
Oliver Kopp, Niels Lohmann (Hrsg.)

Services und ihre Komposition

Erster zentraleuropäischer Workshop, ZEUS 2009
Stuttgart, 2.-3. März 2009

Proceedings

CEUR Workshop Proceedings Vol. 438

Herausgeber:

Oliver Kopp
Universität Stuttgart, Institut für Architektur von Anwendungssystemen
Universitätsstraße 38, 70569 Stuttgart, Deutschland
oliver.kopp@iaas.uni-stuttgart.de

Niels Lohmann
Universität Rostock, Institut für Informatik
18051 Rostock, Deutschland
niels.lohmann@informatik.uni-rostock.de

ISSN 1613-0073 (CEUR Workshop Proceedings)

Online-Proceedings verfügbar unter http://CEUR-WS.org/Vol-438/

BibTEX-Eintrag für Online-Proceedings:

@proceedings{zeus2009,
editor = {Oliver Kopp and Niels Lohmann},
title = {Proceedings of the 1st Central-European Workshop on

Services and their Composition, ZEUS 2009,
Stuttgart, Germany, March 2--3, 2009},

booktitle = {Services und ihre Komposition},
publisher = {CEUR-WS.org},
series = {CEUR Workshop Proceedings},
volume = {438},
year = {2009},
url = {http://CEUR-WS.org/Vol-438/}

}

Copyright c© 2009 for the individual papers by the papers’ authors. Copying permit-
ted for private and academic purposes. Re-publication of material from this volume
requires permission by the copyright owners.

Vorwort

Der Zentraleuropäische Workshop über Services und ihre Komposition (ZEUS)
ist kein klassischer Workshop, bei dem fertige Forschungsergebnisse veröffentlicht
und präsentiert werden. Stattdessen steht die Diskussion von Ideen, die sich noch
in einem frühen Entwicklungsstadium befinden, im Vordergrund. So erhalten Teil-
nehmer bereits vor der Einreichung eines Konferenzpapieres erste Rückmeldungen
außerhalb ihrer Gruppe. Darüber hinaus erlaubt der Workshop durch seine regio-
nale Ausrichtung den Aufbau eines wissenschaftlichen Netzwerkes, das intensiv
und zu geringen Kosten genutzt werden kann. Er richtet sich dabei insbesondere
an junge deutschsprachige Forscher im Service-Bereich.

Der erste ZEUS-Workshops findet am 2. und 3. März 2009 in Stuttgart
statt. Veranstalter ist das Institut für Architektur von Anwendungssystemen der
Universität Stuttgart.

Es gab 17 eingereichte Beiträge, die alle nach kurzer Begutachtung in das
Programm aufgenommen wurden. Weiterhin wird es einen eingeladenen Vortrag
von Prof. Karsten Wolf (Universität Rostock) geben. Wir hoffen, dass die Vorträge
eine gelungene Grundlage für rege Diskussionen bieten.

Stuttgart/Rostock, im Februar 2009 Oliver Kopp
Niels Lohmann

Gutachter

Katharina Görlach Univeristät Stuttgart
Kathrin Kaschner Universität Rostock
Oliver Kopp Univeristät Stuttgart
Niels Lohmann Universität Rostock
Ganna Monakova Universität Stuttgart
Ralph Mietzner Universität Stuttgart
Olivia Oanea Universität Rostock
Dieter H. Roller Universität Stuttgart
Steve Strauch Universität Stuttgart
Tobias Unger Univeristät Stuttgart
Sema Zor Univeristät Stuttgart

Sponsor

Die Organisatoren danken der Firma Senacor für die finanzielle Untersützung
der Ausrichtung.

IV

Inhaltsverzeichnis

Eingeladener Vortrag

A theory of service behavior . 1
Karsten Wolf

Modellierung und Spezifikation

A scenario is a behavioral view – Orchestrating services by scenario
integration . 8

Dirk Fahland

Towards precise semantics for relations between business process models . 15
Matthias Weidlich

Does my service have unspecified behavior? . 22
Kathrin Kaschner und Niels Lohmann

A finite representation of all substitutable services and its applications . . . 29
Jarungjit Parnjai, Christian Stahl und Karsten Wolf

Prozessunterstützung für temporäre, ehrenamtliche und private Gruppen . 35
Daniel Schulte

Anforderungen der industriellen Produktion an eine serviceorientierte
Architektur . 42

Jochen Traunecker

Choreographien

Towards choreography transactions . 49
Oliver Kopp, Matthias Wieland und Frank Leymann

Realizability of interaction models . 55
Gero Decker

Realizability is controllability . 61
Niels Lohmann und Karsten Wolf

Do we need internal behavior in choreography models? 68
Oliver Kopp und Frank Leymann

Verifikation

Creating a message profile for open nets . 74
Jan Sürmeli und Daniela Weinberg

An efficient necessary condition for compatibility . 81
Olivia Oanea und Karsten Wolf

Umstrukturierung von WS-BPEL-Prozessen zur Verbesserung des
Validierungsverhaltens . 88

Thomas Heinze, Wolfram Amme und Simon Moser

Improving control flow verification in a business process using an
extended Petri net . 95

Ganna Monakova, Oliver Kopp und Frank Leymann

Ausführung

Facilitating rich data manipulation in BPEL using E4X 102
Tammo van Lessen, Jörg Nitzsche und Dimka Karastoyanova

A method for partitioning BPEL processes for decentralized execution . . . 109
Daniel Wutke, Daniel Martin und Frank Leymann

An end-to-end environment for QoS-aware service composition 115
Florian Rosenberg

Autorenverzeichnis . 122

VI

A Theory of Service Behavior

Karsten Wolf

Universität Rostock, Institut für Informatik

Abstract. We outline a fundamental approach to behavioral aspects
of services. In the center of this approach, we see behavioral models of
services, interactions, and finite representations of sets thereof. Several
operations and relations can be defined and their implementation on our
representations can be studied. Finally, a number of interesting problems
can be traced back to our models and operations. On the boundary of
our theory, we place interfaces to other aspects of services.

1 Introduction

Services are made for being loosely coupled to larger artifacts. A reasonable
coupling (i.e. interaction via message transfer) must take care of various aspects
of compatibility, including:

– Semantical compatibility: what does the content of exchanged messages
mean?

– non-functional compatibility: how is the exchange of a message organized?
– behavioral compatibility: in which order are messages exchanged?

We target the behavioral aspect of compatibility. The remaining aspects are taken
care of by a well-defined interface which enables us to integrate any techniques,
approaches, and results regarding semantics or non-functional aspects of service
composition.

2 Representing Service Behavior

There seem to be two complementary approaches to the specification of service
behavior. In the first approach, we specify the control flow of a single service
(end point, peer, participant). This control flow implicitly constrains the order
of messages that are transmitted via the middleware. In the second approach,
we specify sequences of message transmissions which we want to see in the
middleware (a choreography). A theory of service behavior should support both
points of view.

For the specification of single services, we propose to use service automata.
They offer concepts of state and transition for modeling control flow. Transitions
can be labeled with primitives like sending or receiving a message thus model-
ing the interaction behavior of a service. Service automata may be compactly
represented as Petri nets or expressions in a process algebra thus inheriting

2 Karsten Wolf

several results from existing theories. Service automata are well linked to relevant
languages like WS-BPEL or BPMN as there exist back-and-forth translations
between these languages to Petri nets [1, 2], and back-and-forth translations
between Petri nets and service automata.

For the specification of a choreography, we have not yet identified a canonical
formalism. On one hand, a set of traces of interaction primitives (like sending or
receiving a single message) seems to be a more reasonable starting point than
process description formalisms like the pi-calculus. The reason is that the mid-
dleware that connects services is not an actor which deliberately takes decisions.
It is rather a medium that records the effect of decisions taken elsewhere. On
the other hand, some authors insist that it might be essential for a choreography
description to record who is in charge for selecting a particular sequence from the
space of opportunities given by a set of traces. We conclude that the selection
of an appropriate formalism for a theoretical study of choreographies is still a
future work task.

In addition to the specification of a single behavior, we consider specifications
of sets of behaviors. A meaningful example in the case of single services is an
operating guideline, i.e. a finite representation of the set of all compatible partner
services to a given service. We believe that many interesting problems can be
traced back to simple questions concerning single behaviors or sets of behaviors.

3 Operations and Relations on Service Behaviors

Among the important operations on behavior, there are of course a few trivial
ones. These include, for example, the composition of services to larger ones or
ecxtracting the set of traces in the middleware that can be realized by a given
composition of services.

A next class of operations concerns the synthesis of missing components to
an incomplete specification. We already have algorithms for the synthesis of
compatible partners to a given services [3], or for synthesizing an adapter to a set
of incompatible services [4]. Similar techniques should work for synthesizing end
points to a given choreography. In many known scenarios, a synthesis algorithm
that calculates a single fitting behavior can be extended to an algorithm that
computes a finite representation of all fitting behaviors of some kind [5, 6].

In a third class of algorithms, we investigate standard operations on our core
objects. As a starting point, we look for realizations of standard set operations
(intersection, union, complement, projections) to representations of sets of service
behaviors. The actual challenge is that we start with, and want to arrive at, finite
representations of infinite sets (where each element is as complex as the control
flow of a service). We have some indication, that we will succeed with a minor
extension of the structures used for operating guidelines (characterization of the
set of all compatible partners of a given service). Further down in this article, we
sketch some useful applications.

A theory of service behavior 3

In a fourth class of operations, we would transform given service behaviors.
Potential applications include the repair of malfunctioning compositions [7], the
generation of public views out of private views, or vice versa [8, 9].

Service behaviors need to be compared with each other. A core concept in
this regard is the one of equivalence. Several equivalence notions for services
have already been proposed. Not all of these notions are very well motivated.
For instance, substituting a service with a trace equivalent one may not preserve
compatibility with other services. On the other hand, requiring bisimulation
equivalence is often too strong a requirement that prevents harmless substitutions.

We believe that reasonable equivalence notions need to be derived from appli-
cation scenarios. As an example, study a scenario where a service is substituted by
another one such that all compatible partners of the old service remain compatible
with the new one. The corresponding equivalence holds between all services with
the same set of compatibvle partners. It turns out that this equivalence is strongly
tied to the process algebraic notion of a should testing equivalence which is a
non-trivial entry in the huge zoo of equivalences proposed in process algebra. In
future work, we want to identify other application scenarios which may call for
different notions of equivalence.

4 Targeted Problems

Of course, the objective of our theory is to provide useful solutions to interesting
problems. In this section, we demonstrate that the outlined theory of service
behavior yields approaches to a number of interesting problems.

Verify and validate a service

Through the synthesis of a compatible partner [3], we may prove the principal
wellformedness of a service. Some initial approaches suggest that even the con-
struction of diagnosis information for a given malfunctioning service involves
operating guidelines, i.e. a core element of our theory [10]. Using the set of
all compatible services [5], we may compare the external effect of a service to
a specification. In particular, we may verify whether or not certain targeted
partners are among the compatible ones. The characterization of all partners
may yield useful (positive) test cases in some scenarios [11] while the complement
of that characterization might include negative test cases.

Construct a service

Due to an already existing link from service automata via Petri nets to abstract
WS-BPEL, we may support the automatic generation of services for various
purposes. These services are compatible by construction. Our theory enables a
flexible selection of services to be generated [12]. We may, for instance, translate
various requirements into finite representations of sets of services and then use
intersection as an instrument for filtering some desired behavior out of the set of
all compatible ones.

4 Karsten Wolf

Compose services

Composition may be supported for instance by synthesizing missing components
(adapters) [4], by transforming participants of a malfunctioning composition
[7], by exchanging components (for instance, public views with private views in
contract scenarios) [8]. We may support the selection of services from repositories.
For finding a compatible partner of a given service R in a repository of services
P1, . . . , Pn, we may check containment of R in one of the sets OGi (1 ≤ i ≤ n)
where OGi is the (finite representation of the) set of compatible partners of Pi.
Even more efficiently, we may precompute the unions OG1 ∪ . . . ∪OGndiv2 and
OGndiv2+1 ∪ . . . ∪OGn to more quickly reduce the search space. Using this idea,
we may select a suitable Pi with log n containment checks instead of n such
checks.

Replace a service

Using the right equivalence notions, replacement of services can be done without
harming compatibility. Our existing substitutability notion can be traced back
to basic set operations as follows. Let OGX be the set of compatible partners
of service X. Then P can be exchanged with R iff OGP ⊆ OGR which is
equivalent to OGP ∩ OGR = ∅. The remaining emptyness check should be
easy. Moreover, a nonempty OGP ∩OGR canonically provides examples which
prove non-substitutability. Such an example may help in providing diagnostic
information and is not available in existing approaches to checking substitutability.

Verify and validate a choreography

There exist notions of realizability of a choreography. We believe that it is possible
to translate the realizability problem into a partner synthesis problem. In the
future, we may see more interesting problems concerning choreographies.

5 Problem Parameters

Most problems and solutions can be formulated in several settings. So far, we have
identified the following parameters which more or less influence all approaches
stated so far.

Compatibility notion

There are several reasonable notions of compatibility. The one occurring most
frequently is deadlock freedom in the composed system. One may also require
that it should always be possible to reach a designated terminal state, or to have
a composed system that is sound (as defined for workflow models). Instead of
possible termination one can also require eventual termination. The latter notion
requires that the model contains information about fairness of decisions in the
control flow. Additional user definable constraints may parametrize compatibility.

A theory of service behavior 5

Nature of message passing

In a canonical setting, message passing is thought of being asynchronous. Existing
approaches do or do not allow overtaking of messages. In the literature, syn-
chronous communication is frequently studied, too. Further, we may or may not
consider constraints that are implied by the semantics of messages. For instance,
semantics may identify message type a as “empty form” and b as “filled form”
which implies that it would not make sense to send b before having received a.
Further down, semantical constraints are discussed in more detail.

Distribution of partner

Many services have interfaces to more than one partner. For synthesizing partners,
we may or may not assume the capability of those partners to be coordinated
during run-time or during build-time. This leads to different results concerning
well-formedness [13].

6 Interface to Other Aspects

For being applicable, our solutions must be in line with the remaining aspects of
service compatibility. As an example, we sketch an interface to semantics which
we already found useful in the context of adapter synthesis.

We already mentioned that the semantics of messages may imply constraints
on the behavior of a synthesized service. Examples of such constraints include

– Do not send a filled form before having received an empty one (while the
order of unrelated messages does not matter)

– Do not send a message containing somebody else’s password without having
received it in another message (wihle you may send your own password
without having received any message)

We claim that most relevant semantical constraints can be expressed in terms
of transformation rules such as empty form → filled form, → own password,
meter → feet, or street + zipcode + name → address. The rules specify the
semantically implied effect of message contents on the behavior, without implying
any particular approach to represent or discover semantics as such. In fact, the
rules may be specified manually, synthesized from semantic web approaches, etc.
We already showed that it is possible to trace back synthesis problems in presence
of semantical constraints to plain synthesis problems [4, 14].

7 Tools

There is already a family of tools which provide some of the discussed functionality:

– LoLA for the exploration of state spaces and thus for the investigation of
complete compositions;

6 Karsten Wolf

– Fiona for the synthesis of compatible partners and partner sets as well as for
the synthesis of adapters, checking compatibility and a few other applications;

– BPEL2oWFN and oWFN2BPEL for the translation between WS-BPEL and
Petrio nets;

– Rachel for a repair of a malfunctioning choreographies
– and certainly a number of tools developed in other groups.

They prove that, to the degree innplemented, operations can indeed be applied
to realistic service specifications.

8 Conclusion

We propose a reasonable set of objects and operations to constitute a theory of
service behavior. We have already identified a number of interesting problems
which all can be traced back to a small number of operations on recurring kinds
of objects like sets of service behaviors (also known as operating guidelines). We
believe that a further consolidation of the theory would yield additional insights
into the nature of services and their composition. Moreover, tracing back many
interesting problems to a few operations helps us to strengthen the tool support
for a large variety of problem settings.

References

1. Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL 2.0. In
Dumas, M., Heckel, R., eds.: Web Services and Formal Methods, Forth International
Workshop, WS-FM 2007, Brisbane, Australia, September 28-29, 2007, Proceedings.
Volume 4937 of Lecture Notes in Computer Science., Springer-Verlag (2008) 77–91

2. Lohmann, N., Kleine, J.: Fully-automatic translation of open workflow net models
into simple abstract BPEL processes. In Kühne, T., Reisig, W., Steimann, F.,
eds.: Modellierung 2008, 12.-14. März 2008, Berlin, Proceedings. Volume P-127 of
Lecture Notes in Informatics (LNI)., GI (2008) 57–72

3. Wolf, K.: Does my service have partners? LNCS ToPNoC 5460(II) (2009) 152–171
Special Issue on Concurrency in Process-Aware Information Systems.

4. Gierds, C., Mooij, A.J., Wolf, K.: Specifying and generating behavioral service
adapter based on transformation rules. Preprint CS-02-08, Universität Rostock,
Rostock, Germany (2008)

5. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In Kleijn, J., Yakovlev, A., eds.: 28th International Conference on Applications and
Theory of Petri Nets and Other Models of Concurrency, ICATPN 2007, Siedlce,
Poland, June 25–29, 2007, Proceedings. Volume 4546 of Lecture Notes in Computer
Science., Springer-Verlag (2007) 321–341

6. Stahl, C., Wolf, K.: Deciding service composition and substitutability using ex-
tended operating guidelines. Data Knowl. Eng. (2008) (Accepted for publication in
December 2008).

7. Lohmann, N.: Correcting deadlocking service choreographies using a simulation-
based graph edit distance. In Dumas, M., Reichert, M., Shan, M.C., eds.: Busi-
ness Process Management, 6th International Conference, BPM 2008, Milan, Italy,
September 1–4, 2008, Proceedings. Volume 5240 of Lecture Notes in Computer
Science., Springer-Verlag (2008) 132–147

A theory of service behavior 7

8. Aalst, W.M.P.v.d., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: Multiparty
contracts: Agreeing and implementing interorganizational processes. Comput. J.
(2008)

9. König, D., Lohmann, N., Moser, S., Stahl, C., Wolf, K.: Extending the compatibility
notion for abstract WS-BPEL processes. In Ma, W.Y., Tomkins, A., Zhang, X.,
eds.: Proceedings of the 17th International Conference on World Wide Web, WWW
2008, Beijing, China, April 21–25, 2008, ACM (2008) 785–794

10. Lohmann, N.: Why does my service have no partners? In Bruni, R., Wolf, K.,
eds.: Web Services and Formal Methods, Fifth International Workshop, WS-FM
2008, Milan, Italy, September 4–5, 2008, Proceedings. Lecture Notes in Computer
Science, Springer-Verlag (2008)

11. Kaschner, K., Lohmann, N.: Automatic test case generation for interacting services.
In Feuerlicht, G., Lamersdorf, W., eds.: Service-Oriented Computing – ICSOC
2008, 6th International Conference, Sydney, Australia, December 1-5, 2008. Work-
shops Proceedings. Lecture Notes in Computer Science, Springer-Verlag (2008) (to
appear).

12. Lohmann, N., Massuthe, P., Wolf, K.: Behavioral constraints for services. In
Alonso, G., Dadam, P., Rosemann, M., eds.: Business Process Management, 5th
International Conference, BPM 2007, Brisbane, Australia, September 24–28, 2007,
Proceedings. Volume 4714 of Lecture Notes in Computer Science., Springer-Verlag
(2007) 271–287

13. Wolf, K.: Does my service have partners? LNCS ToPNoC 5460(II) (2009) 152–171
Special Issue on Concurrency in Process-Aware Information Systems.

14. Wolf, K.: On synthesizing behavior that is aware of semantical constraints. In
Lohmann, N., Wolf, K., eds.: 15th German Workshop on Algorithms and Tools for
Petri Nets, AWPN 2008, Rostock, Germany, September 26–27, 2008, Proceedings.
Volume 380 of CEUR Workshop Proceedings., CEUR-WS.org (2008) 49–54

A scenario is a behavioral view – Orchestrating
services by scenario integration

Dirk Fahland

Humboldt-Universität zu Berlin, Institut für Informatik,
Unter den Linden 6, 10099 Berlin, Germany

fahland@informatik.hu-berlin.de

Abstract. The construction of a complex service orchestration is a te-
dious and error-prone tasks as multiple service interactions with a single
orchestrating service must be specified and combined. We suggest to
specify a service orchestration in terms of behavioral scenarios that cap-
ture a specific aspect of service interaction, a behavioral view in isolation.
By synchronizing the different scenarios, the views get integrated and de-
fine the behavior of a complex service orchestration. Our formal model
for scenarios and their integration is a class of Petri nets called oclets.

