic. Thus, we call t1 blocked by
an internal transition. The firing limits are t1:1,t2:1. Once t ∈ {t1, t2} fires, no
marking m′ is reachable such that any t′ ∈ {t1, t2} is enabled. Hence, N1 decides
non-deterministically between ignoring and receiving b .

For transitions t4 and t6 a similar pattern holds in the inner of N1, •t4 = •t6.
The difference is, that whenever one of {t4, t6} fires, a marking will be reached
in which both transitions are enabled again. Assume now a message d is sent
to N1 – even if t6 is fired consecutively, d can still be received in any reachable
marking.

More generally, a receiving transition t is blocked by an internal or sending
transition t′ if •t′ ⊆ •t holds in the inner of N . We call a a message x blocked
by an internal decision if (1) we find a finite receiving limit for x and (2) each
receiving transition for x is either blocked or has a firing limit of 0. No RI-
controller sends x. DF-controllers might send x, but then the composition will
always contain a livelock. We include an according set of messages in the message
profile. For N1 only message b is blocked by an internal decision, since condition
(1) does not hold for message d.

3.4 Trap Messages

Deficient modeling, modification of an existing service or deliberate design of
error conditions can lead to a structure, where the postset of an internal place
(neither an input nor an output place) of the underlying open net N is either
empty or consists of transitions with a firing limit of 0 in the inner of N . If
such a place is not marked in any final marking, firing a transition in its preset
traps N in a state from which no final state is reachable. We show under which
circumstances messages can be tagged as trap messages in the message profile.

Examining place p8 in the example open net N1 (Fig. 1), we notice that
from any marking m with m(p8) > 0 there will be no marking m′ reachable
with m′(p8) = 0. Additionally, mf (p8) = 0 for each final marking mf . Because
of •p8 = {t10}, transition t10 should never fire. We call m a trap marking,
p8 a trap place and t10 a trap transition. We propagate this property. Because
•t10 = {p6}, we conclude that a token on p6 induces firing of t10 and thus to
trapping the net. Thus, p6 is a trap place and all transitions of •p6 (= {t8})
are trap transitions. So, transition t8 is a trap transition. t8 is also a receiving
transition for message e. Since there exists no other receiving transition for
message e, it is obvious that sending message e will either lead N1 into a trap
state (if t8 fires) or it leads N1 to ignore message e (if t8 does not fire). Therefore
message e is not sent by any WT-controller.

To make sure that a specific message m is to blame for leading to a trap
marking, we analyze its receiving transitions and check if each of them is either
a trap transition or has a firing limit of 0. In that case, we tag m as a trap
message in the message profile. In N1, only message e is a trap message.



4 Conclusion and Future Work

With the help of the example open net N1 (Fig. 1) we have shown that we are
able to gain knowledge about the interactional behavior directly from the inner
of N1 without knowing any controller C or building up the reachability graph
of N1⊕ C. We now know that any RI-Controller C sends messages a and c not
more than once and completely avoids to send messages b and e. After having
sent a message x ∈ {a, c, e}, C sends no more messages from {a, c, e}.

Currently, we work on a prototypical implementation of our results. We ex-
plore solutions for finding firing limits for transitions. Further, we improve our
analysis methods and work on combining the methods to accomplish synergy
effects. So far, we only focus on receiving messages. It is also possible to extend
the message profile not only by further dependencies between receiving messages,
but to include information about sending messages as well. Regarding that, we
aim at developing a concept of compatibility of message profiles of two services
in order to improve matching of two services.
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