
A scenario is a behavioral view – Orchestrating
services by scenario integration

Dirk Fahland

Humboldt-Universität zu Berlin, Institut für Informatik,
Unter den Linden 6, 10099 Berlin, Germany

fahland@informatik.hu-berlin.de

Abstract. The construction of a complex service orchestration is a te-
dious and error-prone tasks as multiple service interactions with a single
orchestrating service must be specified and combined. We suggest to
specify a service orchestration in terms of behavioral scenarios that cap-
ture a specific aspect of service interaction, a behavioral view in isolation.
By synchronizing the different scenarios, the views get integrated and de-
fine the behavior of a complex service orchestration. Our formal model
for scenarios and their integration is a class of Petri nets called oclets.

Keywords: service choreography, view, scenario, Petri nets

1 Behavioral views for service orchestration

In service-oriented computing [1], services serve as building blocks for complex,
distributed systems. A service orchestration is a means to coordinate n services
by a (n + 1)st service, called orchestrator that communicates with each of the
n given services directly and coordinates the overall exchange by its internal
logic [2]. Process modeling languages like BPEL combine workflow modeling
with the SoC paradigm for specifying and executing orchestrator services.

While specifying the orchestrator’s interaction with a specific, individual ser-
vice is usually straight forward, the coordination of all interactions with all
partner services remains a challenge. If service interactions are sufficiently com-
plex and depend on each other, the resulting orchestrator logic will be complex,
and so will be the orchestrator model. Constructing a comprehensible orchestra-
tor model with appropriate sub-processes etc. is a tedious task. The sub-process
hierarchy usually needs to be remodeled if another service interaction, that cuts
across the present hierarchy, is to be integrated into the model.

The problem itself is not new and relates to the problem of process integra-
tion for classical (non-communicating) process models [3]. A recurring solution
approach for behavioral integration takes inspiration from databases where a
complex relational database is constructed by integrating the views of the var-
ious users on the database [4]. A database view is, in principle, a projection of
a complete database onto a few specific somehow connected objects of interest.
Such a view has a valid interpretation in isolation. Conversely, a “complete”

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073



set of views describes the entire database; hence it can be constructed from its
views. If the set of views is not complete or do not fit, they have to be adjusted,
viz. integrated.

In this paper, we propose the concept of a behavioral view for the construction
of behavioral models. In analogy to databases, a behavioral view is, in princi-
ple, a projection of a complete behavioral model onto a specific behavior, i.e. a
partial process execution also called scenario. Conversely, a “complete” set of
behavioral views describes the entire behavior. A behavioral view can have arbi-
trary structure (as longs as it is a connected partial execution); it may therefore
cut hierarchies and hence is a means to express cross-cutting concerns in pro-
cess models. While the definition of a behavioral view is straight forward, the
converse, their integration to form a complete behavioral model is non-trivial.

We argue that a well-founded approach for behavior modeling by view in-
tegration requires an appropriate formal model. In [5] we proposed the Petri
net class of oclets as a formal model for scenarios (or behavioral views) on the
basis of a formal, operational semantics [6]. Intuitively, this formal model con-
structs complex behavior by concatenating and merging “fitting” scenarios. This
reduces the problem of behavioral integration to make a given set of scenarios
“fitting” to each other. In general, the solution is to unify the tasks and resources
occurring in the scenarios appropriately.

In the remainder of this paper, we first substantiate the concept of a behav-
ioral view in Sect. 2 as we introduce oclets, and their semantics at an intuitive
level. We subsequently explain the problem of behavioral integration and sug-
gest a procedure for process integration by the help of an example. We conclude
the paper with a discussion of related work and a presentation of open research
problems in Section 4.

2 Scenario-based service modeling with oclets

For formally modeling services, the Petri net class of open nets has been estab-
lished. Open nets allow for a rigorous analysis of behavioral properties of services
while industrial service modeling languages can be translated to open nets [7],
and vice versa [8]. The behavior of an open net is defined by standard Petri net
semantics; this operational semantics defines the (partially-ordered) runs of the
modeled service. As every service model is finite, these runs are not arbitrary,
but exhibit a certain structure, e.g. transitions always fire in a specific order.

Scenario-based models exploit this regularity of the runs: One can identify
various repeating patterns (scenarios) that are partial executions of the service.
The entire service behavior is composed of these scenarios. A scenario-based
model makes a scenario a modeling artifact. The entire service behavior is ex-
pressed as a set of scenario; a corresponding formal semantics describes how
scenarios compose to runs.