Keywords: service choreography, view, scenario, Petri nets

1 Behavioral views for service orchestration

In service-oriented computing [1], services serve as building blocks for complex,
distributed systems. A service orchestration is a means to coordinate n services
by a (n + 1)st service, called orchestrator that communicates with each of the
n given services directly and coordinates the overall exchange by its internal
logic [2]. Process modeling languages like BPEL combine workflow modeling
with the SoC paradigm for specifying and executing orchestrator services.

While specifying the orchestrator’s interaction with a specific, individual ser-
vice is usually straight forward, the coordination of all interactions with all
partner services remains a challenge. If service interactions are sufficiently com-
plex and depend on each other, the resulting orchestrator logic will be complex,
and so will be the orchestrator model. Constructing a comprehensible orchestra-
tor model with appropriate sub-processes etc. is a tedious task. The sub-process
hierarchy usually needs to be remodeled if another service interaction, that cuts
across the present hierarchy, is to be integrated into the model.

The problem itself is not new and relates to the problem of process integra-
tion for classical (non-communicating) process models [3]. A recurring solution
approach for behavioral integration takes inspiration from databases where a
complex relational database is constructed by integrating the views of the var-
ious users on the database [4]. A database view is, in principle, a projection of
a complete database onto a few specific somehow connected objects of interest.
Such a view has a valid interpretation in isolation. Conversely, a “complete”

A scenario is a behavioral view 9

set of views describes the entire database; hence it can be constructed from its
views. If the set of views is not complete or do not fit, they have to be adjusted,
viz. integrated.

In this paper, we propose the concept of a behavioral view for the construction
of behavioral models. In analogy to databases, a behavioral view is, in princi-
ple, a projection of a complete behavioral model onto a specific behavior, i.e. a
partial process execution also called scenario. Conversely, a “complete” set of
behavioral views describes the entire behavior. A behavioral view can have arbi-
trary structure (as longs as it is a connected partial execution); it may therefore
cut hierarchies and hence is a means to express cross-cutting concerns in pro-
cess models. While the definition of a behavioral view is straight forward, the
converse, their integration to form a complete behavioral model is non-trivial.

We argue that a well-founded approach for behavior modeling by view in-
tegration requires an appropriate formal model. In [5] we proposed the Petri
net class of oclets as a formal model for scenarios (or behavioral views) on the
basis of a formal, operational semantics [6]. Intuitively, this formal model con-
structs complex behavior by concatenating and merging “fitting” scenarios. This
reduces the problem of behavioral integration to make a given set of scenarios
“fitting” to each other. In general, the solution is to unify the tasks and resources
occurring in the scenarios appropriately.

In the remainder of this paper, we first substantiate the concept of a behav-
ioral view in Sect. 2 as we introduce oclets, and their semantics at an intuitive
level. We subsequently explain the problem of behavioral integration and sug-
gest a procedure for process integration by the help of an example. We conclude
the paper with a discussion of related work and a presentation of open research
problems in Section 4.

2 Scenario-based service modeling with oclets

For formally modeling services, the Petri net class of open nets has been estab-
lished. Open nets allow for a rigorous analysis of behavioral properties of services
while industrial service modeling languages can be translated to open nets [7],
and vice versa [8]. The behavior of an open net is defined by standard Petri net
semantics; this operational semantics defines the (partially-ordered) runs of the
modeled service. As every service model is finite, these runs are not arbitrary,
but exhibit a certain structure, e.g. transitions always fire in a specific order.

Scenario-based models exploit this regularity of the runs: One can identify
various repeating patterns (scenarios) that are partial executions of the service.
The entire service behavior is composed of these scenarios. A scenario-based
model makes a scenario a modeling artifact. The entire service behavior is ex-
pressed as a set of scenario; a corresponding formal semantics describes how
scenarios compose to runs.

In [5], we propose the Petri net class of oclets for formally describing scenar-
ios with an operational formal semantics. An oclet is an acyclic Petri net with
a local precondition describing which requirements must be satisfied in order

10 Dirk Fahland

to execute the subsequent scenario. We denote service communication by anno-
tating transitions by incoming arrows (receive a message) and outgoing arrows
(send a message).

Figure 1 depicts some oclets; the minimal

!"!#$
%!&&'

!"()(%!&&*+,*-(&$!+.!-.

$-#%
.!$!

$!/#
+0'

!"!#$
%!&&'

%!&&'
.!$!

,*$($!/#
-*12*&$

%#34(!5!#6'
$!/#

&*+.($!/#(+0'
!+.(!--'($#7*

!"!#$
$!%#

!"&'&$!%#&()*#+$)(

$!%#
,!$!

!"!#$
$!%#

*)$&-$!%#
!.!#/!0/)-

!"#$
%"!"

!"&'&!"#$&(!")%"*%

!*$+
%"!"

+$,-&"."$/0
+"((0

(1)%&!*$+
%1!"$/(

Fig. 1. Standard service interac-
tion with passengers and taxis.

(no predecessor) grey-shaded places denote
the precondition of the oclet. Our running
example is a passenger-taxi coordination ser-
vice which is specified in two views:

(1) The first view (oclet PS) specifies that
a passenger can send a pickup request to
the service, which it processes by picking an
available taxi and returning taxi number and
arrival time.
(2) The second view (oclets TR and TS)
specifies that an available taxi can register at
the service at any time. If taxi data is reg-
istered at the service, the service will pick
a matching passenger and send the corre-
sponding trip details to the taxi.

Figure 3 depicts a partially ordered run of

!"##$
%"&"

!"'('!"##$')"*)+,

)"*)+,(
,+%

-+&')"*)+,
.+/0+#&

!"#$
%&!&

!"'('$&))*+,*"'"*)*!

!&-#
%&!&

&.&#!
$&))/

0&+0*1(
1*%

$#02'&3/
!&-#/

"*)*!

Fig. 2. Service cancelation by
passenger and service reset.

the oclets PS,TR, TS as an acylic Petri net. The
run is constructed by merging (copies of) oclets
at equally labeled nodes in the obvious and in-
tuitive manner. The run of Fig. 3 shows explic-
itly that the passenger view and the taxi view
are not related to each other, while each makes
sense on its own.

We can easily extend our view based model
with another view, see Fig. 2: A passenger may
cancel a request at any time (oclet PC); the
service resets its processing subsequently (PR).
This allows to construct the run depicted in
Fig. 4. Thereby oclet PS of Fig. 1 is not executed completely (transition send taxi no
is not enabled because get cancel request of PC occurred. Instead, oclet PR is ap-
pended by merging transitions pick avail. taxi of PS and PR.

The run of Fig. 4 shows again that the given behavioral views do not fit to
each other; the taxi still gets notified about the passenger although the request
has been canceled. The views must be integrated.

3 View integration with scenarios

We just have introduced oclets as a modeling language for behavioral views and
show that if behavioral views do not fit to each other, they cannot be composed
to a run. In this section, we sketch how behavioral views of services can be
integrated to define a consistent orchestrator service.

A scenario is a behavioral view 11

!"!#$
%!&&'

$(#%
()*'

$!+#
,-'

!"!#$
%!&&'

%!&&'
.!$!

$(#%
()*'

%!&&'
.!$!

!"!#$
$!+#

$!+#
.!$!

!"!#$
$!+#

$(#%
.!$!

$!+#
.!$!

!"!#$
$!+#

/)0!+#
()*1)&$

%#230!4!#5'
$!+#

&),.0$!+#0,-'
!,.0!(('0$#6)

/)0!+#
()*1)&$

/)07!+#
!4!#5!85)7

%#230!4!#5'
%!&&'

&),.0$(#%
.)$!#5&

/)07!+#
!4!#5!85)7

Fig. 3. A standard run constructed from
scenarios ps, tr, ts.

!"!#$
%!&&'

$(#%
()*'

$!+#
,-'

%!&&'
.!$!

!"!#$
$!+#

$!+#
.!$!

!"!#$
$!+#

$(#%
.!$!

/!,/)00).

!"!#$
%!&&'

$!+#
.!$!

!"!#$
$!+#

1)2!+#
()*3)&$

%#/42!5!#0'
$!+#

1)26!+#
!5!#0!70)6

%#/42!5!#0'
%!&&'

1)$2/!,/)0
()*3)&$

()&)$

&),.2$(#%
.)$!#0&

1)26!+#
!5!#0!70)6

Fig. 4. A run with service cancellation
constructed from scenarios ps, tr, ts, pc, tc.

We suggest the following integration procedure depicted in Fig. 5. The orches-
trator’s interaction with each of its partner services is specified in a behavioral
view. To integrate the different views, (1) all views are refined to the same gran-
ularity of resources and tasks; (2) a modeler identifies points of synchronization
(specific resources or tasks) and defines integration options. Finally, (3) synchro-
nization is made explicit in each scenario by applying the integration options.
This adjusts the different scenarios to each other s.t. the formal semantics of
oclets constructs the orchestrator’s behavior by concatenating and merging the
now fitting scenarios. Possibly, some integration issues are not visible after the
first integration step, so steps (2) and (3) are iterated until satisfaction. The
grey tasks of Fig. 5 require interaction with a human modeler.

As all oclets of our example process already have equal granularity, the first
step changes nothing. We now have to define integration options for our scenarios
in order to unify the given oclets accordingly. An integration option maps a set
of transitions of the oclets to be integrated to a (possibly new) transition. For
some kinds of integrations like parallel synchronization the resulting integrated
transition is a function of the integration inputs; see [3].

In our example, the standard behavior in Fig. 3 suggests to integrate the
views via transitions pick avail. taxi and pick avail. pass by the parallel compo-
sition depicted in Fig 6. Further, the reset oclet pr of Fig. 2 must be extended
to properly handle cancelation also in the service’s interaction with the taxi.
Applying this integration on all oclets in the subsequent unification step re-

!!! !!! !!! !!!
"#$%&
'()#"*
+)($,&

-$./01

-$./0!

-$./201

-$./20!

3.%$#.
$#,.'(),$4#
45,$4#6

45,!01

45,!0"

"#$%&

-$./2201

-$./220!
-$./6

$#,.'(),.3 34#.

45.#
$66".6

Fig. 5. Procedure for integrating behavioral views.

12 Dirk Fahland

places transitions pick avail. taxi and pick avail. pass each by the integration re-
sult match request; see oclets PS2, TS2, and TCS in Fig. 7.

One can quickly see that this
!"#$
"%&'

!()#
*+

!()#
,(!(

!"#$
,(!(

!"#$
"%&'

!()#
*+'

!()#
,(!(

!"#$
,(!(

$#-./(0(#1'
!()#

$#-./(0(#1'
$(22'

3(!-4
"%&5%2!

Fig. 6. View integration option

!"!#$
%!&&'

!"#()(%!&&*+,*-(&$!+.!-.(&/+01

$-#%
-*2'

$!3#
+4'

!"!#$
%!&&'

%!&&'
.!$!

$!3#
.!$!

$-#%
.!$!

,*$($!3#
-*25*&$

6!$01
-*25*&$

&*+.($!3#(+4'
!+.(!--'($#6*

!"#$
%"!"

!"#&'&!"#$&(!")%"*%&(+),-

!*$.
%"!"

!*$.
*/01

!"#$
)21

3"!,-
*/04/(!

(/)%&!*$.
%/!"$5(

!"#$
%"!"

!"#&'&!"#$&(")(*+&,-)(.

!/$0
%"!"

(")(*+'
+*%

!/$0
/*12

!"#$
)32

!"#$
%"!"

"4"$!
0",,2

5"!(.
/*16*,!

/*,*!

Fig. 7. Integrated oclets with unified tran-
sitions and enabling conditions.

integration option alone is insuffi-
cient: The reset transition of TCS
only resets the passenger thread of
the process while the taxi thread is
unmodified. A human modeler who
inspects the integration result TCS
can detect this problem. Hence, an-
other (obvious) integration option
that extends transition reset of Fig. 7
by the dashed dependencies must
be specified. After this integration
step, the passenger view and the
taxi view are integrated, but still
exist in isolation.

The integrated service model is
now given by oclets PS2, TR, TS2,
PC, and TCS. Figure 8 depicts a
standard run of the integrated ser-
vice while Fig. 9 depicts a run with
cancelation. Thereby, the match re-
quest transitions of the various oclets
are merged upon construction of the
runs as they are now pairwise com-
patible in term of enabling condi-
tion and effect. The integration of
the different scenarios on common transitions is a consequence of our formal
model [6].

!"!#$
%!&&'

$(#%
()*'

$!+#
,-'

!"!#$
%!&&'

%!&&'
.!$!

!"!#$
$!+#

$!+#
.!$!

!"!#$
$!+#

$(#%
.!$!

/)0!+#
()*1)&$

2!$34
()*1)&$

&),.0$!+#0,-'
!,.0!(('0$#2)

/)05!+#
!6!#7!87)5

&),.0$(#%
.)$!#7&

Fig. 8. A standard run of the integrated
scenarios ps2, tr, ts2.

!"!#$
%!&&'

$(#%
()*'

!"!#$
$!+#

$!+#
,!$!

!"!#$
$!+#

-!.-)//),

$(#%
,!$!

$!+#
.0'

$!+#
,!$!

!"!#$
%!&&'

%!&&'
,!$!

1)2!+#
()*3)&$

1)24!+#
!5!#/!6/)4

1)$2-!.-)/
()*3)&$

7!$-8
()*3)&$

()&)$

Fig. 9. A run with service cancelation of
the integrated scenarios ps2, tr, ts2, pc, tcs.

A scenario is a behavioral view 13

4 Conclusion

We proposed scenarios as behavioral views for modeling complex service orches-
trations. The interaction of an orchestrating service with each of its partner
services is modeled separately in terms of their interaction scenarios. In a sub-
sequent integration step, the different views are first unified in granularity; then
integration options for synchronizing different views are defined by the modeler;
finally, the views are unified according to the integration options. We proposed
the Petri net class of oclets as a formal model for scenarios; their operational
semantics allow to construct the behavior of the orchestrator directly from the
unified scenarios.

Our proposition is a contribution to the relatively novel field of service (or
process construction) by view integration [9]. Currently, there exists no system-
atic solution for behavioral process integration. Initial works like [4, 10] consider
the problem from an information system perspective where database schema in-
tegration is extended by considering behavior of data processing as well. The
problem of behavioral integration is now also being research in isolation. The
general line of research aims on constructing complex, integrated process models
by merging smaller process models (the views) on synchronization points. In [11,
12] different behavioral process integration options are considered for construct-
ing such merged process models. These integration options can be applied when
merging UML activity diagrams for constructing complex process models [3].
Similar results are available for Petri net based models [10] and EPCs [13].

One markable observation in all these approaches is that prior to integration,
the process models have to be flattened in order to define and apply the inte-
gration options. While some sort of task grouping can still be applied [10], the
modeler essentially works on an ever growing complex model. Because process
integration involves frequent human interaction (see Sect. 3), this complexity
becomes a problem. One of the main problems appears to be that in classi-
cal models, behavioral integration is achieved only by model composition. The
notion of behavioral view must essentially be given up in order to integrate. Be-
cause, at the same time, the model must be flattened, there are no abstraction
techniques available to support the modeler in reducing the complexity.

We argue that a scenario-based service model, as the one suggested on this
paper, preserves the advantages of view-based service definitions. We have that
different behavioral views can be unified in a way that they yields behavioral
integration of the views while preserving each view. Only local changes must be
made to achieve integration. Thus original view, and integrated views can still
be related to each other. This provides smaller modeling artifacts, and hence an
abstraction technique that suits the problem of process integration. The formal
semantics of oclets yields a precise behavioral definition.

While the formalization of a scenario as an oclet and its formal semantics are
available, the following questions remain to be answered for actually applying
oclets for service integration: If two oclets specify behavior at different levels of
granularity, how can a common granularity be achieved? What are the available
options to integrate two given oclets of same granularity? Can these options

14 Dirk Fahland

be computed automatically? How does the integration of two oclets affect the
integration of other oclets? Given a set of integration options, are the unified
oclets that realize the integration canonical? Are the integrated oclets consistent?
Can inconsistencies be computed automatically?

We do not claim this list to be complete, but we consider answers to these
questions to be fundamental for a systematic solution for process integration,
whether using oclets or any other approach.

Acknowledgements We would like to thank Jan Mendling for bringing this
topic to his attention and for the reviewers comments and suggestions for im-
proving this paper. D. Fahland is funded by the DFG-Graduiertenkolleg 1324
“METRIK”.

References

1. Papazoglou, M.P.: Agent-oriented technology in support of e-business. Commun.
ACM 44(4) (2001) 71–77

2. Dijkman, R.M., Dumas, M.: Service-oriented design: A multi-viewpoint approach.
Int. J. Cooperative Inf. Syst. 13(4) (2004) 337–368

3. Grossmann, G., Ren, Y., Schrefl, M., Stumptner, M.: Behavior based integration of
composite business processes. In: BPM’05. Volume 3649 of LNCS. (2005) 186–204

4. Schmitt, I., Saake, G.: A comprehensive database schema integration method based
on the theory of formal concepts. Acta Inf. 41(7-8) (2005) 475–524

5. Fahland, D., Woith, H.: Towards process models for disaster response. In: Work-
shops of the BPM’08, Milan, Italy (September 2008) LNBIP to appear.

6. Fahland, D.: Oclets - a formal approach to adaptive systems using scenario-based
concepts. Informatik-Berichte 223, Humboldt-Universität zu Berlin (2008)

7. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting WS-
BPEL processes using flexible model generation. Data Knowl. Eng. 64(1) (January
2008) 38–54

8. Lohmann, N., Kleine, J.: Fully-automatic Translation of Open Workflow Net Mod-
els into Human-readable Abstract BPEL Processes. In: Modellierung 2008. Volume
P-127 of LNI., GI (March 2008) 57–72

9. ACM, C.: Special issue: Developing and integrating enterprise components and
services. Commun. ACM 45(10) (Oct. 2002)

10. Preuner, G., Conrad, S., Schrefl, M.: View integration of behavior in object-
oriented design. Data Knowl. Eng. 36 (2001) 153–183

11. Shen, J., Grossmann, G., Yang, Y., Stumptner, M., Schrefl, M., Reiter, T.: Analysis
of business process integration in web service context. Future Generation Comp.
Syst. 23(3) (2007) 283–294

12. Grossmann, G., Schrefl, M., Stumptner, M.: Classification of business process
correspondences and associated integration operators. In: ER (Workshops). (2004)
653–666

13. Mendling, J., Simon, C.: Business process design by view integration. In: Business
Process Management Workshops. (2006) 55–64

Does my service have unspecified behavior?

Kathrin Kaschner and Niels Lohmann

Universität Rostock, Institut für Informatik, 18051 Rostock, Germany
{kathrin.kaschner, niels.lohmann}@uni-rostock.de

Abstract. Services are loosely coupled interacting software components.
Since two or more services are usually composed to one software system,
the behavior of an implemented service should not differ to its specification.
Therefore we propose an approach to test, if the implementation contains
unspecified behavior. Due to the interacting nature of services this is a
nontrivial task.

1 Introduction

In the paradigm of service-oriented computing (SOC) [1], services are encapsu-
lated, self-contained functionalities. Usually, they are not executed in isolation,
but interact with each other via a well-defined interface. Thereby, the inter-
action between services follows complex protocols and goes far beyond simple
remote-procedure calls (i. e., request/response operations). Arbitrary complex
and possibly stateful interactions on top of asynchronous message exchange are
common. Finally, a system can be composed by a set of services.

Best practices propose that systems should be specified prior to their im-
plementation. A specification of a service (e. g., an abstract WS-BPEL process)
describes its interface and the possible interactions with other services. Further-
more it already contains all relevant internal decisions of the control flow (e. g.,
the criteria whether or not a credit should be approved) and data about non-
functional properties. In contrast, implementation-specific details (e. g., whether
amounts are represented as integers or floats) are usually not yet defined.

Ideally, an implementation should conform to its specification. This means,
all specified properties should be implemented. But it is obviously not always
possible to verify the conformance in a formal proof. Furthermore verification is
excessively elaborate and therewith often too expensive. Thus, it is customary to
test the implementation.

