
A Method for Partitioning BPEL Processes for
Decentralized Execution*

Daniel Wutke, Daniel Martin, and Frank Leymann

Institute of Architecture of Application Systems
University of Stuttgart

Universitätsstrasse 38, 70569 Stuttgart, Germany
{wutke,martin,leymann}@iaas.uni-stuttgart.de

http://www.iaas.uni-stuttgart.de

Abstract Service orchestrations are a common means to compose in-
dividual services to either higher-level services or potentially complex
composite applications. The Web Service Business Process Execution
Language (WS-BPEL) is an example for a language that allows for defi-
ning automatically executable orchestrations of Web services. As of today,
BPEL process are typically executed in a centralized manner; the process
model is deployed on a single workflow management system which, during
process instance execution, interprets the process definition and interacts
with the orchestrated Web services on behalf of the user. In previous work,
we have presented an approach which enables decentralized execution of
BPEL processes based on a decentralized process model and supporting
runtime infrastructure. In this paper we describe a method for automatic
splitting of a process among the partners participating in its execution,
referred to as process partitioning.

Key words: Process partitioning, decentralized process enactment, BPEL

1 Introduction

One of the key aspects of the Service-oriented Architecture (SOA) are service
compositions following the so-called two-level programming paradigm where
individual reusable services are composed into high-level services or potentially
complex service orchestrations which can executed automatically using workflow
management systems (WfMS). The means for defining the “wiring” between the
compound services is provided by workflow definition languages such as the Web
Service Business Process Execution Language (WS-BPEL) [1]. As of today, the
automatic execution of a BPEL process typically comprises the deployment of
the process model to a single WfMS and – after process instantiation triggered
by incoming messages sent by clients to the WfMS – continuous evaluation of (i)
the process’ control flow defined in the process model and (ii) the current state of

* This work is supported by the EU funded project TripCom (FP6-027324),
http://www.tripcom.org.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

http://www.iaas.uni-stuttgart.de
http://www.tripcom.org

the process’ instance data by the WfMS’s navigator component; hence we refer
to process navigation being a centralized process.

However, a number of reasons, ranging from outsourcing of process fragments
to runtime performance optimizations without the need for process model changes,
motivate the need for a decentralized execution environment for BPEL processes.
Hence, in previous work [2,3,4], we have presented an approach that allows for
(nearly) arbitrary process splitting by enabling distributed navigation among the
partners participating in a process’ execution. Following this approach, once can
realized different deployment of the same process model within the spectrum
from ranging from centralized execution to fully decentralized execution where
each “step” (i.e. activity) being carried out by the process is executed by a
different process participant. Finding an “adequate” distribution, also referred to
as partitioning, of the process is dependent on a number of influential factors.
Subject of this paper is the presentation and discussion of these factors and a
high-level description of an approach to the process partitioning problem that
addresses each of the identified influential factors.

The remainder of the paper is structured as follows. In Section 2 the EWFN
process model provides the basis for the proposed approach is described to the
extend necessary for the discussion of the partitioning procedure. Based on
this foundation, Section 3 introduces the general idea of process partitioning,
discusses various parameters that influence process partitioning and outlines a
procedure that addresses each of the defined partitioning parameters. In Section 4
a brief overview of a few related approaches which are either particularly relevant
to the problem discussed in the paper due to either addressing the concrete
problem of partitioning BPEL processes or similar parameters influencing process
partitioning are presented.

2 Decentralized Enactment of BPEL Processes

Coordinating a number of distributed clients, where each of those clients realizes
a defined part of an overall process requires communication of both process
control flow and process instance data among the clients participating in the
process’ execution. In this context, control flow refers to the individual client’s
execution being started according to the order defined in the process model; the
term instance data characterizes both data being “visible” in process models
such as BPEL variables, partner links (which can be source or destination of
assignment operations) or correlation sets as well as “invisible” instance data
such as the state of a scope or the state of incoming message activities. While
this information is provided in the WS-BPEL specification through a description
of the language’s operational semantics, this description is – due to its informal
textual nature – neither suitable for automatic execution by WfMSs nor may it
serve as input for process partitioning.