In [5], we propose the Petri net class of oclets for formally describing scenar-
ios with an operational formal semantics. An oclet is an acyclic Petri net with
a local precondition describing which requirements must be satisfied in order



to execute the subsequent scenario. We denote service communication by anno-
tating transitions by incoming arrows (receive a message) and outgoing arrows
(send a message).

Figure 1 depicts some oclets; the minimal

await
pass.

PS - passenger standard

trip
data

taxi
no.

await
pass.

pass.
data

get taxi
request

pick avail.
taxi

send taxi no.
and arr. time

await
taxi

TR - taxi register

taxi
data

await
taxi

get "taxi
available"

taxi
data

TS - taxi standard

trip
data

pick avail.
pass.

send trip
details

Fig. 1. Standard service interac-
tion with passengers and taxis.

(no predecessor) grey-shaded places denote
the precondition of the oclet. Our running
example is a passenger-taxi coordination ser-
vice which is specified in two views:

(1) The first view (oclet PS) specifies that
a passenger can send a pickup request to
the service, which it processes by picking an
available taxi and returning taxi number and
arrival time.
(2) The second view (oclets TR and TS)
specifies that an available taxi can register at
the service at any time. If taxi data is reg-
istered at the service, the service will pick
a matching passenger and send the corre-
sponding trip details to the taxi.

Figure 3 depicts a partially ordered run of

pass.
data

PC - pass. cancel

cancel-
led

get cancel
request

trip
data

PR - passenger reset

taxi
data

await
pass.

cancel-
led

pick avail.
taxi.

reset

Fig. 2. Service cancelation by
passenger and service reset.

the oclets PS, TR, TS as an acylic Petri net. The
run is constructed by merging (copies of) oclets
at equally labeled nodes in the obvious and in-
tuitive manner. The run of Fig. 3 shows explic-
itly that the passenger view and the taxi view
are not related to each other, while each makes
sense on its own.

We can easily extend our view based model
with another view, see Fig. 2: A passenger may
cancel a request at any time (oclet PC); the
service resets its processing subsequently (PR).
This allows to construct the run depicted in
Fig. 4. Thereby oclet PS of Fig. 1 is not executed completely (transition send taxi no
is not enabled because get cancel request of PC occurred. Instead, oclet PR is ap-
pended by merging transitions pick avail. taxi of PS and PR.

The run of Fig. 4 shows again that the given behavioral views do not fit to
each other; the taxi still gets notified about the passenger although the request
has been canceled. The views must be integrated.

3 View integration with scenarios

We just have introduced oclets as a modeling language for behavioral views and
show that if behavioral views do not fit to each other, they cannot be composed
to a run. In this section, we sketch how behavioral views of services can be
integrated to define a consistent orchestrator service.



await
pass.

trip
req.

taxi
no.

await
pass.

pass.
data

trip
req.

pass.
data

await
taxi

taxi
data

await
taxi

trip
data

taxi
data

await
taxi

get taxi
request

pick avail.
taxi

send taxi no.
and arr. time

get taxi
request

get "taxi
available"

pick avail.
pass.

send trip
details

get "taxi
available"

Fig. 3. A standard run constructed from
scenarios ps, tr, ts.

await
pass.

trip
req.

taxi
no.

pass.
data

await
taxi

taxi
data

await
taxi

trip
data

cancelled

await
pass.

taxi
data

await
taxi

get taxi
request

pick avail.
taxi

get "taxi
available"

pick avail.
pass.

get cancel
request

reset

send trip
details

get "taxi
available"

Fig. 4. A run with service cancellation
constructed from scenarios ps, tr, ts, pc, tc.

We suggest the following integration procedure depicted in Fig. 5. The orches-
trator’s interaction with each of its partner services is specified in a behavioral
view. To integrate the different views, (1) all views are refined to the same gran-
ularity of resources and tasks; (2) a modeler identifies points of synchronization
(specific resources or tasks) and defines integration options. Finally, (3) synchro-
nization is made explicit in each scenario by applying the integration options.
This adjusts the different scenarios to each other s.t. the formal semantics of
oclets constructs the orchestrator’s behavior by concatenating and merging the
now fitting scenarios. Possibly, some integration issues are not visible after the
first integration step, so steps (2) and (3) are iterated until satisfaction. The
grey tasks of Fig. 5 require interaction with a human modeler.