As Dijkstra stated, program testing can be a very effective way to show the
presence of bugs, but is hopelessly inadequate for showing their absence. To nev-
ertheless be able to make a statement about the correctness of an implementation,
a test suite with a significant number of test cases is necessary.

Testing services received much attention both in academia and industry.
However, the communicating nature of services is often neglected. Instead of
taking the new characteristics of SOC into account, existing work on testing
classical software systems was slightly adapted to cope with the new languages
used to implement services. Consequently, these approaches only take the internal

Does my service have unspecified behavior? 23

behavior of a service into account, but ignore the interactions with other services.
Others in turn are restricted to stateless remote-procedure calls. Both might lead
to undetected errors.

However, communication is an essential part of the specification of interacting
services and consequently it is crucial to check it during conformance testing.
That means, any interaction derived from the specification also has to be a correct
interaction of the implementation and vice versa. In [2], we presented an approach
to generate a test suite to test the former. In this paper, we propose how to test if
undesired (i.e., unspecified) interactions are implemented in the service. Because
the tester does not need knowledge about the code of the implementation, our
approach is a black-box testing method.

This paper is organized as follows. Section 2 describes how a service implemen-
tation can be tested using partners. Section 3 recalls the approach to generate test
cases and introduces an example protocol we use to demonstrate the approach.
Section 4 provides the main contribution of this paper with the elaboration of
test cases that are able to detect unspecified behavior of an implementation.
Section 5 concludes the paper and gives directions to future work.

2 Testing interacting services

An adequate software test needs to check all specified properties. Due to the
fact that protocols are an essential part of service specifications, they likewise
have to be considered during service testing. A protocol describes in which state
a service can send or receive which messages (and also which messages are not
allowed in that state). In this way, all possible interactions with other services
are defined which leads to an implicitly specified set S of all partners. Thereby
a partner is again a service. If the specified service is implemented correctly, a
partner always interacts deadlock-freely with it. In contrast non-partners violate
the protocol; that is, during interaction the implemented service might deadlock.
For this paper, we assume “correct interaction” between two services means
deadlock freedom of their composition. We are well aware that there are other
possibilities for defining “correct interaction”. Nevertheless, deadlock freedom
will certainly be art of any definition, so this paper can be seen as a step towards
a more sophisticated setting.

We claim that like a function call is the most natural test case to test a
function of a classical program, a partner service is likewise the most natural
test case for a given service [2]. Thus, testing the protocol means testing whether
the implemented service does not exclude specified partners, and also whether it
does not include undesired partners. The former is important, because partner
exclusion might have a financial impact if the service implements a business
process— loosing a partner might result in deadlocks which again yields to
down-time and contractual penalties. Testing the latter aims to exclude that
additional behavior is implemented. For instance, an online shop should not
terminate successfully if a customer did not pay for received goods. Consequently,
we distinguish two kinds of test cases: services P ∈ S (partners), from which

24 Kathrin Kaschner und Niels Lohmann

we expect a deadlock-free interaction with the implementation, and services
Q /∈ S (non-partners), from which we expect the interaction does not terminate
successfully (e.g., a deadlock will occur). Figure 1 illustrates our idea of exploiting
the properties of the partners and non-partners for testing services. Ideally, the
implementation contains exactly the specified behavior, that means, that S should
be equal to the set I of correct interacting partners of the implementation (S = I).
Otherwise, the implementation excludes a specified partner (S\I "= ∅) or the
implementation is able to terminate successfully with a non-partner (I\S "= ∅).

specified and
implemented

partners (ideal)

implemented, yet
unspecified partners
(undesired)

specified, yet
unimplemented

partners (undesired)

ISS = I

Fig. 1. Possible relations between the specified and implemented behavior S and I.

To calculate S we can transform the specification into a formal model from
which a description (operating guideline) of all partners can be generated [3].
Unfortunately, the set I cannot be calculated in the setting of black box testing.
Thus, we need to test how I behaves with respect to S.

The general test procedure for interacting services can be sketched as follows.
We have a test suite containing the test cases P ∈ S and another one containing
the test cases Q /∈ S. The service to be tested is deployed in a testing environment
together with the two test suites. To process both test suites, the contained test
cases are executed one after the other. Thereby, each test case interacts by message
exchange with the service under test. The testing environment then is responsible
for logging and evaluating exchanged messages. We thereby assume the test
environment is able to detect whether the implementation terminates properly;
for instance, whether a BPEL process instance has completed successfully.

A test run with a service P ∈ S fails if the test run terminates, but the
implementation did not reach a final state. Then a deadlock has occurred and the
implementation is incorrect. P can serve as a witness that the implementation
excludes at least this specified partner service (S\I "= ∅). A test run that does
not terminate, or terminates, but leaves the implementation in a final state, is
inconclusive; that is, the run neither witnesses an error nor can proof overall
correctness. Note that our approach is currently centered around deadlock freedom.
In this setting, infinite runs are considered correct, because they do not contain a
deadlock. Furthermore, the test environment cannot detect infinite runs and has
to abort the test at some point, yielding an inconclusive result. But even if, for
each partner service P ∈ S, the run terminates and the implementation reaches
a final state, we cannot conclude that the implementation does not exclude
a specified partner service. We only know, that there exists a successful run
for each specified partner. Since during testing the partner service (the tester)
cannot control all internal decisions of the service. Hence, an incorrect part of the
implementation may not executed during the test at all. However, a systematic

Does my service have unspecified behavior? 25

test approach with a significant number of test cases can increase the likelihood
of detecting an error.

The set S contains a large number of many services (usually even infinitely
many). It is therefore not practical to test a service with every P ∈ S. In [2],
we presented an approach how a small subset of S can be selected. With this
reduced test suite, it is possible to detect all errors that could also be detected
with the complete set S.

Canonically, a test run with a non-partner service Q /∈ S fails, if the test run
terminates and the implementation is in a final state. Thereby, Q is a witness
that the implementation supports undesired partner services (I\S "= ∅). Test
runs of the composition of the implementation and the test case that neither
terminate nor leave the implementation in a final state are inconclusive.

In Sect. 4 we will explain how the non-partner can be derived from the
specification. This is a nontrivial task, because not all partner services Q /∈ S
are suitable for testing. As demonstrated by the following example, there exist
some Q′ /∈ S which can fail even trough the implementation is correct.

3 Example

To formally reason about the specification of a service, an exact mathematical
model is needed. We use open nets [4], a special class of Petri nets [5] as a
formalism for protocols. Using existing translations, they can be easily derived
from industrial languages such as WS-BPEL or BPMN. As running example for
this paper, consider the open net from Fig. 2(a). It models a protocol of a buying
service which receives and evaluate offers. It either accepts an offer and waits for
an invoice, or rejects the offer and returns to its initial state. The final marking
of this net is the marking [ω] which only marks the place ω: the control flow
reached its end and all message channels are empty. Final markings distinguish
desired end states from undesired deadlocks.

!

?o

!a

!r

?i

offer

reject

accept

invoice

(a) specified protocol

!invoice ! !offer

!invoice ! (?reject " ?accept) !offer

?reject " ?accept!invoice

final

!invoice

!invoice

!invoice
?accept

?accept

!offer?reject

!offer?reject

(b) operating guideline

!offer?reject

?accept

!invoice

(c) test case

?accept

!offer

!invoice ?reject

!offer

(d) test case

Fig. 2. A buyer protocol modeled as an open Petri net (a). Its operating guideline (b)
characterizes I\S-test cases, for instance the seller services (d) and (e).

26 Kathrin Kaschner und Niels Lohmann

From this model, an operating guideline (OG) [3] can be calculated (see
Fig. 2(b)). An operating guideline is a finite automaton whose edges are labeled
with message events (sending events are preceded by ! and receiving events are
preceded by ?) and whose states are annotated with Boolean formulae. These
formulae express which edges of a partner must be present to guarantee deadlock
freedom. For example, “!invoice ∨ !offer” expresses the requirement that every
partner has to initially send an invoice or an offer, or make a decision between
both during runtime. Likewise, “?reject ∧ ?accept” states that the receipt of
both messages must be possible in that state. The operating guideline finitely
characterizes the infinite set of all deadlock-free interacting partners S of the
buying service and hence all test cases for the specified protocol.

Two test cases are depicted in Fig. 2(c) and 2(d). While the first test case
sends the invoice only after receipt of an acceptance message, the second exploits
asynchronicity and sends the invoice right after sending the offer. In both cases,
the OG’s annotations are fulfilled.

4 Testing for unspecified behavior

As mentioned earlier, the operating guideline can used to generate the test suite
containing all necessary partners the test if S\I = ∅ holds. To be able to make
a statement about these I\S deviations (i.e., unspecified partners), a different
approach is needed. This is due to the fact that a service that is not characterized
by the does not necessarily yield a deadlock. For example, a service without the
ability to receive a rejection message (see Fig. 3(a)) may deadlock with the buyer
service if the latter rejects the offer. If, however, the offer is accepted, no deadlock
occurs. Hence, any result of this test case would be inconclusive.

To this end, the operating guideline of the specified protocol cannot be
used to derive I\S-test cases. To characterize all services that are expected
to deadlock when composed to the implementation, we need to reinterpret the
final states of the protocol: If we complement the set of final markings, then
the operating guideline of this anti-protocol (called the anti operating guideline)
characterizes partners that interact without deadlock with the anti-protocol.
That is; the interaction terminates in a final state of the anti-protocol. This in
turn is a deadlock of the original protocol. Hence, the anti operating guideline
characterizes partners that are expected to deadlock with the original protocol.

For the example of Fig. 2(a), any marking but [ω] would be a final marking
of the anti-protocol. Note that the structure of the anti-operating guideline of
Fig. 2(b) is very similar to the original operating guideline (cf. Fig. 3(b)) and
we see that the interactions that would lead to the a final state in Fig. 2(b) (e.g.
!offer ?accept !invoice) lead to the only state without final in the annotation in
Fig. 3(b).

Three test cases characterized by the anti operating guideline are depicted
in Fig. 3(c)–3(e): the first two exploit the fact that premature termination will
lead to a deadlock with a conformant implementation, whereas the last test case
avoids a valid final marking by sending another offer.

Does my service have unspecified behavior? 27

!offer

?accept

!invoice

(a)

!invoice ! !offer ! final

!invoice ! ?reject ! ?accept ! final !offer ! final

?reject ! ?accept ! final!offer ! !invoice ! final

!offer

!invoice

!invoice

!invoice
?accept

?accept

!offer?reject

!offer?reject

invoice ! final

!offer

!offer

final

!invoice

(b) anti opereating guideline (c) test

!offer?reject

?accept

(d) test

!offer?reject

?accept

!invoice

!offer

(e) test

Fig. 3. The service (a) is not characterized by the operating guideline (cf. Fig. 2(b)),
but does not necessarily deadlock with the protocol from Fig. 2(a). The anti operating
guideline (b) for the protocol characterizes S\I-test cases. For example, communication
should deadlock if a seller sends no message (c), aborts the interaction prematurely (d)
or sends too many messages (e).

5 Related Work

Several works exist to systematize testing of Web services (see [6] for an overview).
Test case generation can be tackled using a variety of approaches such as control
flow graphs [7], model checking [8], or XML schemas [9]. These approaches mainly
focus on code coverage, but do not take the interacting nature of Web services into
account. In particular, internal activity sequences are not necessarily enforceable
by a test case. Therefore, it is not clear how derived test cases can be used for
black-box testing in which only the interface of the service under test is available.

To the best of our knowledge, none of the existing testing approaches take
stateful business protocols implemented by Web services into account, but mainly
assume stateless remote procedure calls (i. e., request-response operations), see for
instance [9]. Bertolino et al. [10] present an approach to generate test suites for
Web services and also consider nonfunctional properties (QoS). Their approach,
however, bases on synchronous communication and is thus not applicable in the
setting of SOAs.

Finally, several tools such as the Oracle BPEL Process Manager [11] or
Parasoft SOAtest [12] support testing of services, but do not specifically focus
on the business protocol of a service. In contrast, Mayer et al. [13] underline the
importance of respecting the business protocol during testing, but do not support
the generation of test cases in their tool BPELUnit.

6 Conclusion

We presented an approach to generate test cases from a specification protocol
and show how they can be used to check whether an implementation introduces
unspecified behavior. This test suite is not complete in the sense that we cannot

28 Kathrin Kaschner und Niels Lohmann

detect all deviations from the specification. The reason for this lies in the nature
of services in which decisions may not always be enforceable by the environment.
To this end, we introduced anti operating guidelines to characterize S\I test
cases that must deadlock when composed to a compliant implementation. The
results of this paper are defined in terms of open nets and are independent of
a concrete protocol specification language. With existing translation, e.g. from
BPEL to open nets and vice versa [14, 15], the approach is easily applicable to
industrial languages.

In future work, we plan to propose a test case coverage criterion to select
a small number of test cases which still can detect the same errors that are
detectable with the complete set of test cases. Indications are that this criterion
should be similar to the criterion we proposed for I\S test cases [2]. Finally, the
test case selection procedures need to be implemented to validate the test suite
generation with industrial case studies.

References

1. Papazoglou, M.P.: Agent-oriented technology in support of e-business. Communi-
cations of the ACM 44(4) (2001) 71–77

2. Kaschner, K., Lohmann, N.: Automatic test case generation for interacting services.
In: ICSOC Workshops 2008. LNCS, Springer (2009)

3. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In: ICATPN 2007. Volume 4546 of LNCS., Springer (2007) 321–341

4. Massuthe, P., Reisig, W., Schmidt, K.: An operating guideline approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics 1(3) (2005) 35–43

5. Reisig, W.: Petri Nets. EATCS Monographs on Theoretical Computer Science edn.
Springer (1985)

6. Baresi, L., Nitto, E.D., eds.: Test and Analysis of Web Services. Springer (2007)
7. Yan, J., Li, Z., Yuan, Y., Sun, W., Zhang, J.: BPEL4WS unit testing: Test case

generation using a concurrent path analysis approach. In: ISSRE 2006, IEEE (2006)
75–84

8. Garćıa-Fanjul, J., Tuya, J., de la Riva, C.: Generating test cases specifications for
BPEL compositions of Web services using SPIN. In: WS-MaTe 2006. (2006) 83–94

9. Hanna, S., Munro, M.: An approach for specification-based test case generation for
Web services. In: AICCSA, IEEE (2007) 16–23

10. Bertolino, A., Angelis, G.D., Frantzen, L., Polini, A.: Model-based generation of
testbeds for web services. In: TESTCOM/FATES 2008. LNCS 5047, Springer (2008)
266–282

11. Oracle: BPEL Process Manager. (2008) http://www.oracle.com/technology/
products/ias/bpel.

12. Parasoft: SOAtest. (2008) http://www.parasoft.com.
13. Mayer, P., Lübke, D.: Towards a BPEL unit testing framework. In: TAV-WEB ’06,

ACM (2006) 33–42
14. Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL 2.0. In:

WS-FM 2007. Volume 4937 of LNCS., Springer (2008) 77–91
15. Lohmann, N., Kleine, J.: Fully-automatic translation of open workflow net models

into simple abstract BPEL processes. In: Modellierung 2008. Volume P-127 of LNI.,
GI (2008)

A Finite Representation of all Substitutable
Services and its Applications

Jarungjit Parnjai1,!, Christian Stahl12,!!, and Karsten Wolf3,! ! !

1 Humboldt-Universität zu Berlin, Institut für Informatik
Unter den Linden 6, 10099 Berlin, Germany
{parnjai, stahl}@informatik.hu-berlin.de

2 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
3 Universität Rostock, Institut für Informatik

18051 Rostock, Germany
karsten.wolf@uni-rostock.de

Abstract. We present a finite representation of all substitutable services
P ′ of a given service P . We show that our approach can be used for at
least two applications: (1) given a finite set of services P = {P1, ..., Pn},
we provide a representation of all services P ′ that can substitute every
Pi ∈ P, and (2) given a service P ′′ that cannot substitute a service P ,
we find the most similar service P ∗ to P ′′ that can substitute P .

1 Introduction

The paradigm of Service-Oriented Computing (SOC)[1] uses a service as a build-
ing block for designing flexible business processes by means of service compo-
sition. The behavior of a service is subject to changes. Driven by the cost and
time to meet the deadline, a new version of a service is hardly reconstructed
from scratch. Instead, a service will be substituted by a new version, which can
be derived by updating its current functionality or adding in a new functionality.

We consider a service P to be substitutable by a service P ′ if P ′ cooperates
deadlock-freely with every partner that P cooperates deadlock-freely with. That
is, substituting P by P ′ preserves every deadlock-free cooperating partner of P .

In this paper, we present an operating guideline approach to represent the
set of all substitutable services. This representation is helpful for at least two
applications. Given a finite set of services P = {P1, ..., Pn}, we show that a
finite representation of all services P ′ that can substitute every Pi ∈ P can be
computed with the help of operating guidelines [2, 3] of services. Furthermore, we
show that errors in a non-substitutable service can be corrected automatically
using a simulation-based graph edit distance as introduced in [4].
! Funded by the DFG-Graduiertenkolleg 1324 “METRIK”.

!! Funded by the DFG project “Substitutability of Services” (RE 834/16-1).
! ! ! Supported by the DFG project “Operating Guidelines for Services” (WO 1466/8-1).

30 Jarungjit Parnjai, Christian Stahl und Karsten Wolf

The remainder of this paper is organized as followed. Section 2 recalls some
formalisms and substitutability notion. Section 3 presents a finite representation
of all services P ′ that can substitute a given service P . Section 4 outlines a
method to compute a finite representation of all services P ′ that can substitute
all services Pi ∈ {P1, ..., Pn} that are given. Section 5 shows how to correct errors
in a non-substitutable service P ′′ with respect to a given service P . Finally,
Section 6 concludes the paper.

2 Background

We model the behavior of a service P with a service automaton. A service au-
tomaton is a finite state automaton with a set Q of states, a set F ⊆ Q of final
states, an initial state q0 ∈ Q, a set I of input interfaces, a set O of output
interfaces (I and O are pairwise disjoint), and a non-deterministic transition
relation δ ⊆ Q× {I ∪O ∪ {τ}}×Q. The edges are labeled with output message
x ∈ O sent to (labeled “!x”) the environment, or input message x ∈ I received
from (labeled “?x”) the environment, or internal move (label “τ”). A non-final
state with no outgoing transition is called a deadlock.

Given two service automata P and R, their composition P ⊕ R is a service
automaton in which its set of states is the cartesian product of QP , QR, and
the set of all multisets of pending messages between P and R. We assume that
two composable service automata have compatible interfaces (IP = OR and
IR = OP), but all other constituents are pairwise disjoint. The composition
P ⊕ R is deadlock-free if P ⊕ R does not contain a deadlock. R is a strategy of
P iff P ⊕ R is deadlock-free. The strategy relation is symmetric, that is, R is a
strategy of P implies P is also a strategy of R. We write Strat(P) to denote the
set of all strategies of P . See [2] for further details.

Throughout this paper, we assume a deadlock-free composition, i.e., there
always exists at least one strategy for a given service.

An operating guideline OG(P) of P is a deterministic service automaton Sφ

where each state q of S is annotated with a Boolean formula φ(q). A matching
relation between states of a service automaton and Sφ are used to characterize
a set of service automata. We write Match(Sφ) to denote the set of all service
automata S′ that satisfies a matching relation with Sφ. OG(P) characterizes the
(possibly infinite) set of all strategies of P , i.e., Match(OG(P)) = Strat(P) [2].

Figure 1(a) depicts a service automaton P1 and Fig. 1(b) depicts an operating
guideline of P1.

We define our substitutability notion called accordance. A service P ′ substi-
tutes a service P under accordance (P ′ accords with P) iff every strategy of P
is also a strategy of P ′, i.e., Strat(P) ⊆ Strat(P ′). We assume that P and P ′ are
interface equivalent (IP = IP ′ and OP = OP ′) and write Accord(P) to denote
the (possibly infinite) set of all services P ′ that substitute P under accordance.

[3] presents an algorithm to decide whether P ′ substitutes P under accor-
dance using their operating guidelines.

A finite representation of all substitutable services and its applications 31

?E

?D

?C

!A !B

(a) P1

?A ?B

!D

!E
!C

p1: ?A ∧ ?B

p4: final

p3: !D ∨ !Ep2: !C

(b) OG(P1)

?A

!C

!E
!E

!D
!D

?B

τ

ττ

τ

τ

τ

(c) MS(P1)

?D
?C

!A !B

?E

q3: ?D ∧ ?E

q1: !A ∨ !B

q2: ?C

q4: final

(d) OG(MS(P1))

Fig. 1. (a) service automaton P1, (b) an operating guideline of P1, (c) MS of P1, and
(d) an operating guideline of MS of P1.