As a result, the formalism of Executable Workflow Networks (EWFN) has
been developed on the basis of colored, non-hierarchical Petri nets [5] and
Boolean networks [6]; it allows for explicitly describing the data communicated

during process instance execution using the communication primitives of the the
Linda Tuplespace model [7] – read for non-destructive and take for destructive
consumption of data, write for production of data – plus a number of extensions
that address process execution-specific requirements such as the sync operation
for synchronizing join operations [8].

tu1 | ... | tu6 te2

tu3

te6

tu4

te5

te6

tu7

t4

Assign

Sequence

Reply

Assign

t1

Check Correlation
Consistency

t2

Check for
open IMA

t1

Finalize
Reply

t3

WS
Endpointt4

Variables

FailedPartnerLinks

Start

Start

Correlations Variables

IMA
States

PartnerLinks

Ended

EndedEnded

Start

Figure 1. Example of the EWFN representation of a BPEL Sequence activity
with two contained assign and reply activities.

Figure 1 depicts the EWFN representation of a BPEL sequence activity
with two contained activities. Activities are depicted as dashed rectangles and
comprise (similar to Petri nets) transitions and places. Following the EWFN
formalism, transitions represent a piece of application logic and carry out the
actual processing. Transitions coordinate themselves by consuming tokens from
and producing tokens to places which provide passive buffers for tokens; the tokens
are self-contained in the sense that they provide enough information to uniquely
identify each token communicated in an EWFN. On the level of the infrastructure
supporting execution of EWFNs, places are realized by tuplespaces, transitions
by tuplespace clients. The arcs between transitions and places represent the
individual operations supported by the tuplespace interface and may be annotated
with a weight representing the operation cost, resulting e.g. from the volume of
the data being communicated as part of that operation.

As an example, transition t1 of the assign activity represents an assignment
of a value to either a BPEL variable or a partner link. To represent process
control flow t1 is activated by a token becoming available in its Start place;
once t1 has finished its execution is signals its successful completion to the

subsequent activity by producing a corresponding token to its Ended activity.
Consuming and producing process control flow information is depicted as directed
black arcs between places and transitions and transitions and places respectively.
During execution of their application logic, transitions may consume and produce
further tokens representing instance data; in case of the depicted assign activity
this might include the modification of the value of a variable or the endpoint
reference assigned to a partner link. Similar to BPEL activities, EWFNs can be
nested as presented in the example with the sequence activity surrounding the
assign and receive activities. The operational semantics of the sequence
activity is defined as each contained activity becoming ready to execute once its
preceding activity has completed its execution. In the EWFN this is represented
by collapsing the Ended place of the assign activity and the Start place of the
receive activity into one place.

3 Process Partitioning

The term process partitioning refers to the procedure of assigning information
about the partner the corresponding node of the EWFN is executed by during
instance runtime to each transition and place of an EWFN. This process is
influenced by a number of parameters which can be classified in three groups.

Process model As outlined before, the EWFN of a BPEL process provides
a formal description of (i) the steps carried out during process instance
execution and (ii) the data being communicated along the way. As a result it
is one of the major parameters of the process partitioning procedure.

Service infrastructure Through BPEL’s interaction activities (e.g. invoke
and receive) the BPEL process may interact with Web service clients and
the Web services it orchestrates. As the partners providing a service used by
the process are in any event process participants they are potentially suitable
candidates for executing a part of the processes orchestration logic as well.

Organizational factors Organizational factors reflect parameters that are not
necessarily a result of the process structure or its service landscape, but
are defined manually by users. It might e.g. be desired to manually define
the partition of a certain place that contains BPEL variable data for data
ownership reasons.

The proposed process partitioning approach comprises three phases and is
an extension of the procedure presented in [9] in the sense that it also relies on
the notion of different kinds of nodes – fixed, heavy, and light – whose partition
assignment is addressed in consecutive phases of the partitioning algorithm as
depicted in Table 1; once a partition of a been determined in on of the phases
the node is not considered in the further phases of the algorithm.

Fixed nodes represent nodes with partitioning information defined a priori by
manual user input and reflect organizational partitioning parameters. To allow
for maximum flexibility, each node of an EWFN – transitions and places – can
become a fixed node. Interaction activities, i.e. those points of a BPEL process

Phase 1. Fixed Nodes 2. Heavy Nodes 3. Light Nodes

Examined
Objects

Arbitrary nodes Interaction activities:
invoke, receive,
pick, reply

Non-interaction
activities; instance
data

Partitioning
Method

Manual assignment by
user; rules

Automatic service
discovery and service
selection; rules

Graph partitioning
applied to the process’
EWFN

Table 1. Phases of the proposed method to BPEL process partitioning.