As all oclets of our example process already have equal granularity, the first
step changes nothing. We now have to define integration options for our scenarios
in order to unify the given oclets accordingly. An integration option maps a set
of transitions of the oclets to be integrated to a (possibly new) transition. For
some kinds of integrations like parallel synchronization the resulting integrated
transition is a function of the integration inputs; see [3].

In our example, the standard behavior in Fig. 3 suggests to integrate the
views via transitions pick avail. taxi and pick avail. pass by the parallel compo-
sition depicted in Fig 6. Further, the reset oclet pr of Fig. 2 must be extended
to properly handle cancelation also in the service’s interaction with the taxi.
Applying this integration on all oclets in the subsequent unification step re-

... ... ... ...
unify

granu-
larity

view 1

view n

view' 1

view' n

define
integration

options

opt. 1

opt. m

unify

view'' 1

view'' n
views

integrated done

open
issues

Fig. 5. Procedure for integrating behavioral views.



places transitions pick avail. taxi and pick avail. pass each by the integration re-
sult match request; see oclets PS2, TS2, and TCS in Fig. 7.

One can quickly see that this
trip

req.

taxi
no

taxi
data

trip
data

trip
req.

taxi
no.

taxi
data

trip
data

pick avail.
taxi

pick avail.
pass.

match
request

Fig. 6. View integration option

await
pass.

PS2 - passenger standard synch

trip
req.

taxi
no.

await
pass.

pass.
data

taxi
data

trip
data

get taxi
request

match
request

send taxi no.
and arr. time

taxi
data

TS2 - taxi standard synch

trip
data

trip
req.

taxi
no.

match
request

send trip
details

taxi
data

TCS - taxi cancel synch

trip
data

cancel-
led

trip
req.

taxi
no.

taxi
data

await
pass.

match
request

reset

Fig. 7. Integrated oclets with unified tran-
sitions and enabling conditions.

integration option alone is insuffi-
cient: The reset transition of TCS
only resets the passenger thread of
the process while the taxi thread is
unmodified. A human modeler who
inspects the integration result TCS
can detect this problem. Hence, an-
other (obvious) integration option
that extends transition reset of Fig. 7
by the dashed dependencies must
be specified. After this integration
step, the passenger view and the
taxi view are integrated, but still
exist in isolation.

The integrated service model is
now given by oclets PS2, TR, TS2,
PC, and TCS. Figure 8 depicts a
standard run of the integrated ser-
vice while Fig. 9 depicts a run with
cancelation. Thereby, the match re-
quest transitions of the various oclets
are merged upon construction of the
runs as they are now pairwise com-
patible in term of enabling condi-
tion and effect. The integration of
the different scenarios on common transitions is a consequence of our formal
model [6].

await
pass.

trip
req.

taxi
no.

await
pass.

pass.
data

await
taxi

taxi
data

await
taxi

trip
data

get taxi
request

match
request

send taxi no.
and arr. time

get "taxi
available"

send trip
details

Fig. 8. A standard run of the integrated
scenarios ps2, tr, ts2.

await
pass.

trip
req.

await
taxi

taxi
data

await
taxi

cancelled

trip
data

taxi
no.

taxi
data

await
pass.

pass.
data

get taxi
request

get "taxi
available"

get cancel
request

match
request

reset

Fig. 9. A run with service cancelation of
the integrated scenarios ps2, tr, ts2, pc, tcs.



4 Conclusion

We proposed scenarios as behavioral views for modeling complex service orches-
trations. The interaction of an orchestrating service with each of its partner
services is modeled separately in terms of their interaction scenarios. In a sub-
sequent integration step, the different views are first unified in granularity; then
integration options for synchronizing different views are defined by the modeler;
finally, the views are unified according to the integration options. We proposed
the Petri net class of oclets as a formal model for scenarios; their operational
semantics allow to construct the behavior of the orchestrator directly from the
unified scenarios.

Our proposition is a contribution to the relatively novel field of service (or
process construction) by view integration [9]. Currently, there exists no system-
atic solution for behavioral process integration. Initial works like [4, 10] consider
the problem from an information system perspective where database schema in-
tegration is extended by considering behavior of data processing as well. The
problem of behavioral integration is now also being research in isolation. The
general line of research aims on constructing complex, integrated process models
by merging smaller process models (the views) on synchronization points. In [11,
12] different behavioral process integration options are considered for construct-
ing such merged process models. These integration options can be applied when
merging UML activity diagrams for constructing complex process models [3].
Similar results are available for Petri net based models [10] and EPCs [13].