3 Representing All Substitutable Services

Given a service P we show how to calculate an operating guideline that represents
the set Accord(P) of all services P ′ that can substitute P under accordance.

Definition 1 (Maximal Strategy, MS). Let P be a service automaton and
OG(P) = Sφ be its operating guideline. A maximal strategy of P , denoted
MS (P), is obtained from S by replacing every node q by a non-deterministic
internal choice between all the valid combinations of outgoing edges from q w.r.t.
satisfying assignment in φ(q).

Figure 1(c) depicts a maximal strategy MS (P1) of P1 (in Fig. 1(a)) and
Fig. 1(d) depicts its operating guideline OG(MS (P1)).

MS (P1) is obtained from the underlying service automaton of OG(P1) ac-
cording to Definition 1. For example, the node p3 of the underlying service au-
tomaton of OG(P1) is replaced by the non-deterministic τ choice between three
valid combinations of outgoing transitions that satisfy assignment in φ(p3) =
!D∨!E in OG(P1). These three combinations are (1) a transition labeled !D,
(2) a transition labeled !E, and (3) two transitions labeled !D and !E. Clearly,
MS (P1) is a strategy of a service P1. That is, MS (P1) ∈ Match(OG(P1)).

Mooij and Voorhoeve [5] have proven that for a strategy R of P , each strategy
of MS(P) is also a strategy of R.

Proposition 1 ([5]). Let P be a service automaton such that Match(OG(P)) #=
∅. Then for all R ∈ Match(OG(P)) holds: Strat(MS (P)) ⊆ Strat(R).

By the help of Proposition 1 we prove that OG(MS (P)) represents the set
Accord(P) of all service automata P ′ that can substitute a service automaton P
under accordance.

Theorem 1 (Characterizing all substitutable services). Let P and P ′

be two service automata. Let OG(P) be an operating guideline of P . Then, P ′

substitutes P under accordance iff P ′ ∈ Match(OG(MS (P))).

32 Jarungjit Parnjai, Christian Stahl und Karsten Wolf

Proof. We will show that Accord(P) = Match(OG(MS (P))).
Consider Accord(P) = {P ′ | Strat(P) ⊆ Strat(P ′)}. Since the strategy re-

lation is a symmetric relation, we conclude that Accord(P) = {P ′ | ∀R ∈
Strat(P) : P ′ ∈ Strat(R)} =

⋂
R∈Strat(P)) Strat(R). Since Match(OG(P)) =

Strat(P), Accord(P) =
⋂

R∈Match(OG(P)) Strat(R) follows.
Next, we will show that

⋂
R∈Match(OG(P)) Strat(R) = Strat(MS (P)). We

know MS (P) ∈ Strat(P) and Strat(P) = Match(OG(P)). Therefore, we can
conclude that

⋂
R∈Match(OG(P)) Strat(R) ⊆ Strat(MS (P)). Proposition 1 asserts

that for all R ∈ Match(OG(P)) holds: Strat(MS (P)) ⊆ Strat(R). Therefore, we
can conclude that

⋂
R∈Match(OG(P)) Strat(R) ⊇ Strat(MS (P)). Consequently,⋂

R∈Match(OG(P)) Strat(R) = Strat(MS (P)) immediately follows.
We know Strat(MS (P)) = Match(OG(MS (P))). Thus, we can conclude that⋂

R∈Match(OG(P)) Strat(R) = Match(OG(MS (P))).
Consequently, Accord(P) = Match(OG(MS (P))). %&

Theorem 1 shows that the operating guideline OG(MS (P)) is a finite repre-
sentation of all P ′ that can substitute P under accordance.

Our result enables a service designer to effectively derive P ′ from OG(MS (P)).
Clearly, P ′ can substitute P under accordance, as it matches with OG(MS (P)).
The designer can also use P ′ as a template to tailor a new version P ′′ by filling
P ′ with some internal actions. This way, it can be decided if P ′′ substitutes P
under accordance by checking if P ′′ ∈ Match(OG(MS (P))).

With our approach, we can also decide accordance (as presented in [3]) of
two services P ′′ and P by checking if P ′′ ∈ Match(OG(MS (P))).

4 Conjoining Substitutable Services

Suppose a service designer would like to design a new service which can support
all potential customers of both a hotel booking service and a flight booking ser-
vice. The representation of all services that can substitute both booking services
is helpful for the designer. With this representation, the designer can decide
whether such a new service does exist, and in case it does, a well-suited upgrade
of a new service can be derived immediately from such a representation.

For a finite set P = {P1, .., Pn} of service automata, we show that the inter-
section

⋂
Pi∈P Accord(Pi) of sets of all services that accord with every Pi can

be represented by the product of all operating guidelines of maximal strategy
MS (Pi) of Pi, where Pi ∈ P.

The product of two operating guidelines [3] is defined as an operating guide-
line that characterizes the intersection of all service automata that match with
these two operating guidelines. The product of two operating guidelines assumes
that both operating guidelines are interface equivalent.

Proposition 2 ([3]). Let OG⊗ = OG(S1)⊗OG(S2) be the product of operat-
ing guidelines OG(S1) and OG(S2), Then, Match(OG⊗) = Match(OG(S1)) ∩
Match(OG(S2)).

A finite representation of all substitutable services and its applications 33

Corollary 1 (Characterizing intersection of substitutable services). Let
P1 and P2 be two service automata. Let OG(P1) be an operating guideline of P1

and OG(P2) be an operating guideline of P2. Then,

Match(OG(MS (P1))⊗OG(MS (P2))) = Accord(P1) ∩Accord(P2).

Proof. Follows from Proposition 2 and Theorem 1. #$

Corollary 1 shows that we can use the product of operating guidelines to
compute the finite representation of all services that accords with both P1 and
P2. In case the returned product describes an empty set, there is no service
automaton P ′ that can substitute both P1 and P2 under accordance.

Since the product ⊗ of operating guidelines is commutative and associative,
the result from Corollary 1 can be easily generalized to the product of any finite
number n of operating guidelines of MS (Pi), where Pi ∈ {P1, .., Pn}.

?C

?D

!A !B

?E

(a) P2

!B

?E?C
?D

!A

r4: final

r1: !A ∨ !B

r3: ?Er2: ?C ∧ ?D

(b) OG(MS(P2))

!B!A

?E?C

?D?D

q1r1: !A ∨ !B

q4r4: final

q3r3: ?D ∧ ?Eq2r2: ?C ∧ ?D

(c) OG⊗

Fig. 2. (a) service automaton P2, (b) an operating guideline of MS of P2, and (c) the
product OG⊗ of OG(MS(P1)) and OG(MS(P2)).

Figure 2(c) depicts OG⊗ as a finite representation of all services that can
substitute both P1 (Fig. 1(a)) and P2 (Fig. 2(a)) under accordance. OG⊗ is
the synchronous product of OG(MS (P1)) and OG(MS (P2)), where each node is
annotated with the conjunction of the two Boolean formulas of the corresponding
states of OG(MS (P1)) and OG(MS (P2)). For example, the node q2r2 in OG⊗
is annotated with φ(q2r2) =?C∧?D, which is the conjunction of φ(q2) =?C in
OG(MS (P1)) and φ(r2) =?C∧?D in OG(MS (P2)).

5 Correcting Non-Substitutable Services

Suppose a service designer has designed an ill-suited upgrade of a travel agency
service that does not accord with the travel agency service. Synthesizing a new
well-suited upgrade of the service using an approach proposed in Section 3 may
not be sufficient, as the well-suited upgrade might be very different and totally
ignore the structure of its ill-suited upgrade version. The designer might prefer to
reuse an ill-suited upgrade of the service instead of synthesizing a new well-suited
upgrade of the service.

34 Jarungjit Parnjai, Christian Stahl und Karsten Wolf

To reuse an ill-suited upgrade of the service, the errors found in the ill-suited
upgrade can be fixed manually. Nevertheless, the manual correction is a tedious
and error-prone procedure. This scenario motivates a method to synthesize a
well-suited upgrade of the service automatically from its ill-suited upgrade.

Given two service automata P and P ′′ where P ′′ does not accord with P , we
propose a procedure to correct P ′′ with respect to P . The errors in P ′′ can be de-
tected and corrected automatically using a simulation-based graph edit distance,
as introduced in [4] to fix a faulty service to cooperate deadlock-freely in a chore-
ography. The approach takes P ′′ and OG(MS (P)) as its input, computes the
most similar service automaton P ∗ to P ′′ such that P ∗ ∈ Match(OG(MS (P))),
and returns the edit actions that are necessary to transform P ′′ into P ∗. Clearly,
P ∗ can substitute P under accordance, as it matches with OG(MS (P)). That
is, P ∗ cooperates deadlock-freely with every strategy of P . This way, P ′′ can be
reused, as P ∗ is most similar to P ′′, yet accords with P .

So far the simulation-based graph edit distance approach is applicable only
for acyclic and deterministic services [4].

6 Conclusion

We have proposed an approach to characterize the set Accord(P) of all services
P ′ that can substitute a service P under accordance. We have shown that a finite
representation of Accord(P) can be computed using the concept of a maximal
strategy [5] and its operating guideline [2]. With this representation, we can
decide accordance of two services and derive from it a new service that accords
with a given service.

We have shown two applications of our approach. Given a finite set of services
P = {P1, ..., Pn}, we provide a representation of the intersection of Accord(Pi)
for all Pi ∈ P with the help of the product of operating guidelines [3]. For a
service P ′′ that cannot substitute a service P , we provide an automatic correction
procedure to transform P ′′ into the most similar P ∗ such that P ∗ accords with
P with the help of the simulation-based graph edit distance [4].

References

1. Papazoglou, M.P.: Web Services: Principles and Technology. Pearson - Prentice
Hall, Essex (2007)

2. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In Kleijn, J., Yakovlev, A., eds.: ICATPN 2007. Volume 4546 of LNCS., Springer-
Verlag (2007) 321–341

3. Stahl, C., Massuthe, P., Bretschneider, J.: Deciding substitutability of services with
operating guidelines. LNCS ToPNoC II(5460) (2008) 172–191

4. Lohmann, N.: Correcting deadlocking service choreographies using a simulation-
based graph edit distance. In Dumas, M., Reichert, M., eds.: BPM 2008. Volume
5240 of LNCS., Springer-Verlag (2008) 132–147

5. Mooij, A.J., Voorhoeve, M.: Proof techniques for adapter generation. In Bruni, R.,
Wolf, K., eds.: WS-FM 2008 Milan, Italy, Proc. LNCS, Springer-Verlag (2008)

Prozessunterstützung für temporäre,
ehrenamtliche und private Gruppen

Daniel Schulte

FernUniversität in Hagen, 58084 Hagen, Germany,
Daniel.Schulte@FernUni-Hagen.de

Zusammenfassung Der Bedeutung von Geschäftsprozessen wird in der
Dienstorientierung (Service-oriented Computing) durch Lösungen zur
Automatisierung und Unterstützung bspw. mit WS-BPEL Rechnung
getragen. Da allerdings ehrenamtlichen und privaten Gruppen weder
entsprechendes Wissen noch notwendige Soft- und Hardwareprodukte
zur Verfügung stehen, können sie derartige Prozessunterstützungen nicht
für ihre Einsatzzwecke nutzen und setzen statt dessen weiterhin ins-
besondere auf E-Mails zur Koordination ihrer Prozesse. Diese Arbeit
ermittelt daher die speziellen Anforderungen solcher Gruppen an eine
Prozessunterstützung und stellt einen entsprechenden dienstorientierten
Architekturstil vor.

1 Einführung

Computer und Internet unterstützen Anwender nicht nur bei Berechnungen und
Informationsbeschaffung. Zusätzlich werden sie heute oft zur Koordination ganzer
Prozesse in der Geschäftswelt aber auch in ehrenamtlich agierenden Gruppen
wie z. B. Vereinen und im privaten Umfeld genutzt. Während die Steuerung
von Prozessen in der Geschäftswelt bereits vielfältig adressiert und bspw. in
dienstorientierten Architekturen mit WS-BPEL unterstützt wurde, sind bisherige
Lösungen kaum für ehrenamtliche oder private Gruppen geeignet, da diese ande-
ren Rahmenbedingungen unterliegen. Solche Gruppen nutzen bisher meist lokal
installierte Software und E-Mails für ihre Prozesse. So werden initialer Einrich-
tungsaufwand, Einarbeitung und mögliche Kosten vermieden, aber Medienbrüche,
unkontrollierte Informationsweitergabe, Verlust einzelner Informationen, mehrfa-
che Datenhaltung, Dateninkonsistenz und Verlust der Prozessübersicht in Kauf
genommen. Erfolgreiche Prozesse sind nur schwer wiederholbar, da Wissen über
sie nur implizit vorhanden ist und somit ständig rekonstruiert werden muss.
Kollaborative integrierte Prozessschritte wie bspw. das Sammeln von Tages-
ordnungspunkten sind nur durch erheblichen manuellen Aufwand realisierbar.
Dabei machen vereinzelte Lösungen wie Konferenzmanagementsysteme deutlich,
dass auch außerhalb des klassischen industriellen Umfeldes Prozessunterstützung
hilfreich sein kann, um aufwendige und fehleranfällige händische Koordinationen
zu vermeiden. Aufgrund unterschiedlicher Voraussetzungen sind aber Techniken
aus dem Unternehmensumfeld nicht ohne weiteres für ehrenamtliche und private
Gruppen adaptierbar.

36 Daniel Schulte

Diese Arbeit analysiert daher in Abschnitt 2 die Anforderungen dieser Grup-
pen an eine Prozessunterstützung und leitet einen entsprechenden dienstorien-
tierten Lösungsansatz her, der verschiedenen verteilten Diensten erlaubt, gezielt
mit Anwendern in Kontakt zu treten. In Abschnitt 3 wird diese Lösung in Form
eines Architekturstils präzisiert und in Abschnitt 4 eine ausstehende Fallstudie
motiviert. Die Betrachtung verwandter Arbeiten in Abschnitt 5 und ein kurzer
Ausblick in Abschnitt 6 beschließen diese Arbeit.

2 Prozesse für Gruppen

Prozesse von Gruppen, die nur vorübergehend existieren, deren Mitglieder nur
temporär diesen Gruppen oder deren Mitglieder zugleich mehreren anderen
unabhängigen Gruppen angehören (z. B. ehrenamtlich agierende Vereine, Veran-
staltungen mit temporären Organisationsteams wie Benefizkonzerte, aber auch
Workshops oder Konferenzen) haben gemein, dass sie primär aus manuellen Ar-
beitsschritten (Aufgaben genannt) bestehen, die von entsprechenden Mitarbeitern
zu bearbeiten sind. Typische Rahmenbedingungen sind dabei:

– Es ist kein IT-Fachpersonal und oft nur private Hardware verfügbar.
– Es sind weder Zeit noch Geld für den initialen Aufbau einer technischen

Infrastruktur verfügbar.
– Gruppen ändern sich beständig in ihrer Zusammensetzung oder arbeiten nur

kurze Zeit zusammen.
– Gruppenbildung und Verantwortlichkeiten innerhalb dieser können auf Ver-

einstrukturen basieren, von Initiatoren bspw. im Rahmen von Workshops
vorgegeben werden, oder auch z. B. bei Interessensgemeinschaften frei ver-
handelbar sein.

– Gruppenmitglieder arbeiten parallel an Projekten anderer Gruppen.
– Prozesse werden nur selten in einer Gruppe wiederholt, aber ähnliche Prozesse

finden in vielen Gruppen statt (z. B. jährliche Mitgliederversammlungen).
– Prinzipielle Prozessabläufe sind kein Geschäftsgeheimnis.

Einige Forderungen an eine Prozessunterstützung sind demnach:

– Konzentration auf freie Technologien, Infrastrukturen, Dienste und Prozesse
für weitestgehend kostenlose Lösungen

– Leicht formulier- und anpassbare Prozesse und Dienste; Ausnahmesituationen
können beim Auftreten dynamisch gelöst werden

– Leichte Anwendung (und individuelle Anpassung) von Standardprozessen in
verschiedenen Kontexten

– Einfacher und automatisierter Bezug von Aufgaben
– Unterstützung von Aufgaben verschiedener Art und Komplexität (von ein-

fachen Überprüfungen bis hin zu komplexen, kooperativ zu bearbeitenden
Aufgaben)

– Flexible Verwaltung von Gruppenmitgliedern und Verantwortlichkeiten

Prozessunterstützung für temporäre, ehrenamtliche und private Gruppen 37

Insbesondere der einfache Zugang von Anwendern zu ihren Aufgaben soll in
diesem ersten Schritt einer Lösungsentwicklung betrachtet werden. Denn — so
weit vorhanden — setzen bisherige Lösungen wie Konferenzmanagementsysteme
darauf, dass Anwender bestimmte Dienstseiten oder Portale regelmäßig aufsu-
chen, um sich über anstehende Aufgaben zu informieren. Dies weist aber zwei
wesentliche Probleme auf: (1.) Der Anwender ist in einer Holschuld, er muss
aktiv die entsprechenden Informationen über ausstehende Aufgaben einholen. Bei
einer wachsenden Anzahl genutzter Dienste und einem zudem nur sporadischen
Auftreten der Aufgaben ist eine zeitnahe Kenntnisnahme anstehender Aufgaben
daher schwierig, so dass bisher oft ergänzend E-Mails eingesetzt werden. (2.)
Die Verwendung von E-Mails kann zwar sicherstellen, dass Anwender zeitnah
von Aufgaben erfahren, letztendlich werden aber weder die zeitliche Einplanung
und Bearbeitung noch die Weiterverfolgung von Aufgaben nebst zugehörigen
Prozessen unterstützt.

Die wichtigsten Anforderungen in diesem ersten Lösungsschritt lassen sich
daher zunächst auf folgende Punkte reduzieren:

– Es darf — auch wenn Prozesse und Dienste mehrerer Anbieter (Service
Provider) genutzt werden — nur einen Einstiegspunkt für den Anwender
geben, an dem ihm alle wesentlichen Informationen zu ausstehenden Aufgaben
und zur Verfolgung von Prozessen (ohne sein aktives Eingreifen) zur Verfügung
gestellt werden.

– Dieser Einstiegspunkt muss einen flexiblen Zugriff auf zur Aufgabenausführung
notwendige unterstützende Dienste und Informationen bieten.

– Dieser Einstiegspunkt muss von Prozessen und Diensten mit aktuellen Infor-
mationen, z. B. zum Status einer Aufgabe, versorgt werden können.

Die oft verwendeten E-Mails bieten durch ihre i. d. R. personenbezogene Adres-
sierung zwar einen zentralen Einstiegspunkt, eignen sich aber nicht zur über-
sichtlichen Aufgabenverwaltung und -darstellung und erlauben zudem keine
komfortablen Aktualisierungen bspw. des Aufgabenstatuses. Die Verwendung von
Portalen und proprietären Lösungen kann zwar eine gute Aufgabenverwaltung
bieten, führt aber wieder zu dem Problem multipler Einstiegspunkte. Ein E-Mail-
ähnlicher Ansatz mit strukturierten Informationen und einer dienstorientierten
Schnittstelle kann beide Vorteile zusammenführen und personenbezogene Aufga-
benzuweisungen aber auch Aktualisierungen von Informationen zu Aufgaben aus
beliebigen Prozessen und Diensten heraus unterstützen.

Diese Idee wird im Folgenden in Form eines Aufgabenlistendienstes aufgegrif-
fen, der über eine eindeutige, einem Anwender zugeordnete URI adressierbar
ist und erlaubt, über im Detail noch zu entwickelnde Dienste Aufgaben inkl.
Metainformationen wie Deadline, Status, o. ä. einem Anwender zuzuordnen. Der
Anwender kann über diesen Dienst auf seine aktuellen Aufgaben zugreifen und
diese verwalten, und sie bspw. auch nach Metadaten sortieren. Die Dienstorien-
tierung erlaubt dabei sowohl auf Seiten des Dienstanbieters und des Prozesses als
auch auf Seiten von Klientanwendungen für den Anwender flexible und innovative
Lösungen unabhängig von verwendeten Programmiersprachen u. ä. Der nächste
Abschnitt wird nun einen Architekturstil vorstellen, der dieser Idee entspricht.