where interaction with its service landscape occurs, are referred to as heavy
nodes. Their partitioning information is determined automatically using means
for service discovery (based on the service’s functional characteristics through its
WSDL description) and service selection (based on the service’s non-functional
properties such as service invocation cost, service response time, etc. reflected
through WS-Policy descriptions). In addition, partitioning information of heavy
nodes might be dependent on deployment information (e.g. for defining on which
endpoint the process can receive incoming messages) or other heavy nodes (e.g.
in case of receive-reply pairs to support synchronous Web service bindings).
Light nodes reflect non-interaction activities as well as process instance data
for which no partitioning information has been defined until this point. Their
partitioning is performed by migrating them to the partition of adjacent fixed
or heavy nodes as defined in the process’ EWFN. Since an EWFN is a directed
weighted graph and the problem is a variant of the well-known graph partitioning
problem with the optimization criteria of minimizing the cost of inter-partition
interactions, existing optimization algorithms such as Simulated Annealing [10]
are used to realize this phase of the partitioning algorithm.

4 Related Work

In [11], the authors introduce a workflow system architecture for supporting
large-scale distributed applications called Mentor based on TP monitors and
object request brokers. Decentralized workflow execution in Mentor is achieved
by rule-based partitioning of a workflow based on activity and state charts
into a set of sub-workflows which are then enacted by a number of distributed
workflow engines that are synchronized using Mentor. In [12], a BPEL process
model is manually split by a user (e.g. for reasons of process outsourcing) in a
number of fragments and a corresponding BPEL process (along with necessary
deployment information) is created for each fragment. The BPEL processes are
then deployed and executed at the partners participating in the process’ execution.
For supporting BPEL’s scope and while activities, a central coordinator is
required. In [9] a similar approach to distributed execution of BPEL processes is
presented supporting automatic process partitioning based on an analysis of a
program dependence graph generated for the process and a corresponding cost
model.

5 Conclusions

In this paper we have outlined a process model that enables decentralized
execution of BPEL processes and allows for nearly arbitrarily fragmented process
execution. Thereby we have stressed the need for an algorithm for defining process
partitions based on a number of influential factors and have presented a high-level
overview of the proposed algorithm and how it addresses the individual process
partitioning parameters.

References

1. Organization for the Advancement of Structured Information Standards: Web
Services Business Process Execution Language Version 2.0 – OASIS Standard
(March 2007)

2. Wutke, D., Martin, D., Leymann, F.: Model and Infrastructure for Decentralized
Workflow Enactment. In: SAC ’08: Proceedings of the 2008 ACM Symposium on
Applied Computing, New York, NY, USA, ACM (2008) 90–94

3. Daniel Martin and Daniel Wutke and Frank Leymann: EWFN – a Petri net
dialect for tuplespace-based workflow enactment. Volume 380 of CEUR Workshop
Proceedings., CEUR-WS.org (September 2008) 7–14

4. Martin, D., Wutke, D., Leymann, F.: A novel approach to decentralized workflow
enactment. Enterprise Distributed Object Computing Conference, 2008. EDOC
’08. 12th International IEEE (Sept. 2008) 127–136

5. Jensen, K.: Coloured Petri Nets, Vol. 1: Basic Concepts. EATCS Monographs
on Theoretical Computer Science. Berlin, Heidelberg, New York: Springer-Verlag
(1992)

6. Langner, P., Schneider, C., Wehler, J.: Prozessmodellierung mit ereignisgesteuerten
Prozessketten (EPKs) und Petri-Netzen. Wirtschaftsinformatik 39(5) (1997) 479–
489

7. Gelernter, D.: Generative Communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems 7 (1985) 80–112

8. Martin, D., Wutke, D., Leymann, F.: Synchronizing control flow in a tuplespace-
based, distributed workflow management system. In: ICEC ’08: Proceedings of the
10th international conference on Electronic commerce, New York, NY, USA, ACM
(2008) 1–9

9. Nanda, M.G., Chandra, S., Sarkar, V.: Decentralizing Execution of Composite Web
Services. Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-
oriented Programming, Systems,Languages, and Applications (2004) 170–187

10. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by Simulated Annealing.
Science 220(4598) (1983) 671–680

11. Muth, P., Wodtke, D., Weissenfels, J., Dittrich, A., Weikum, G.: From Centralized
Workflow Specification to Distributed Workflow Execution. Journal of Intelligent
Information Systems 10(2) (1998) 159–184

12. Khalaf, R., Leymann, F.: Role-based decomposition of business processes using
bpel. In: ICWS ’06: Proceedings of the IEEE International Conference on Web
Services, Washington, DC, USA, IEEE Computer Society (2006) 770–780

	Lecture Notes in Computer Science
	Authors' Instructions
	1 Introduction
	2 Decentralized Enactment of BPEL Processes
	3 Process Partitioning
	4 Related Work
	5 Conclusions