One markable observation in all these approaches is that prior to integration,
the process models have to be flattened in order to define and apply the inte-
gration options. While some sort of task grouping can still be applied [10], the
modeler essentially works on an ever growing complex model. Because process
integration involves frequent human interaction (see Sect. 3), this complexity
becomes a problem. One of the main problems appears to be that in classi-
cal models, behavioral integration is achieved only by model composition. The
notion of behavioral view must essentially be given up in order to integrate. Be-
cause, at the same time, the model must be flattened, there are no abstraction
techniques available to support the modeler in reducing the complexity.

We argue that a scenario-based service model, as the one suggested on this
paper, preserves the advantages of view-based service definitions. We have that
different behavioral views can be unified in a way that they yields behavioral
integration of the views while preserving each view. Only local changes must be
made to achieve integration. Thus original view, and integrated views can still
be related to each other. This provides smaller modeling artifacts, and hence an
abstraction technique that suits the problem of process integration. The formal
semantics of oclets yields a precise behavioral definition.

While the formalization of a scenario as an oclet and its formal semantics are
available, the following questions remain to be answered for actually applying
oclets for service integration: If two oclets specify behavior at different levels of
granularity, how can a common granularity be achieved? What are the available
options to integrate two given oclets of same granularity? Can these options



be computed automatically? How does the integration of two oclets affect the
integration of other oclets? Given a set of integration options, are the unified
oclets that realize the integration canonical? Are the integrated oclets consistent?
Can inconsistencies be computed automatically?

We do not claim this list to be complete, but we consider answers to these
questions to be fundamental for a systematic solution for process integration,
whether using oclets or any other approach.

Acknowledgements We would like to thank Jan Mendling for bringing this
topic to our attention and for the reviewers’ comments and suggestions that
helped improving this paper. D. Fahland is funded by the DFG-Graduiertenkolleg
1324 “METRIK”.

References

1. Papazoglou, M.P.: Agent-oriented technology in support of e-business. Commun.
ACM 44(4) (2001) 71–77

2. Dijkman, R.M., Dumas, M.: Service-oriented design: A multi-viewpoint approach.
Int. J. Cooperative Inf. Syst. 13(4) (2004) 337–368

3. Grossmann, G., Ren, Y., Schrefl, M., Stumptner, M.: Behavior based integration of
composite business processes. In: BPM’05. Volume 3649 of LNCS. (2005) 186–204

4. Schmitt, I., Saake, G.: A comprehensive database schema integration method based
on the theory of formal concepts. Acta Inf. 41(7-8) (2005) 475–524

5. Fahland, D., Woith, H.: Towards process models for disaster response. In: Work-
shops of the BPM’08, Milan, Italy (September 2008) LNBIP to appear.

6. Fahland, D.: Oclets - a formal approach to adaptive systems using scenario-based
concepts. Informatik-Berichte 223, Humboldt-Universität zu Berlin (2008)

7. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting WS-
BPEL processes using flexible model generation. Data Knowl. Eng. 64(1) (January
2008) 38–54

8. Lohmann, N., Kleine, J.: Fully-automatic Translation of Open Workflow Net Mod-
els into Human-readable Abstract BPEL Processes. In: Modellierung 2008. Volume
P-127 of LNI., GI (March 2008) 57–72

9. ACM, C.: Special issue: Developing and integrating enterprise components and
services. Commun. ACM 45(10) (Oct. 2002)

10. Preuner, G., Conrad, S., Schrefl, M.: View integration of behavior in object-
oriented design. Data Knowl. Eng. 36 (2001) 153–183

11. Shen, J., Grossmann, G., Yang, Y., Stumptner, M., Schrefl, M., Reiter, T.: Analysis
of business process integration in web service context. Future Generation Comp.
Syst. 23(3) (2007) 283–294

12. Grossmann, G., Schrefl, M., Stumptner, M.: Classification of business process
correspondences and associated integration operators. In: ER (Workshops). (2004)
653–666

13. Mendling, J., Simon, C.: Business process design by view integration. In: Business
Process Management Workshops. (2006) 55–64