38 Daniel Schulte

3 Architekturstil

Nach Fielding [4] ist ein Architekturstil eine Menge von architektonischen Bedin-
gungen, die die Rollen und Funktionen architektonischer Elemente und die er-
laubter Beziehungen zwischen diesen für eine konforme Architektur einschränken.
Ein Architekturstil für den Ansatz aus Abschnitt 2 wird in Abbildung 1 skizziert.

Abbildung 1. Architekturstil

Anwender werden durch eindeutige URIs, unter denen ein Aufgabenlisten-
dienst (assignment list service) neu zugewiesene Aufgaben sowie Aufgabenaktua-
lisierungen entgegennimmt, zu adressierbaren Entitäten (ähnlich einer E-Mail-
Adresse nebst Postfach). Dienste, die den Eingriff von Anwendern benötigen
(human-supported services), informieren diese per Aufgabenlistendienst über
ausstehende Aufgaben und geben dabei neben einigen Metainformationen u. a.
eine eindeutige URI für den Aufruf einer Repräsentation der Aufgabe an. Um
größtmögliche Flexibilität bei der Aufgabenrealisierungen zu ermöglichen, werden
Daten über potentielle Nutzer (z. B. bei der Dienst-Initialisierung übergeben)
und interne Zustände von den Diensten eigenverantwortlich verwaltet. Eine
Auslagerung dieser Funktionalitäten ist in Form weiterer Dienste oder Entwick-
lungsframeworks optional denkbar.

Zusätzliche Identitätsmanagementdienste (identity management services) er-
lauben eine späte, dynamische Bindung von Rollen an konkrete Anwender und
eine Wiederverwendung von Organisationsstrukturen und Anwenderinformatio-
nen. Selbst Randbedingungen wie Urlaub oder Arbeitsauslastung ließen sich bei
dieser dynamischen Bindung berücksichtigen. Den Diensten werden dann statt
Adressen von Anwendern Rollenbezeichungen und die Adresse eines Identitäts-
managementdienstes übergeben, sodass erst bei Auftreten einer Aufgabe die
konkreten Anwenderadressen ermittelt und genutzt werden.

Prozessunterstützung für temporäre, ehrenamtliche und private Gruppen 39

Lokale und netzbasierte Klienten (human assistant) erlauben den Anwendern
den komfortablen Zugriff auf die sie betreffenden Aufgaben, und können bspw.
durch Kalenderintegration zur Bearbeitungsplanung Mehrwerte bieten.

Für den praktischen Einsatz ist dieser Stil u. a. um standardisierte Schnittstel-
len für Identitätsmanagementdienste und Aufgabenlistendienste zu konkretisieren,
um gemäß o. g. Anforderungen anbieterübergreifend arbeitende Lösungen zu
ermöglichen. Über alle andere Dienste und Klienten sind dagegen möglichst wenig
Annahmen zu machen, um flexible und innovative Realisierungen zu ermöglichen.

4 Fallbeispiel

Folgendes, noch umzusetzendes, einfaches Fallbeispiel ist zur Demonstration
der Realisierbarkeit geplant: Für die Vorbereitung einer Sitzung, z. B. eines
Mitarbeitertreffens eines Vereines oder einer öffentlichen Versammlung einer
Bürgerbewegung, wird ein Prozess nebst notwendigen Diensten entwickelt werden,
der das gemeinsame Sammeln von Tagesordnungspunkten und das Versenden
von Einladungen zur Sitzung unter Angabe der Tagesordnung unterstützt. Der
Prozess besteht aus folgenden Schritten:

1. Rahmendaten wie Datum, Raum, Sitzungsleitung, etc. sind zu spezifizieren
(demonstriert die Initialisierung einer Prozessinstanz mit anwenderspezifizier-
ten Daten inkl. Benennung von potentiellen Anwendern als Sitzungsleitung,
etc. und die Konfiguration der Instanz z. B. bzgl. eines optionalen Anmelde-
schrittes).

2. Tagesordnungspunkte sind zu sammeln (Beispiel für eine kooperative Aufga-
be; wenn Anwender nicht gegenseitig ihre Beiträge zur Sammlung einsehen
können, erhöht sich die Wahrscheinlichkeit von Mehrfachnennungen signifi-
kant, einzelne Punkte können aber auch leichter vergessen werden).

3. Wenn der Sitzungsleitung nicht alle potentiellen Teilnehmer bekannt sind, ist
ggf. eine Anmeldung z. B. über ein Webschnittstelle zu ermöglichen (Beispiel
einer dynamisch wachsenden Gruppe).

4. Tagesordnung ist zu genehmigen/überprüfen (einfache Aufgabe).
5. Einladungen mit Tagesordnung sind an alle Teilnehmer zu versenden (klassi-

scher, automatisierter Dienst).

Der Einsatz eines Identitätsmanagementdienstes ist optional zu ermöglichen, um
das Potential der Wiederverwendung von Anwenderinformationen insbesondere
für temporär stabile Gruppen aufzuzeigen. Gleichzeitig kann aber der Einsatz
mit dem Beispiel einer Bürgerbewegung auch für dynamisch wachsende Gruppen
demonstriert werden. Darüber hinaus wird die Fallstudie zeigen müssen, dass
etablierte Lösungen wie z. B. YAWL [8] zur Prozesssteuerung adaptiert werden
können, insbesondere solange der einfache Zugang von Anwendern zu ihren
Aufgaben im Fokus steht.

40 Daniel Schulte

5 Verwandte Arbeiten

Gängige Workflow- und Task-Management-Systeme bspw. von IBM, SAP oder Ac-
tive Endpoints basieren u. a. auf WS-BPEL, BPEL4People und WS-HumanTask,
um Prozesse in einem dienstorientierten Kontext zu modellieren und manuelle Auf-
gaben einzubinden. Alle drei Techniken entstammen dem Unternehmensumfeld
und bieten daher für Gruppen im Fokus dieser Arbeit keine direkte Unterstützung:
WS-HumanTask [1] spezifiziert Aufgaben (Tasks) als nicht-teilbare Arbeitseinhei-
ten mit einem eigenen Lebenszyklus und einer programmiersprachenunabhängigen
(aber XML-basierten) Schnittstelle insbesondere zur Verwaltung dieser Aufgaben.
WS-BPEL [3] ist eine XML-basierte Sprache zur Orchestrierung von Diensten
und wird durch BPEL4People [2] um eine Integration von Aufgaben (Human
Activities) erweitert.

WS-BPEL und BPEL4People bieten interessante Möglichkeiten zur Formu-
lierung von Prozessen. Im Rahmen einer allgemeinen und flexiblen Architektur
ist aber von konkreten Sprachen soweit möglich zu abstrahieren, um auch al-
ternative Implementierungen zu ermöglichen. WS-HumanTask dagegen ist zwar
sprachunabhängig gehalten, unterstützt aber z. B. mit seinem Fokus auf nicht-
teilbare Aufgaben keine kollaborativen Aufgaben (der definierte Lebenszyklus
erlaubt keine derartigen Aufgabentypen). Die auf diesen Techniken basierenden
Lösungen leiden für den hier anvisierten — aber bei deren Entwicklung nicht
vorgesehenen — Einsatz an weiteren Problemen: Es gibt kein einheitliches Modell
für Aufgabenlisten und -zuweisungen (Aufgabenverwaltung) und die Lösungen
sind — da für das komplexe Unternehmensfeld mit hohen Anforderungen an
Robustheit, Skalierbarkeit u. ä. entwickelt — für nicht professionelle Gruppen
zu komplex und kostspielig. Der Einsatz eines Enterprise Service Bus bspw. ist
nicht für das Internet und die Nutzung frei verfügbarer Dienste optimiert, die
aber im Rahmen der o. g. Anforderungen hier wesentlich sind.

Das freie und leichtgewichtige Workflow-Management-System YAWL (Yet
Another Workflow Language) [7, 8] ermöglichen den Einsatz einer Prozessun-
terstützung für verteilte Gruppen mit eingeschränkter IT-Infrastruktur wie bspw.
von Ouyang et al. [5] beschrieben. Da jedoch Prozessausführung (in Form der
Workflow Engine) und Aufgabenliste (Worklist) eng miteinander verzahnt sind,
wird der Einsatz der integrierten Aufgabenverwaltung mit anderen Workflow-
Management-Systemen nicht unterstützt. Das Ziel eines einzigen Einstiegspunktes
für Anwender wird — sofern nicht alle Prozesse von einem Anbieter stammen —
demnach nicht erreicht.

Selbst im geschäftlichen Umfeld führt der Mangel einer standardisierten
Aufgabenverwaltung dazu, dass Anwender, die in mehreren Unternehmen oder
Abteilungen mit eigener Softwareinfrastruktur involviert sind, mehrere Aufga-
benlisten verwalten und abarbeiten müssen, und dass eine Auslagerung einzelner
Aufgaben und Teilprozesse nicht unterstützt wird. Unger et al. [6] analysieren
ausführlich Anforderungen an eine Lösung, die die unternehmensübergreifende
Bearbeitung von Aufgaben ermöglicht, und stellen eine resultierende Architektur
vor. Auch wenn einige gemeinsame Anforderungen wie z. B. die prinzipielle For-
derung einer gemeinsamen Aufgabenverwaltung (Task Management) bestehen,

Prozessunterstützung für temporäre, ehrenamtliche und private Gruppen 41

sind aufgrund der unterschiedlichen Rahmenbedingungen (bspw. (kein) Rückgriff
auf IT-Fachpersonal und eigene IT-Infrastruktur) wesentliche Unterschiede fest-
zuhalten, die in anderen Architekturstilen münden: Während bei Unger et al. [6]
Task Engines für die Ausführung von einzelnen Aufgaben verantwortlich sind
und Klienten auf mehrere Task Engines zugreifen können (den Klienten müssen
also initial die Task Engines bekannt gemacht werden), wird in dieser Arbeit
eine Anwenderadressierung eingeführt, die flexiblere Aufgabenzuweisungen und
Aufgabenausführungsumgebungen ermöglicht, dafür aber bspw. die Einhaltung
von Zuweisungsrichtlinien durchaus erschweren kann.

6 Zusammenfassung und Ausblick

Aufgaben von Anwendern in Prozessen können vielfältiger Natur sein: Einfa-
che Genehmigungs- und Prüftätigkeiten oder kreative Aufgaben, alleine oder
kooperativ auszuführende Aufgaben, der Organisation des Anwenders, einmali-
gen Veranstaltungen oder ehrenamtlich und privaten Projekten entstammende
Aufgaben, und in bspw. Java, XML oder PHP realisierte Aufgaben. Letztendlich
muss aber jede Aufgabe ihren Bearbeiter (Anwender) finden. Dazu wurde hier
ein einfacher, von der E-Mail-Infrastruktur inspirierter Architekturstil vorgestellt,
dessen Konkretisierung Gegenstand kommender Forschungsarbeit werden wird.

Auf diese Architektur aufbauend sind Datenschutz, Authentifizierung und
Sicherung gegen Spam komfortabel zu ermöglichen. Aber auch die Flexibilität,
Kontrollierbarkeit und Nachvollziehbarkeit ganzer Prozesse sind in Zukunft noch
zu adressieren.

Literatur

1. Agrawal, A. et al.: Web Services Human Task (WS-HumanTask), Version 1.0, 2007.
2. Agrawal, A. et al.: WS-BPEL Extension for People (BPEL4People), Version 1.0,

2007.
3. Alves, A. et al.: Web Services Business Process Execution Language Version 2.0,

2007.
4. Fielding, R.T.: Architectural Styles and the Design of Network-based Software

Architectures. PhD thesis. University of California, 2000.
5. Ouyang, C., La Rosa, M.; ter Hofstede, A.H.M., Dumas, M. & Shortland, K.: Toward

Web-Scale Workflows for Film Production. IEEE Internet Computing 12(5), 53 – 61,
2008.

6. Unger, T. & Bauer, T.: Towards a Standardized Task Management. Multikonferenz
Wirtschaftsinformatik, GITO-Verlag, Berlin, 2008.

7. van der Aalst, W.M.P. & ter Hofstede, A.H.M.: YAWL: Yet Another Workflow
Language. Information Systems, 30(4), 245 – 275, 2005.

8. YAWL Foundation: YAWL Yet Another Workflow Language. http://www.yawl-
system.com [2009-02-20]

Anforderungen der industriellen Produktion an
eine serviceorientierte Architektur

Jochen Traunecker

gridsolut GmbH + Co. KG
Rauberweg 26

D-73249 Wernau
jochen@traunecker.net

Zusammenfassung Anhand des Beispiels einer fiktiven Toasterpro-
duktion werden Schlüsselkomponenten der industriellen Produktion im
Kontext einer serviceorientierten Architektur vorgestellt. Die atomare
Organisationseinheit der industriellen Produktion in Form des Arbeits-
systems wird näher betrachtet und abstrahiert. Die Anforderungen der
industriellen Produktion an eine serviceorientierte Architektur werden
anhand eines skizzierten Metamodells vorgestellt und am Beispiel der
Datenversorgung und Entsorgung verdeutlicht.

1 Industrielle Produktion

Unter industrieller Produktion versteht man die Erzeugung von Ausbringungs-
gütern (Produkten) aus materiellen und nichtmateriellen Einsatzgütern (Produk-
tionsfaktoren) nach bestimmten technischen Verfahrensweisen. Der industrielle
Produktionsprozess setzt sich aus einzelnen Abschnitten, die jeweils einen be-
stimmten Teilprozess der Produktion eines Erzeugnisses umfassen, zusammen.
Die Ausführung eines Abschnittes erfolgt in organisatorischen Einheiten, den
Arbeitssystemen: Ein Arbeitssystem ist die kleinste selbstständig arbeitsfähige
Einheit in einem Produktionssystem [1].

2 Einführendes Beispiel Toasterproduktion

Als einführendes Beispiel soll eine fiktive Fließproduktionslinie für Toaster dienen,
deren Aufbau in Abbildung 1 dargestellt ist.

In dieser Produktionsstätte werden aus Blechen in der Gehäusepresse die
Rohgehäuse für Toaster gepresst. Die Rohgehäuse bekommen in der Gehäuse-
lackierung ihre Lackierung und werden in der Gehäusevormontage zusammen-
gefügt. Die erste Qualitätsprüfung findet in der Prüfung für mechanische Bauteile
statt. Die Steuerelektronik des Toasters sowie der Netzanschluss werden danach
eingabut. Zum Schluss werden Warnhinweise angebracht. Abschließend wird vor
dem Versand eine Endkontrolle durchgeführt.

Die Fließproduktionslinie zur Toasterproduktion bietet die Möglickeit, Toaster
individuell mit bestimmten Lacken zu lackieren (siehe Abbildung 2). Dazu wird

Anforderungen der industriellen Produktion an eine SOA 43

Abbildung 1: Anordnung der Arbeitssysteme einer beispielhaften Toasterproduk-
tion

jeder Toaster mit einem Fertigungsauftrag versehen, der auch die Lackfarbe
beinhaltet. Die Gehäuselackierung kann also anhand des Fertigungsauftrags
entsprechend konfiguriert werden um den passenden Lack aufzubringen. Die
Prüfung mechanischer Bauteile beinhaltet die Prüfung auf korrekte Lackierung
eines jeden Toasters. Auch die folgenden Arbeitssysteme werden entsprechend des
Fertigungsauftrags konfiguriert: die Auswahl des länderspezifischen Netzteils, die
Anbringung der Warnhinweise, sowie die für das jeweilige Land gesetzeskonforme
Endprüfung des Toasters.

Abbildung 2: Variantenreiche Serienfertigung am Beispiel Lack

2.1 Arbeitssysteme der Toasterproduktion

Eine atomare Organisationseinheit (Arbeitssystem Montage Netzanschluss) wird
in Abbildung 3 detailliert dargestellt: Ein Barcodescanner liest vom Gehäuse
dessen Auftragsnummer. Abhängig vom Auslieferungsland des Auftrages wird in
der Konfigurationsdatenbank eine entsprechende Prozessdefinition zur Konfigura-
tion der Steuerelektronik, zur Montage und zur Prüfung der Leistungsaufnahme
abgefragt. Anschließend wird die eigentliche Montage entsprechend der Prozess-
beschreibung automatisiert abgearbeitet und bei Bedarf mit dem Bedienpersonal
des Arbeitssystems interagiert. Alle Arbeitssysteme der Beispielproduktion sollen
möglichst lange autark arbeiten können. Sollte zum Beispiel die Auftragsda-
tenbank temporär nicht verfügbar sein, darf dies nicht zu einem unmittelbaren
Produktionsstop am Arbeitssystem führen. Durch die Replikation einer Teilmenge

44 Jochen Traunecker

Abbildung 3: Arbeitssystem Montage Netzanschluss

des Datenbestandes der Auftrags- und Konfigurationsdatenbank auf den Industrie-
PC des Arbeitssystems können nicht langdauernde Störungen der Infrastruktur
kompensiert werden.

Die Arbeitssysteme werden durch diverse Datenbanksysteme mit Daten ver-
sorgt und können in diese ihrerseits Daten der Produktion entsorgen. Durch
Produktionsüberwachungssysteme kann die Produktion beobachtet werden. Mit
den Systemen zur Produktionskonfiguration können die Arbeitssysteme verwaltet
werden.

2.2 Abstrahiertes Arbeitssystem

Ein Arbeitssystem kann, wie in Abbildung 4 dargestellt, abstrahiert beschrieben
werden. Das Arbeitssystem baut sich dabei aus folgenden Bausteinen auf:

Prozessverzeichnis Die für ein bestimmtes Arbeitssystem relevanten Prozess-
definitionen sind in diesem Verzeichnis hinterlegt. In Abbildung 5 ist eine
Prozessdefinition auszugweise skizziert und beschreibt die Interaktion des
Arbeitssystems mit dem Produkt, dem Informationsraum, den technischen
Anlagen sowie den Werkern.

Informationsraum der Produktion In diesem Informationsraum liegen alle
produktionsrelevanten Informationen, die sowohl abgefragt als auch aktuali-
siert werden können.

Technische Anlagen und Werkerinteraktion Die technischen Anlagen in-
teragieren mit dem Produkt.

Laufzeitumgebung Die Prozessdefinitionen können durch die Laufzeitumge-
bung abgearbeitet werden. Die Laufzeitumgebung sucht sich dabei für jedes
zu bearbeitende Produkt aus dem Prozessverzeichnis die gültigen Prozessde-
fintionen aus.

Anhand der im Prozessverzeichnis hinterlegten Prozessdefinitionen können
die Schnittstellen eines Arbeitssystems zum Informationsraum abgeleitet werden.
Auch lassen sich damit die Abhängigkeiten zwischen den Arbeitssystemen folgern.

Anforderungen der industriellen Produktion an eine SOA 45

Abbildung 4: Abstrahiertes Arbeitssystem

Abbildung 5: Skizzierte Prozessdefinition eines Arbeitssystems

3 Anforderungen der industriellen Produktion an eine
SOA

Die Eigenschaften einer serviceorientierten Architektur und deren Realisierung
in Form von Web-Services eines Service Bus werden in [2] ausführlich aufge-
zeigt. Als fundamentale Anforderung der industriellen Produktion an eine SOA
kann ihr Beitrag zur Minimierung der Kosten der informationstechnologischen
Infrastruktur gesehen werden:

– Betriebs- und Wartungskosten
– Integrationskosten der Arbeitssysteme
– Kosten der Restrukturierung der Arbeitssysteme

Eine SOA sollte also bestrebt sein, lediglich die tatsächlich geforderten Qualitäts-
ansprüche der gebundenen Service Requester zu bedienen.

Die drei Basisrollen einer SOA (Service Provider, Service Requester und das
Service Verzeichnis) und deren Interaktionsmuster (Veröffentlichen, Finden und
Binden) werden in Abbildung 6 (a) dargestellt. Im Kontext der industriellen
Produktion sollte die Rolle des Service Creators hinzugefügt werden (siehe
Abbildung 6 (b)): Ein Service Requester sucht dabei nicht mehr direkt im
Service Verzeichnis, sondern nutzt einen Service Creator, um einen Dienst mit
entsprechenden Qualitäten (QoS [3]) gegebenenfalls erzeugen zu lassen. Die
neue Rolle ist notwendig, da davon ausgegangen werden kann, dass geforderte
Servicequalitäten bestimmter Dienste in der SOA zum Zeitpunkt der Suche noch
nicht vorhanden sind. Fehlen Infrastrukturkomponenten oder Kapazitäten zur

46 Jochen Traunecker

Erzeugung eines geforderten Service Providers, dann sollte der Service Creator
Empfehlungen zur Ausgestaltung der Infrastruktur geben.

Abbildung 6: Rollen in einer SOA

(a) Basis Rollen einer SOA (b) Erweiterte Rollen einer SOA

Die Realisierung einer SOA für die industrielle Produktion sollte ein möglichst
umfassendes Metamodell pflegen. In dieses Modell könnten dabei folgende Aspekte
einfließen:

Netzwerkinfrastruktur Wie ist das zugrunde liegende Netzwerk aufgebaut?
Welche Komponenten sind in der Netzwerktopologie vertreten, welche Ser-
vicequalitäten können diese anbieten? Wie sind die individuellen Service
Provider und Service Requester angebunden? Kann auf Servicequalitäten des
Netzwerks Einfluss genommen werden [4, 5]?

Rechenkapazität Welche Rechenkapazität ist vorhanden? Wie sind die indivi-
duellen Arbeitssysteme ausgestattet? Können Rechner der Arbeitssysteme
temporär Daten aufnehmen? Kann Software auf die individuellen Arbeitssys-
teme ausgerollt werden?

Software Welche Softwarekomponenten sind verfügbar? Welche Infrastruktur
wird von den Softwarekomponenten erwartet? Wie können sie installiert
werden?

Domänenmodelle Welche Metamodelle sind Grundlage der Domänenmodelle
[6, 7]? Wie werden Produkte der industriellen Produktion modelliert [8]?
Welche Produktmodelle gibt es?

Prozessmodelle Wie werden die Prozessmodelle zur Bearbeitung der Produkte
modelliert [9]? Welche Prozessdefinitionen gibt es?

Datenlieferanten Welcher Service liefert Daten einer bestimmten Qualität,
Quantität und zu welchen Zeiten [10, 11]?

Datenkonsumenten Welcher Service benötigt Daten einer bestimmten Qua-
lität, Quantität und zu welchen Zeiten?

Anforderungen der industriellen Produktion an eine SOA 47

Der Service Creator könnte zum Beispiel - wie in Abbildung 7 skizziert - an-
hand der Metadaten für ein Arbeitssystem einen Service Endpunkt erzeugen, der
Daten direkt ins Langzeitarchiv übermittelt. Im Fehlerfall (Netzwerkseparierung,
Nichtverfügbarkeit des Langzeitarchivs) würde dem Aufrufer des Services ein
Fehler gemeldet werden.

Abbildung 7: Service Endpunkt Beispiel A

Alternativ könnte der Service Creator wie in Abbildung 8 skizziert auf einem
Arbeitssystem Software installieren, die der Laufzeitumgebung einen Service
Endpunkt anbieten könnte. Dieser Service Endpunkt würde alle Daten auf
dem Arbeitssystem zwischenspeichern und erst dann an das Langzeitarchiv
übermitteln. Darüber hinaus könnte eine Peer-to-Peer-Verbindung zu einem
weiteren Arbeitssystem aufgebaut werden, um Daten direkt zu übermitteln.
Sollte das Langzeitarchiv temporär nicht verfügbar sein, würde dies zu keinem
Fehler führen und die beiden direkt abhängigen Arbeitssysteme könnten ihre
Aufgaben erfüllen.

4 Ausblick

Das hier vorgestellte Beispiel der Toasterproduktion stellt eine starke Verein-
fachung der realen industriellen Produktion dar. Eine methodisch fundierte
Erhebung der Besonderheiten der industriellen Produktion im Hinblick auf die
Einbettung in eine serviceorientierte Architektur könnte zu einem umfassenden
Katalog an Anforderungen führen.

Das skizzierte Metamodell einer SOA in der industriellen Produktion könnte
detailliert modelliert werden. Darüber hinaus können Methoden und Algorithmen
zur dynamischen Konfiguration der Akteuere recherchiert und auf Brauchbarkeit
hin geprüft werden [12–16].

Literatur

1. Günther, H.O., Tempelmeier, H.: Produktion und Logistik. Springer-Verlag, New
York (2005)

48 Jochen Traunecker

Abbildung 8: Service Endpunkt Beispiel B

2. Papazoglou, M.P.: Web Services: Principles and Technology. Pearson Education
(2008)

3. Sabata, B., Chatterjee, S., Davis, M., Sydir, J.J., Lawrence, T.F.: Taxonomy for qos
specifications. In: Workshop on Object-Oriented Real-Time Dependable Systems
(WORDS), IEEE Computer Society (1997)

4. Tanenbaum, A.S.: Computer Networks, Fourth Edition. Pearson Education, Upper
Saddle River, New Jersey (2003)

5. Schmidt, K.: High Availability and Disaster Recovery. Springer-Verlag, Berlin
Heidelberg (2006)

6. Allemang, D., Hendler, J.: Semantic Web for the Working Ontologist. Morgan
Kaufmann (2007)

7. Date, C., Darwen, H.: Foundation for Object / Relational Databases. Addison
Wesley Longman (1998)

8. Evans, E.: Domain-Driven Design. Pearson Education (2004)
9. Leymann, F., Roller, D.: Production Workflow Concepts and Techniques. Prentice-

Hall, Upper Saddle River, New Jersey (2000)
10. Mühl, G., Fiege, L., Pietzuch, P.: Distributed Event-Based Systems. Springer-Verlag,

Berlin (2006)
11. Batini, C., Scannapieco, M.: Data Quality. Springer-Verlag, Berlin (2006)
12. Murch, R.: Autonomic Computing. Pearson Education (2004)
13. Fellenstein, C.: On Demand Computing. Pearson Education (2005)
14. Foster, I., Kesselman, C.: The Grid2 Blueprint for a New Computing Infrastructure.

Morgan Kaufmann Publishers (2004)
15. Berman, F., Hey, A., Fox, G.: Grid Computing: making the global infrastructure a

reality. John Wiley and Sons Ltd (2003)
16. Joseph, J., Fellenstein, C.: Grid Computing. Pearson Education, Inc. (2004)

Towards Choreography Transactions

Oliver Kopp, Matthias Wieland, and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart, Germany
Universitätsstraße 38, 70569 Stuttgart, Germany

{lastname}@iaas.uni-stuttgart.de

Abstract. The focus of choreography modeling is to capture the message
exchange between processes. Common choreography modeling languages
do not provide capabilities to group activities of different participants
together into an all-or-nothing group. This paper presents choreography
spheres as a modeling technique for cross-process transactions based on
BPEL4Chor and sketches a mapping to BPEL.

1 Introduction

BPMN [1] is an established standard for modeling processes and process chore-
ographies. While BPMN is mostly used for modeling business processes, BPEL [2]
is used for executing processes. BPEL itself defines orchestration only. Support for
process choreographies is added by BPEL4Chor [3]. Since the execution semantics
of BPMN is still not defined for all cases, we focus on BPEL4Chor, which has an
agreed semantics [4].

In BPEL4Chor a choreography is modeled by modeling the behavior of each
participant as BPEL process and interconnecting the pools using message links.
Internal transaction behavior is modeled in BPEL by scopes. A scope groups
activities together. If a scope is completed, its whole work may be compensated as
a response to failures in subsequent steps. The compensation is either performed
by explicitly modeled compensation behavior or by the default compensation. The
default compensation executes the (explicitly modeled) compensation actions for
each activity in reverse order of their execution. Thus, an all-or-nothing behavior
may be achieved even for activities not providing an “undo” operation themselves.
However, there exist scenarios where it is helpful for process modelers to use
modeling constructs spanning over different processes to express that the selected
activities of different processes belong together and have to be coordinated.
Usually, the coordination has to be modeled manually including the activities
needed to communicate with a coordinator. The contribution of this paper is the
introduction of choreography spheres, which represent this missing construct. The
main advantage of using choreography spheres is that the coordination between
the participant does not have to be modeled explicitly. By using choreography
spheres, the coordination is done automatically. We present two distinct types of
choreography spheres, each being a new modeling construct for the two common
transaction types: short running and long running transactions.

In general, we define a choreography sphere as shown in Definition 1.

50 Oliver Kopp, Matthias Wieland und Frank Leymann

Definition 1 (Choreography Sphere). A choreography sphere ensures trans-
actional behavior of all enclosed activities that can be part of multiple processes.

The definition leads to a all or nothing semantic of the sphere, which means all
activities are either executed successfully or the effects are undone.

In the following, an overview on background and related work is given in
Section 2. Afterwards, two types of spheres with different transaction properties
are described in Section 3 and Section 4. Finally, Section 5 concludes and presents
an outlook on future work.

2 Background and Related Work

The concept of spheres with transactional behavior was first introduced in [5].
The spheres were allowed to overlap, but the semantics for choreography spheres
was put as future work. Currently, there exist no work on cross-organizational
transactions, where arbitrary activities may be chosen to be coordinated.

There are two different types of transaction styles available in the the business
area: business transactions and ACID style transactions [6]. Both are supported
by spheres. But they have different implications on the modeling and also the
technical coordination needed. Because of that we define in this paper 2PC
Spheres in Section 3 for the ACID transactions and the BPEL Sphere in Section
4 for the Business transactions.

In the field of Web services, the standards published by the OASIS Web
Services Transaction (WS-TX) Technical Committee are the standards used in
practice. They provide transaction support across different vendors. The WS-
Coordination specification [7] describes the general transaction framework. It
describes the protocols for participant registration and defines a transaction con-
text. This context can be passed using messages to enable the recipient to register
as participant of the same transaction. WS-Coordination describes a protocol ser-
vice, which handles the concrete coordination protocols. WS-Coordination is open
to any transaction protocol. Up to now, WS-Atomic Transaction (WS-AT, [8])
and WS-Business Activity (WS-BA, [9]) are defined. WS-AT defines the two-
phase-commit protocol, which is used for ACID transactions and thus provides
and all-or-nothing behavior [10]. WS-BA is used for long-running transactions,
which may last for years. It builds on the Saga model [11], where each activity
has an associated compensation activity. In Saga, the activities are executed
one after another. If an activity fails, the executed activities are compensated
in reverse order. An overview of the history of transaction handling and current
approaches in the field of Web services is given in [12].

It is shown in [13] how transactional behavior of services called by a BPEL
process can be enforced. A transaction policy is attached to a group of BPEL
activities. The transaction policy states which transaction protocol is used at
invoking the grouped activities. We re-use this idea in our approach to enable
transaction context propagation from the choreography sphere to the called
services.

Towards choreography transactions 51

A variant of cross-process spheres is presented in [14], called “split BPEL
scopes”. These scopes result from a split of a BPEL process among different
participants. The split BPEL scopes keep the semantics of the BPEL scope in the
unsplit process and are coordinated using the WS-Coordination infrastructure [15].
Our approach allows for picking arbitrary activities in a choreography to be
coordinated.

In the field of WS-Coordination, transaction protocols are defined using a
coordination protocol graph and additional textual description. The approach
presented in [16] shows how the coordination protocol graphs can be transformed
to an abstract BPEL process for the coordinator and one BPEL process for the
participant. Each of them has to be manually refined to adhere the requirements of
the textual description of the transaction protocol. This has to be done only once
for each transaction protocol. We use the resulting executable BPEL coordination
logic in our approach as described in Section 3.

3 2PC Spheres

The two-phase commit protocol (2PC for short) is a well-known protocol to
coordinate distributed ACID transactions enabling an all-or-nothing behavior.
Due to their nature, ACID transactions are used for short-term operations (a
few seconds). The two booking workflows presented on the left side (participant
behavior descriptions) in Fig. 1 are executed in parallel, but need to be coordinated
to ensure an all-or-nothing semantics of the two pay activities. To achieve that
they are nested in a 2PC sphere, which ensures that no money is transferred
if one activity fails. Only if both are executed successfully the whole sphere is

!"#$%&%!"'$()*+",%-#(

.*/&#%!$%-'/

01234(!#-&*//*/5

1234(!#-&*//

(6%$+(/&-!*7!-8%&9("''-$"$%-'

!#-:*&$*.(

/&-!*
!-8%&9

&+-#*-;#"!+9(

/&-!*(*'")8*.

1234(*';%'*

&--#.%'"$%-'

8-;%&
/$"'."#.

1234(*';%'*

&+-#*-;#"!+9

/!+*#*(.*<%'%$%-'

#*
<*
#*
'&
*

!"#$%&'()*%

+(,-'%.-/012-

!"#$%&'()*%

&'134,%.-/012-

=#*&*%,*>

$#",*8(."$"

=%',-?*>

/*"#&+("'.(

/*8*&$(+-$*8

=%',-?*>

/*"#&+("'.(

/*8*&$(<8%;+$

=%',-?*>

)--?("'.(

!"9(+-$*8

=%',-?*>

)--?("'.(

!"9(<8%;+$

=%',-?*>

!#%'$($%&?*$

=%',-?*>

!#%'$(+-$*8(

&-'<%#@"$%-'

=#*!89>

&-'<%#@"$%-'

=#*&*%,*>

$#",*8(."$"

=#*!89>

&-'<%#@"$%-'

5"6

.74-/-

AB($#"'/<-#@"$%-' C"B(.*!8-9

D)B(.*!8-9

C
)
B(
;
*
'
*
#"
$%
-
'

EFGHI(&--#.%'"$%-'(8-;%&

Fig. 1. Transformation steps required for the execution of choreography spheres

52 Oliver Kopp, Matthias Wieland und Frank Leymann

committed. Thus, one is sure that no money needs to be claimed back in any
case of failure. Until now, 2PC spheres are defined for the flow activity only and
cannot be nested.

The sphere definition has to be represented in each BPEL process to enable
proper execution. The necessary steps for that are presented in Fig. 1. In step 1,
each participant behavior description is transformed to a BPEL process, where
a scope is put around the activities belonging to the choreography scope. The
scope is annotated with a policy stating that the scope belongs to a choreography
scope. In step 2a, each process is deployed on a choreography scope enabled
BPEL engine. Step 2b is motivated by the non-existence of BPEL engines
supporting choreography scopes. Thus, the alternative approach is to generate
the coordination logic into each BPEL process. Finally, step 3 deploys each
executable process on a standard BPEL engine.

4 BPEL Spheres

In contrast to short-running transactions, business transactions are usually long-
running [17] as shown in example presented in Fig. 2. In this example a production
company plans a new product and orders the parts for that product from different
subcontractors. They produce the parts and send them to the production company
that assembles them to the end product. In case of a fault in the inner BPEL
sphere, the production company tires to find a new subcontractor. If this is
not possible or any other error is propagated to the outer BPEL sphere, all
running activities inside the outer BPEL sphere are terminated and all successful
completed activities are compensated. The inner BPEL sphere is treated as child

!"#$%&'()*%"+(,-./0(1%2(34516 !"#$%&'()*%7-8.(1/+5./(+

!"#$#%&#'

(#)*+,")*

-+#$%.%$,)%/0

!%0&/1#'

23%45*+,")

!%0&/1#'

5#4%&#"*+,")

!%0&/1#'

+4,0*+"/53$)

!%0&/1#'

.%05*

-32$/0)",$)/"-

!%0&/1#'

23%45*+"/53$)

6,34)7

8'*%0&/1#*.%05*0#9*

-32$/0)",$)/"

!./":,$;'

!"#$%#&#'

(#)*+,")-

!"#$%749:+:

Fig. 2. BPEL sphere extending BPEL’s scope semantics across BPEL processes

Towards choreography transactions 53

activity of the outer sphere and is handled the same way. This kind of process
is running significantly longer than the money transfer actions presented in
Section 3. Due to the long processing time, it is not possible to lock all data used
in the processes. Thus, WS-AT cannot be used for the involved Web services as
done in the case of 2PS spheres. The transformation steps presented in Section 3
are similar for BPEL spheres. The only change is that the used coordination
protocol changes from WS-AT to WS-BA.

In BPEL, long-running transactions are realized by scopes. The concept of
BPEL spheres extends BPEL’s scope semantics to choreographies. A BPEL
sphere groups activities together to form a transactional unit. The BPEL sphere
is a long-running sphere and therefore uses compensation as undo operation.

Each BPEL sphere may have fault handlers and a compensation handler
attached. BPEL spheres must be properly nested similar to scopes. BPEL spheres
may not overlap with BPEL scopes similar to 2PC spheres. The activities in
these handlers must be annotated which the participant, where the respective
activities run. After the choreography is defined and it comes to the mapping to
separate BPEL processes, the activities inside the handlers are split as presented
in [15]. The remainder of the transformation and the deployment follows the
procedure presented in Fig. 1. The projected scopes are annotated with a policy
including the reference to the choreography scope definition.

It is possible to require that at least one activity in each participant runs in
a BPEL sphere. This requirement ensures that all projected scopes run, which in
turn is a requirement resulting from the premises by [14]. Thus, the projected
BPEL scopes can be coordinated using the protocols described in [14]. An
implementation of BPEL spheres has been described in [18], which is based on
the pluggable framework [19].

5 Conclusion and Outlook

In this paper, we presented the concept of choreography spheres, where arbitrary
activities of different processes can be grouped together. We showed a sketch of
a possible implementation using the BPEL and WS-Coordination. We plan to
add a full runtime support for choreography spheres to the Apache ODE engine.

Currently, choreography spheres may not overlap and the included activities
may only be part of the same scope and loop. We sketched the nesting of BPEL
spheres and the interplay with local scopes. A semantics for overlapping spheres is
shown in [5]. Thus, our future work is to study possible semantics of overlapping
BPEL spheres and of BPEL spheres overlapping with local BPEL scopes.

Motivated by [6,20], we research whether there are requirements for additional
types of spheres. We are going to evaluate the applicability of these types in
choreography settings.

Acknowledgments This work is supported by the BMBF funded project
Tools4BPEL (01ISE08B) and the DFG project Nexus (SFB627).

54 Oliver Kopp, Matthias Wieland und Frank Leymann

References

1. Object Management Group (OMG): Business Process Modeling Notation (BPMN)
Version 1.2. (2009) http://www.bpmn.org/.

2. OASIS: Web Services Business Process Execution Language Version 2.0 – OASIS
Standard. (2007)

3. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL for
Modeling Choreographies. In: ICWS. (2007)

4. Lohmann, N., Kopp, O., Leymann, F., Reisig, W.: Analyzing BPEL4Chor: Verifi-
cation and Participant Synthesis. In: WS-FM. (2007)

5. Leymann, F.: Supporting Business Transactions Via Partial Backward Recovery
In Workflow Management Systems. In Lausen, G., ed.: BTW. (1995)

6. Greenfield, P., Fekete, A., Jang, J., Kuo, D.: Compensation is Not Enough. In:
EDOC, Washington, DC, USA (2003)

7. OASIS: Web Services Coordination (WS-Coordination) Version 1.1. (2007)
8. OASIS: Web Services Atomic Transaction (WS-AtomicTransaction) Version 1.1.

(2007)
9. OASIS: Web Services Business Activity (WS-BusinessActivity) Version 1.1. (2007)

10. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufman (1993)

11. Garcia-Molina, H., Salem, K.: Sagas. In: SIGMOD. (1987)
12. Wang, T., Vonk, J., Kratz, B., Grefen, P.: A survey on the history of transaction

management: from flat to grid transactions. Distributed and Parallel Databases
23(3) (2008) 235–270

13. Tai, S., Khalaf, R., Mikalsen, T.A.: Composition of Coordinated Web Services. In
Jacobsen, H.A., ed.: Middleware. (2004)

14. Khalaf, R., Leymann, F.: Coordination Protocols for Split BPEL Loops and Scopes.
Technical Report Computer Science 2007/01, University of Stuttgart, Institute of
Architecture of Application Systems (2007)

15. Khalaf, R.: Supporting business process fragmentation while maintaining operational
semantics: a BPEL perspective. Doctoral thesis, University of Stuttgart, Faculty of
Computer Science, Electrical Engineering, and Information Technology, Germany
(2008)

16. Kopp, O., Wetzstein, B., Mietzner, R., Pottinger, S., Karastoyanova, D., Leymann,
F.: A Model-Driven Approach to Implementing Coordination Protocols in BPEL.
In: MDE4BPM. (2008)

17. Leymann, F., Roller, D.: Production Workflow – Concepts and Techniques. Prentice
Hall PTR (2000)

18. Steinmetz, T.: Ein Event-Modell für WS-BPEL 2.0 und dessen Realisierung in
Apache ODE. Diploma thesis, University of Stuttgart, Faculty of Computer Science,
Electrical Engineering, and Information Technology, Germany (2008) (In German).

19. Khalaf, R., Karastoyanova, D., Leymann, F.: Pluggable Framework for Enabling
the Execution of Extended BPEL Behavior. In: WESOA. (2007)

20. Leymann, F., Pottinger, S.: Rethinking the Coordination Models of WS-
Coordination and WS-CF. In: ECOWS. (2005)

Realizability of Interaction Models

Gero Decker

Hasso-Plattner-Institute, University of Potsdam, Germany
gero.decker@hpi.uni-potsdam.de

Abstract. In scenarios where a set of independent business partners en-
gage in complex conversations, interaction models are a means to specify
the allowed interaction behavior from a global perspective. Atomic in-
teractions serve as basic building blocks and behavioral dependencies
are defined between them. The notion of realizability centers around the
question whether there exist a set of roles that collectively realize the
specified behavior. This notion has been studied in the literature in dif-
ferent flavors. This paper aims at providing an overarching framework
for realizability.

1 Introduction

Two approaches for choreography modeling can be identified in the literature.
Interconnection models are collections of observable behavior models for inter-
acting roles. Each observable behavior model belongs to one role and contains
communication activities and the behavioral dependencies between them. Corre-
sponding communication activities are then interconnected. Choreography lan-
guages following this style are BPMN [1] and BPEL4Chor [5]. Interaction models,
on the other hand, consist of interactions and global behavior dependencies be-
tween them. They are global in the sense that they are not explicitly assigned
to any role and it remains unspecified who is responsible for enforcing them.
Choreography languages following this style are WS-CDL [8] and iBPMN [3].

It turns out that some interaction models are not realizable. Imagine that an
interaction between C and D must only happen after A and B have interacted.
Here, C and D cannot know when the first interaction has actually happened.
While this example is obviously not realizable, there are other scenarios where
realizability might be given under certain assumptions. This paper will provide
a classification of the different dimensions of realizability.

The remainder of this paper is structured as follows. The next section lists a
number of motivating examples for the notion of realizability. Section 3 identifies
the dimensions of realizability. Section 4 reports on related work, before Section 5
centers around realizability checking. Section 6 concludes.

2 Motivating Examples

Conversation models, as presented in [7], are a formalism for interaction models.
They are finite state automata with an alphabet R×M ×R. R denotes the set

56 Gero Decker

(A,x,B)

(C,y,D)

(a)

(A,x,B)

(C,y,D)

(b)

(A,x,B)

(B,y,C)

(B,y,C)

(C,z,D)

(C,z,D)

(c)

(A,!,A)

(A,!,A)

(A,x,B)

(A,x,B)

(B,y,C)

s1

s2 s3 s4

s5 s6

(d)

(C,z,D)

(A,x,B)

(B,y,C)

(e)

(A,x,B)

(C,y,B)

(f)

Fig. 1. Conversation model examples

of roles and M the set of message types. The 3-tuple (s, m, r) then describes the
sender, the type and the receiver of a message.

Figure 1 illustrates a number of sample interaction models. States are de-
picted by circles and the transitions by arrows. The initial state is targeted by
an arrow without source state and the final state is denoted by a double-circle.

Figure 1(a) shows the example described in the introduction. It is not possible
to find interacting roles that exactly show the specified behavior. Nevertheless,
it would be possible to find interacting roles that show a subset of the specified
behavior: Imagine two roles A and B that interact and roles C and D simply do
nothing. In this case, however, a conversation would not terminate properly, as
the final state cannot be reached.

Figure 1(b) shows a choice between two interactions. Similarly to the previous
example, A and B cannot know whether C and D have already interacted and
vice versa. In contrast to the previous example, we can find roles that collectively
realize a subset of the specified behavior with proper termination. Imagine again
that only roles A and B interact while C and D do nothing. However, we are
not able to find a set of roles that realize a subset of the behavior where all
interactions from the conversation model are reachable.

Similarly to the first example, the enablement dependency between the AB
interaction and the CD interaction is the problem in Figure 1(c). As a solution,
C could wait for the message from B before interacting with D. That way,
the resulting behavior would be a properly terminating subset of the initially
specified behavior.

Figure 1(d) shows an example containing a non-deterministic choice. This
conversation model represents that A should internally be able to decide whether
B will interact with C later on. However, B cannot observe this decision as in
any case it will get a message x from A. As A does not have any control over the
BC interaction, the decision whether this interaction takes place or not will be
independent form A’s initial choice. When only considering the possible traces

Realizability of interaction models 57

of the conversation model we can easily create roles that collectively produce
exactly the same traces. The main difference is that B or C can decide whether
the final interaction takes place or not in the realization. We see that considering
the branching structure is crucial whenever the ownership of (and the moment
of) choices is of importance. It might be argued that local choices are irrelevant
in choreographies. This might be true if choreographies are considered to be a
collection of mere interaction sequences. However, from a business perspective it
makes a major difference who makes a branching decision. Therefore, this should
be reflected in the formal model as well.

Figure 1(e) shows a cyclic example containing a choice between an AB in-
teraction and a CD interaction, similarly to the second example. The difference
here is that by expanding the cycle to a sequence, we can at least find roles that
realize a subset of the behavior.

Finally, Figure 1(f) shows an example that is perfectly realizable in a syn-
chronous world, where C can block B until it has interacted with A. However,
when considering an asynchronous world, where message sending and receiving
do not happen in one step, the order of the send activities would not conform
to the order of interactions in the conversation model.

3 Dimensions of Realizability

The examples from the previous section show that we need to distinguish differ-
ent dimensions of realizability. The following three dimensions apply.

Complete behavior vs. subset of behavior. Choreographies define constraints and
obligations of the roles involved. Constraints apply as the choreography enumer-
ates all allowed interactions in every conversation state, obligations apply as a
final state must be reached which is only possible through the execution of the
given interactions.

In this context, we can either demand that it must be possible to carry
out the complete behavior specified in the choreography. Or, a subset of the
behavior might already be sufficient. Here, the follow-up question is what a valid
subset would be. For instance, proper termination of conversations might be a
basic criterion. Furthermore, reachability of all interactions from the original
choreography might also be demanded.

Communication model. Synchronous communication could be assumed, where
sending and receiving of messages must happen at the same time. Two flavors
are possible in this context: it might be allowed that a sender blocks until the
receiver is ready to receive the message. Alternatively, the conversation fails if a
role can only send in a given state without any other role being able to receive
the message.

In asynchronous settings, message send and receive do not happen in one
step. Here, message buffers are introduced for storing the incoming messages.
We might assume that there is only one queue, e.g. with FIFO message delivery,
or that there is a buffer where any incoming message can be received from.

58 Gero Decker

The order of interactions is of central importance. However, especially in the
case of asynchronous communication, there are different options of what ordering
relationships to consider. For instance, only the ordering of send transitions
might be considered, or the ordering of receive transitions or the ordering of
communication transitions within the individual roles might be of importance.

Equivalence notion. Having agreed on what ordering relationships to consider,
it is important to choose an equivalence notion for comparing the original chore-
ography and the collective behavior of the roles. Here, trace-based techniques
can be applied. This is sufficient when dealing with deterministic behavior in the
choreography and the roles. Branching structures are of relevance in the presence
of non-determinism. Here, bisimulation-like techniques can be used.

In order to formally capture the different notions of realizability we need
to introduce the following concepts. C denotes the set of all choreographies
(also with silent transitions). R denotes the set of all role behavior models.
⊕ : ℘(R) → C is a function that composes a choreography out of a set of role
behavior models. ∼⊆ C × C is a binary relation on choreographies.

Please note that ⊕ heavily depends on the communication model chosen
and, in the case of asynchronous communication, the ordering relationships to
be considered. In the special case of considering the order of communication
transitions within a role, ⊕ depends on the role under investigation. ∼ depends
on whether the complete or only a subset of the behavior is demanded and it
also depends on the equivalence notion chosen.

Definition 1 (Realizability). A choreography c ∈ C is realizable, iff there
exists a set of roles r1, . . . , rn ∈ R such that ⊕(r1, . . . , rn) ∼ c.

4 Related Work

Realizability checking for conversation models was presented in [7]. Here, the
notion of realizability does not consider branching structures in the conversa-
tion models and focuses on trace equivalence between the collective behavior
of the roles and the original conversation model. Asynchronous communication
is considered where each role has one FIFO queue for all incoming messages.
Realizability is broken down to three requirements. (1) Synchronous compatible
condition: The conversation model is projected to the different roles, which are
then interconnected under the assumption of synchronous communication (called
the syn-configuration). The condition for each state in the syn-configuration is
that whenever a role is ready to send a message there must be another role that
is ready to receive this message. (2) Autonomous condition: It is demanded for
each role projection that there is no state where the role is ready to send and
to receive a message. Rather, in each state the role projection is either ready to
send one out of a set of messages or ready to receive one out of a set of message.
Furthermore, it must not be possible to send or receive message in a final state.

Realizability of interaction models 59

(3) Lossless join condition: The join of the role projections must show exactly
the same behavior as the original conversation model. Realizability for message
sequence charts was studied in [2].

The notion of local enforceability was first introduced in [10]. Here, only a
subset of behavior is demanded as well as the reachability of all interactions from
the original choreography. Enforceability checking is carried out using structural
rules rather than considering the state space. Synchronous communication was
assumed. Realizability and local enforceability was also studied in the context of
interaction Petri nets in [6]. Again, synchronous communication is assumed and
proper termination and reachability of all interactions is demanded. In contrast
to the previous work on local enforceability, enforceability checking is done using
the state space. Realizability is defined based on branching bisimulation.

The notion of desynchronizability investigates whether a choreography that
is realizable under the assumption of synchronous communication properly ter-
minates under the assumption of asynchronous communication (with one buffer
per message type) [4].

5 Realizability Checking

Similarly to the approaches in [7] and [6] we construct the role projections for
every role in a conversation model and then study the composition of these
projections. As [7] does not consider branching structures, role projection is
based on minimal finite state automata containing only those interactions where
the particular role is involved in.

As we want to preserve the branching structure we carefully need to consider
the observability of choices within each role. We construct the role behavior for
a role r in a similar way like in the operating guidelines approach [9]. (a) Start
with the initial state s = s0 and create a new node n. (b) Determine those states
that can be reached from s without involvement of r. All these states are added
to node n. (c) Identify all transitions with involvement of r that originate in
one of the states belonging to n. For each transition label (s, m, r) determine if
there is already a node n′ corresponding to all states s′ that are reachable via
transitions with label (s, m, r). If such an n′ does not exist, create it. For every
s′ and n′ continue with step (b).

s1 s2 s5 s3 s6

(A,x,B) (B,y,C)
s4

(a) Role projection for B

s1 s2 s3

s5 s6

(B,y,C)
s4

(b) Role projection for C

The nodes and their connections are the resulting role projection cr for r.
The initial node n becomes the initial state of cr and all nodes containing final
states become final states of cr. Figures 2(a) and 2(b) illustrate this for roles B
and C and the conversation model from Figure 1(d).

60 Gero Decker

An exception to rule (c) applies to all those cases where several transitions
with the same label originate in the same state. In this case, different nodes must
be identified / created. If multiple states belonging to the same node have several
transitions with the same label (s, m, r), nodes must be identified / created for
the different combinations.

6 Conclusion

This paper motivated different dimensions for realizability and investigated role
projection for those realizability notions that are based on bisimulation. Here,
the branching structures must be considered carefully in order to cater for the
moment of observability of choices. Composition of role projections for different
communication models was outside of the scope of this paper due to the space
restrictions. Also the binary relation for comparing the composition and the
original conversation model was not covered.

The work presented in this paper is based on conversation models. Inter-
action Petri nets [6] are an alternative formalism for interaction models with
concurrency. It is desirable to preserve concurrency as much as possible during
role projection. Therefore, future work will center around an approach, where
transformation rules similar to those presented in [6] are applied.

References

1. Business Process Modeling Notation, V1.1. Technical report, OMG, Jan 2008.
2. R. Alur, K. Etessami, and M. Yannakakis. Inference of message sequence charts.

In ICSE, pages 304–313, New York, NY, USA, 2000. ACM.
3. G. Decker and A. Barros. Interaction Modeling using BPMN. In CBP, number

4928 in LNCS, pages 206–217, Brisbane, Australia, September 2007.
4. G. Decker, A. Barros, F. M. Kraft, and N. Lohmann. Non-desynchronizable service

choreographies. In ICSOC, LNCS, Sydney, Australia, Dec 2008. Springer Verlag.
5. G. Decker, O. Kopp, F. Leymann, and M. Weske. BPEL4Chor: Extending BPEL

for Modeling Choreographies. In ICWS, pages 296–303, Salt Lake City, Utah, USA,
July 2007. IEEE Computer Society.

6. G. Decker and M. Weske. Local Enforceability in Interaction Petri Nets. In
BPM, number 4714 in LNCS, pages 305–319, Brisbane, Australia, September 2007.
Springer Verlag.

7. X. Fu, T. Bultan, and J. Su. Conversation protocols: A formalism for specification
and analysis of reactive electronic services. Theoretical Computer Science, 328(1-
2):19–37, November 2004.

8. N. Kavantzas, D. Burdett, G. Ritzinger, and Y. Lafon. Web Services Choreography
Description Language Version 1.0, W3C Candidate Recommendation. Technical
report, November 2005. http://www.w3.org/TR/ws-cdl-10.

9. N. Lohmann, P. Massuthe, and K. Wolf. Operating guidelines for finite-state
services. In ICATPN, volume 4546 of LNCS, pages 321–341, Siedlce, Poland, June
2007. Springer Verlag.

10. J. M. Zaha, M. Dumas, A. ter Hofstede, A. Barros, and G. Decker. Service Inter-
action Modeling: Bridging Global and Local Views. In EDOC, pages 45–55, Hong
Kong, Oct 2006. IEEE Computer Society.

Realizability is controllability

Niels Lohmann and Karsten Wolf

Universität Rostock, Institut für Informatik, Rostock, Germany
{niels.lohmann, karsten.wolf}@uni-rostock.de

Abstract. A choreography describes the interaction between services. It
may be used for specification purposes, for instance serving as a contract
in the design of an interorganizational business process. Typically, not
all describable interactions make sense which motivates the study of the
realizability problem for a given choreography.
In this paper, we show that realizability can be traced back to the
problem of controllability which askes whether a service has compatible
partner processes. This way of thinking makes algorithms for controlla-
bility available for reasoning about realizability. In addition, it suggests
alternative definitions for realizability. We discuss several proposals for
defining realizability which differ in the degree of coverage of the specified
interaction.

1 Introduction

Dumas et al. discuss in [1] compatibility between services and introduce a number
of related notions. Among these notions they mention realizability (the problem
whether a choreography can be implemented by services) and controllability (the
problem whether a service has a compatible partner), but state that “. . . a formal
relation between controllability and realizability is yet to be established”. This
paper is dedicated to the establishment of this relation.

In Sect. 2, we introduce a formal framework which allows us to reason about
choreographies in a formal and language-independent manner. In Sect. 3, we
recall different realizability notions and introduce the novel concept of distributed
realizability, which seamlessly complements existing notions. Section 4 formulates
the realizability problem in terms of controllability and shows how algorithms for
controllability can be used to proof realizability by synthesizing realizing services.
Section 5 discusses further research questions and concludes the paper.

2 A Formal Framework for Choreographies

Throughout this paper, fix a finite set of message channels M that is partitioned
into asynchronous message channels MA and synchronous message channels
MS . From M , derive a set of message events E := !E ∪ ?E ∪ !?E, consisting
of asynchronous send events !E := {!x | x ∈ MA}, asynchronous receive events
?E := {?x | x ∈ MA}, and synchronization events !?E := {!?x | x ∈ MS}.

62 Niels Lohmann und Karsten Wolf

Definition 1 (Conversation, choreography). A conversation γ is a finite
word over E such that, for all x ∈ MA, #!x(γ) = #?x(γ) and for every prefix γ′

of γ holds: #!x(γ′) ≥ #?x(γ′). Thereby, #x(γ) denotes the number of occurrences
of the message event x in the word γ. A choreography is a set of conversations.

The requirements for a conversation state that asynchronous events are always
paired, and a send event always occurs before the respective receive event. A
choreography is a set of desired message event sequences. A choreography is
defined with respect to a set of peers which form a collaboration.

Definition 2 (Peer, collaboration). A peer P = [I, O] consists of a set of
input message channels I ⊆ M and a set of output message channels O ⊆ M ,
I ∩ O = ∅. A collaboration is a set {P1, . . . , Pn} of peers such that Ii ∩ Ij = ∅
and Oi ∩Oj = ∅ for all i &= j, and

⋃n
i=1 Ii =

⋃n
i=1 Oi.

The requirements ensure that communication in a collaboration is always bilateral,
yielding a closed system that models no message exchange other than that between
the peers.

There are various languages to specify collaborations and choreographies,
ranging from formal models such as Interaction Petri Nets [2] to industrial
notations such as Let’s Dance [3], UML collaboration diagrams, and BPMN.
While these languages differ in syntax and semantics, concepts such as an
underlying collaboration (i.e., the endpoints and the exchanged messages) and
the choreography (i.e., the intended global behavior) can be easily derived from
these languages.

To specify the behavior of a service (i.e., the concrete implementation of a
peer), again a variety of languages exist. In essence, they all share a concept
of a state (e.g., a state of a finite state machine, a marking of a Petri net, or
control flow tokens in BPMN) and ways to specify message transfer. These basic
concepts can be expressed with service automata.

Definition 3 (Service automaton). A service automaton A = [Q, I, O, δ, q0, F]
is a tuple such that Q is a finite set of states, [I, O] is a peer, δ ⊆ Q × (EI ∪
EO ∪ {τ})×Q is a transition relation, q0 ∈ Q is an initial state, and F ⊆ Q is
a set of final states. Thereby, EI := {?x | x ∈ I ∩MA} ∪{ !?x | x ∈ I ∩MS} and
EO := {!x | x ∈ O ∩MA} ∪{ !?x | x ∈ O ∩MS}.

We say that A implements [I,O], and for (q, x, q′) ∈ δ, we also write q
x−→ q′. Beside

internal (i.e., silent, non-communicating) τ steps and synchronous communication,
service automata also model asynchronous communication, in which messages
may overtake each other, but will never get lost. We claim that is—compared
to FIFO queues for communicating finite state machines [4]—a more natural
approach to model asynchronicity, because it makes less assumptions about the
underlying infrastructure. In the composition of two or more service automata,
pending asynchronous messages are represented by a multiset. Denote the set of
all multisets over MA with Bags(MA). Further denote the empty multiset with [],
and the multiset containing only one instance of x ∈ MA with [x]. Addition of
multisets is defined pointwise.

Realizability is controllability 63

Definition 4 (Composition of service automata). Let A1, . . . , An be service
automata such that their peers form a collaboration. Define the composition
A1⊕ · · ·⊕An as the automaton [Q, δ, q0, F] with Q := Q1× · · ·×Qn×Bags(MA),
q0 := [q01 , . . . , q0n , []], F := F1 × · · ·×Fn × {[]}, and, for all i #= j the transition
relation δ contains excactly the following elements:

– [q1, . . . , qi, . . . , qn, B] τ−→ [q1, . . . , q′
i, . . . , qn, B],

iff [qi, τ, q′
i] ∈ δi (internal move by Ai),

– [q1, . . . , qi, . . . , qn, B] !x−→ [q1, . . . , q′
i, . . . , qn, B + [x]],

iff [qi, !x, q′
i] ∈ δi (asynchronous send by Ai),

– [q1, . . . , qi, . . . , qn, B + [x]] ?x−→ [q1, . . . , q′
i, . . . , qn, B],

iff [qi, ?x, q′
i] ∈ δi (asynchronous receive by Ai), and

– [q1, . . . , qi, . . . , qj , . . . , qn, B] !?x−−→ [q1, . . . , q′
i, . . . , q

′
j , . . . , qn, B],

iff [qi, !?x, q′
i] ∈ δi and [qj , !?x, q′

j] ∈ δj (synchronization between Ai and Aj).

A run of A1⊕· · ·⊕An is a sequence of events x1 · · ·xm such that q0
x1−→ · · · xm−−→ qf

with qf ∈ F . For a run ρ, define the conversation of ρ as ρ|E. The choreography
of A1⊕ · · ·⊕An, denoted Chor(A1⊕ · · ·⊕An), is the union of the conversations
of all runs of A1 ⊕ · · ·⊕An.

The composition is finite iff, for each state, the number of pending asynchronous
messages is bounded. The choreography of a composition of service automata
is the set of all observable event sequences that are produced by runs of the
composition.

3 Realizability Notions

With the notion of realizability, the conversations generated by a composition
of services can be related to a specified choreography. Bultan et al. [5, 6] define
realizability of choreographies as follows:

Definition 5 (Complete realizability). A choreography C is completely re-
alizable w.r.t. a collaboration {P1, . . . , Pn} iff there exists a tuple of service
automata [A1, . . . , An] such that, for all i, Ai implements Pi, and Chor(A1 ⊕
· · ·⊕An) = C.

Complete realizability is a strong requirement, because it demands that the
observable behavior of the endpoints exactly matches the choreography. In reality,
it is often the case that not all aspects of a choreography can be implemented.
To this end, Zaha et al. [7] introduce a weaker notion called local enforceability
(or partial realizability) which only demands that a subset of the choreography is
realized by the peer implementations:

Definition 6 (Partial realizability). A choreography C is partially realizable
w.r.t. a collaboration {P1, . . . , Pn} iff there exists a tuple of service automata
[A1, . . . , An] such that, for all i, Ai implements Pi, and Chor(A1⊕ · · ·⊕An) ⊆ C.

64 Niels Lohmann und Karsten Wolf

Obviously, complete realizability implies partial realizability. Though this weaker
notion ensures that all constraints of the choreography are fulfilled, it still fixes a
single tuple of service automata. If there does not exist such tuple of automata that
realizes the complete choreography, there might still exist a set of tuples — each
partially realizing the choreography — which distributedly realizes the complete
choreography:

Definition 7 (Distributed realizability). A choreography C is distributedly
realizable w.r.t. a collaboration {P1, . . . , Pn} iff there exist tuples of service
automata [A11 , . . . , An1], . . . , [A1m , . . . , Anm] such that, for i = 1, . . . , n and
j = 1, . . . ,m, (i) Aij implements Pi, (ii) Chor(A1j ⊕ · · · ⊕ Anj) ⊆ C, and
(iii)

⋃m
j=1 Chor(A1j ⊕ · · ·⊕Anj) = C.

Distributed realizability allows for build time coordination between peers. While
being a stronger notion than partial realizability (i.e., more of choreography’s
behavior is implemented), it is still a weaker notion than complete realizability.

A B
x

y

(a) collaboration

?! x

?! y

(b) completely realizable choreography

! x

! y

?x

?y

(c) distributedly realizable choreography

! y

?x

?x
! x

! y

?y

(d) partially realizable choreography

Fig. 1. Example choreographies with respect to a collaboration.

As an example, consider the collaboration depicted in Fig. 1(a) in which two
peers, A and B, communicate via message channels x and y. The choreography
{!?x, !?y} in which the peers communicate synchronously (b) is completely re-
alizable by a set of peers which synchronously decided whether to synchronize
via message x or y. In case the messages are sent asynchronously (c), this is no
longer possible. This choreography is not completely realizable, because there
does not exist a single pair of service automata that implement the specified
behavior. Instead, the implementations have to be coordinated: either peer A
sends a message and peer B is quiet or the other way around. These two pairs
distributedly realize the whole choreography. Finally, choreography (d) can only
be partially realized, because the conversation !x!y?x?y cannot be implemented
even if the peers are coordinated at build time. This is because the requirement
that message x is sent before message y cannot be enforced, because the peers
cannot coordinate this.

4 Synthesizing Realizing Peer Implementations

In this section, we show how the different realizability notions are related to
controllability [8]. Controllability is a correctness criterion for services: a service
A is controllable iff there exists a service B such that A⊕B is compatible (i.e.,

Realizability is controllability 65

deadlock free). Controllability can be extended to multi-port services. In the
following, we will transform a choreography into a multi-port service which is
controllable if and only if the choreography is realizable.

For a regular1 choreography C, there exists a deterministic finite state machine
that accepts exactly the sequences of the choreography. We call this state machine
the monitor for C [9]. It unobtrusively monitors the interaction between the
peers and reaches a final state iff the monitored conversation was part of the
choreography.

Definition 8 (Monitor, monitored composition). Let C be a regular chore-
ography w.r.t. a collaboration {P1, . . . , Pn}. Define the deterministic finite state
machine accepting C (the monitor for C) as M = [QM , δM , q0M , FM]. Thereby,
QM is a finite set of states, δM : QM × E → QM is a transition function,
q0M ∈ QM is an initial state, and FM ⊆ QM is a set of final states.

Let A1, . . . , An be service automata implementing P1, . . . , Pn. Define the mon-
itored composition M ⊗ (A1 ⊕ · · · ⊕ An) as the automaton [Q, δ, q0, F] with
Q := QM × Q1 × · · · × Qn × Bags(MA), q0 := [q0M , q01 , . . . , q0n , []], F :=
FM × F1 × · · · × Fn × []], and, for all i '= j, the transition relation δ contains
excactly the following elements:

– [q, q1, . . . , qi, . . . , qn, B] τ−→ [q, q1, . . . , q′
i, . . . , qn, B], iff [qi, τ, q′

i] ∈ δi (internal
move by Ai),

– [q, q1, . . . , qi, . . . , qn, B] !x−→ [q′, q1, . . . , q′
i, . . . , qn, B + [x]], iff [qi, !x, q′

i] ∈ δi

and [q, !x, q′] ∈ δM (asynchronous send by Ai, monitored by M),
– [q, q1, . . . , qi, . . . , qn, B + [x]] ?x−→ [q′, q1, . . . , q′

i, . . . , qn, B], iff [qi, ?x, q′
i] ∈ δi

and [q, !?, q′] ∈ δM (asynchronous receive by Ai, monitored by M),
– [q, q1, . . . , qi, . . . , qj , . . . , qn, B] !?x−−→ [q′, q1, . . . , q′

i, . . . , q
′
j , . . . , qn, B], iff

[qi, !?x, q′
i] ∈ δi, [qj , !?x, q′

j] ∈ δj, and [q, !?x, q′] ∈ δM (synchronization be-
tween Ai and Aj, monitored by M).

The monitor synchronizes with the message events of the service automata, but
does not constrain their behavior. The monitor only has an effect on the final
states of the composition. Only if all service automata and the monitor reach a
final state, this state is final in the monitored composition.

We can now change the point of view and regard the monitor as a service that is
communicating with several other services by synchronous message events. Again,
this service will reach a final state iff the message events from the environment
are observed in the correct order.

Definition 9 (Monitor service automaton). Let C be a regular choreography
w.r.t. a collaboration {P1, . . . , Pn} and let M = [QM , δM , q0M , FM] be a monitor
for C. Define the monitor service automaton AM := [Q, I,O, δ, q0, F] with
Q := QM , I := {I1, . . . , In}, O := {O1, . . . , On}, q0 := q0M , and F := FM .
Define δ : Q× {!?〈x〉 | x ∈ E}→ Q with δ(q, !?〈x〉) := δM (q, x).
1 Choreographies specified by interaction Petri nets, UML collaboration diagrams,

BPMN, or Let’s Dance are always regular if they assume synchronous communication.

66 Niels Lohmann und Karsten Wolf

Due to the nature of a choreography to exist of message events (not the messages
itself), all message events of the monitor service automaton are synchronous.
The original nature of the event (synchronous or asynchronous) is, however,
encoded in the events by using the event ?!〈x〉 for event x. The existence of
service automata that are compatible to this monitor service automaton proof
realizability of the choreography:

Theorem 1. Let C be a regular choreography w.r.t. a collaboration {P1, . . . , Pn}
and AM a monitor service automaton for C.

1. C is partially realizable iff AM is decentralized controllable.
2. C is distributedly realizable iff AM is decentralized controllable and for the

set of strategies S holds:
⋃

[A1,...,An]∈S Chor(A1 ⊕ · · ·⊕ An) = C.
3. C is completely realizable iff AM is decentralized controllable and there exists

a strategy [A1, . . . , An] such that Chor(A1 ⊕ · · ·⊕ An) = C.

A strategy for the monitor service automaton is a set of service automata such
that the overall composition is compatible. While these automata communicate
solely synchronously with the monitor service automaton, a tuple of service
automata that actually realize the original choreography can be derived by
changing every message event !?〈x〉 back to x (e.g. “!?〈!x〉” to “!x”). These
service automata then can also communicate asynchronously with other peers,
yet still follow the specified choreography.

5 Conclusion

In this paper, we linked the realizability problem to controllability, making ex-
isting tools and algorithms applicable to check choreographies. In particular,
our approach allows for specification and synthesis of asynchronous peer imple-
mentations. This avoids a subsequent analysis and correction when trying to
“asynchronize” peer implementations [10]. The current results are independent
of a concrete choreography or service description language, but can be easily
adapted.

In future work, we plan to study how choreography and service design can be
mixed. For example, the realizability of a choreography can be checked w.r.t. some
already completely specified peers. Such an approach would nicely complement
the participant synthesis introduced in [11] by using controllability for both
interaction models and interconnection models.

Acknowledgements This work is funded by the DFG project “Operating
Guidelines for Services” (WO 1466/8-1).

References

1. Dumas, M., Benatallah, B., Nezhad, H.R.M.: Web service protocols: Compatibility
and adaptation. IEEE Data Eng. Bull. 31(3) (2008) 40–44

Realizability is controllability 67

2. Decker, G., Weske, M.: Local enforceability in interaction petri nets. In: BPM 2007.
LNCS 4714, Springer (2007) 305–319

3. Zaha, J.M., Barros, A.P., Dumas, M., Hofstede, A.H.M.t.: Let’s dance: A language
for service behavior modeling. In: OTM 2006. LNCS 4275, Springer (2006) 145–162

4. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2)
(1983) 323–342

5. Fu, X., Bultan, T., Su, J.: Conversation protocols: a formalism for specification
and verification of reactive electronic services. Theor. Comput. Sci. 328(1-2) (2004)
19–37

6. Bultan, T., Fu, X.: Specification of realizable service conversations using collabora-
tion diagrams. SOCA 2(1) (2008) 27–39

7. Zaha, J.M., Dumas, M., Hofstede, A.H.M.t., Barros, A.P., Decker, G.: Service
interaction modeling: Bridging global and local views. In: EDOC 2006, IEEE
Computer Society (2006) 45–55

8. Wolf, K.: Does my service have partners? LNCS ToPNoC II(5460) (2009) 152–171
9. Lohmann, N., Massuthe, P., Wolf, K.: Behavioral constraints for services. In: BPM

2007. LNCS 4714, Springer (2007) 271–287
10. Decker, G., Barros, A., Kraft, F.M., Lohmann, N.: Non-desynchronizable service

choreographies. In: ICSOC 2008. LNCS 5364, Springer (2008) 331–346
11. Lohmann, N., Kopp, O., Leymann, F., Reisig, W.: Analyzing BPEL4Chor: Verifi-

cation and participant synthesis. In: WS-FM 2007. LNCS 4937, Springer (2008)
46–60

Do We Need Internal Behavior in
Choreography Models?

Oliver Kopp and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart, Germany
Universitätsstraße 38, 70569 Stuttgart, Germany

{lastname}@iaas.uni-stuttgart.de

Abstract. Choreographies capture the message exchanges between multi-
ple processes. Certain choreography languages ignore the internal behavior
completely, other languages offer the possibility to model internal behav-
ior. This paper presents an example modeled in both types of languages
and discusses the need to integrate internal behavior in choreographies.

1 Introduction

A choreography defines the message exchanges between several processes. While it
is fundamental that a choreography language has to include the ability to express
message exchanges, it is an open question whether a choreography language
should offer constructs to model internal behavior. In this paper, we present a
sample choreography and use this example to discuss, whether internal behavior
should be modeled in a choreography.

The example is introduced in Sect. 2. Afterwards, it is modeled in Let’s Dance
(Sect. 3) and BPMN (Sect. 4). An overview on the support of modeling internal
behavior of the most prominent choreography modeling languages is given in
Sect. 5. Finally, Sect. 6 provides a conclusion and points out future work.

2 Drop-dead Order Scenario

Fig. 1 presents the drop-dead order scenario, where a customer requests a
distributor to ship products until a given drop-dead date. The distributor neither
produces the products by himself nor owns a delivery. Therefore, the distributor
asks a supplier whether he can produce the requested products in time and the
distributor asks a carrier whether he can carry the produced products by time.
If the supplier and the carrier agree, then the customer’s order is accepted and
rejected otherwise. The example itself was first presented in [1] and is used in [2]
to develop transaction requirements for services. We use this example in this
paper to illustrate the difference between different choreography languages.

Do we need internal behavior in choreography models? 69

!"#$%!&'!%

#"!&"

()*+#,&"
-.*+"./)+#"

'""'01&2
!&3.4&"5

#"!
&"

$"#
!)
6+*

7)$$3.&"

('"".&"

Fig. 1. Drop-dead oder (adapted from [1])

3 Let’s Dance Model

Let’s Dance [3] is a choreography language having the interaction as basic building
block. Therefore, the model is called “interaction model” [4]. A choreography
model of the drop-dead order scenario is presented in Fig. 2. The topmost box
denotes that a customer sends an order to a distributor. Control flow is modeled
using directed arcs. The first arc points to a group, labeled with a circled A
in the figure. In this group, the message exchange between the customer and
the shipper and between the customer and the carrier happens in parallel. The
crossed line between the acceptance and the rejection denotes that exactly one of
the two message exchanges may happen. After both the supplier and the carrier
have sent an answer, they have either accepted or rejected. Afterwards, group
B is active. In case both the supplier and the carrier accepted the request of
the distributor, they receive an acceptance of the distributor and the products
are built and delivered to the customer. Otherwise, the order is rejected at the
supplier and the carrier. The client’s order is rejected, too.

In the presented choreography, there is no internal behavior modeled. The
messages in the choreography suggest that the supplier is somehow produc-
ing products and that the carrier delivers them. However, there is no explicit
description of these tasks.

4 BPMN Model

Figure 3 presents the drop-dead order scenario using BPMN [5]. BPMN is a
choreography language belonging to the category of interconnection models [4].
In interconnection models, the control flow is modeled per participant. While the
interaction is one building block in interaction models, the interaction is split up
in send and receive activities in the case of interconnection models. To provide a
better overview on the model, one path through the model is highlighted. This
path denotes the case, where both the supplier and the carrier accept the request
of the distributor. First, the customer sends an order to the distributor, which
asks the supplier and the carrier in parallel, whether they can produce/deliver in
time. The supplier and the carrier decide and both accept the order. Since both
have accepted, they are notified that the distributer accepted, too. Finally, the

70 Oliver Kopp und Frank Leymann

!"#$"

%&'()*$" +,'(",-&()"

.$/&$'(01")#&2(

+,'(",-&()" 3&445,$"

.$/&$'(0+$5,6$"7

+,'(",-&()" %8"",$"

922$4(8:2$

3&445,$" +,'(",-&()"

.$;$2(,):

3&445,$" +,'(",-&()"

922$4(8:2$

%8"",$" +,'(",-&()"

.$;$2(,):

%8"",$" +,'(",-&()"

922$4(8:2$

+,'(",-&()" 3&445,$"

922$4(8:2$

+,'(",-&()" %8"",$"

1")#&2('0.$8#7

3&445,$" %8"",$"

1")#&2('

%8"",$" %&'()*$"

.$;$2(,):

+,'(",-&()" %&'()*$"

.$;$2(,):

+,'(",-&()" 3&445,$"

<=03&445,$"0822$4($#0>+,'(",-&()"?

.$;$2(,):

+,'(",-&()" %8"",$"

<=0%8"",$"0822$4($#0>+,'(",-&()"?

<=03&445,$"0)"0%8"",$"0"$;$2($#0>+,'(",-&()"?

Fig. 2. Drop-dead order scenario modeled in Let’s Dance

Do we need internal behavior in choreography models? 71

producer produces, notifies the carrier, which picks up the products and delivers
them to the customer.

Besides the split of the interactions into interconnections of send and receive
activities, two internal activities of the supplier and the carrier are shown. In
case of the supplier, the choreography model shows the decision activities and
the produce activity. When it comes to implement a supplier based on the
choreography description, the internal behavior can be used as basis for an
executable BPEL process [6]. In case the choreography model is detailed enough,
an IT export just has to add concrete WSDL information to the activity to turn
the process into an executable BPEL process.

!
"
#
$%
&
'
(

)"'*

+,$'-

.$'&#

)
.#
$(
./
"
$%
(

+'0.+'
,00'1$

('2'0$

1(%+"0'

3"114.'(

+'0.+'
,00'1$

('2'0$

!,((.'(

#"11
4.'(*

,00'
1$'+

0,((.'(*,00'1$'+

('2'0$.%5

('2'0$.%5

,00'1$

,00'1$

('2'0$.%5

1(%+"0$#*

,('*(',+6

+'4.7'(6

6

1.08"1

1(%+"0$

Fig. 3. Drop-dead order scenario modeled in BPMN

72 Oliver Kopp und Frank Leymann

5 Support of Internal Actions

Language Model Type Constructs for Internal
Behavior Available?

BPEL4Chor interconnection +
BPMN 1.2 interconnection +
iBPMN interaction –
Let’s Dance interaction –
WS-CDL interaction +

Table 1. Support of modeling internal actions in choreography languages

Table 1 lists five choreography languages and their support of internal actions.
The languages are chosen, because they are the most prominent choreography
languages. The second column denotes whether the language allows to model
interaction models or interconnection models.

BPEL4Chor [7] is a choreography language extending BPEL with choreogra-
phy constructs. Since BPEL is re-used, so called opaque activities can be used to
model internal behavior. The Business Process Modeling Notation Version 1.2
(BPMN 1.2) has been used in Sect. 4 to model the drop-dead order example. It
has been shown that this language supports internal behavior. iBPMN [8] is an
extension for BPMN to support interaction modeling. Each message exchange
is atomic and does not have to be modeled with two distinct send and receive
operations. iBPMN does not support the inclusion of internal behavior. It is
shown in Sect. 3 that Let’s Dance does not support the inclusion of internal
behavior. The Web Services Choreography Language (WS-CDL, [9]) provides the
“silent action activity” to express internal behavior. Thus, WS-CDL is the only
language following the interaction approach and providing support for internal
actions.

6 Conclusion and Outlook

In this paper, we gave an overview on the support of modeling internal behavior
in choreography languages. The drop-dead order scenario was introduced and
modeled using Let’s Dance and BPMN. Finally, we showed the support of internal
actions in five choreography languages. All languages supporting interconnection
models also support the modeling of internal behavior. In the case of interaction
models, two of the three languages do not support modeling internal behavior. WS-
CDL is the only language based on interaction models, where internal behavior
can be modeled.

The examples suggest that it depends on the use-case of the choreography
whether internal actions are needed. If the choreography is used to serve a basis

Do we need internal behavior in choreography models? 73

for executable processes, the internal actions can be seen as placeholders for calls
to internal services. Thus, the effort to build executable BPEL processes seems
less. We are going to describe concrete scenarios and to use them as basis for a
comparison.

Acknowledgments This work is supported by the BMBF funded project
Tools4BPEL (01ISE08B).

References

1. Haugen, B., Fletcher, T.: Multi-Party Electronic Business Transactions. Technical
report, UNCEFACT (2002)

2. Sun, C., Aiello, M.: Requirements and Evaluation of Protocols and Tools for
Transaction Management in Service Centric Systems. In: 31st Annual International
Computer Software and Applications Conference (COMPSAC 2007), IEEE Computer
Society (2007) 461–466

3. Zaha, J.M., Barros, A.P., Dumas, M., ter Hofstede, A.H.M.: Let’s Dance: A Language
for Service Behavior Modeling. In: CoopIS 2006: Proceedings 14th International
Conference on Cooperative Information Systems. Volume 4275 of Lecture Notes in
Computer Science., Springer (2006) 145–162

4. Decker, G., Kopp, O., Barros, A.: An Introduction to Service Choreographies.
Information Technology 50(2) (2008) 122–127

5. Object Management Group (OMG): Business Process Modeling Notation (BPMN)
Version 1.2. (2009) http://www.bpmn.org/.

6. OASIS: Web Services Business Process Execution Language Version 2.0 – OASIS
Standard. (2007)

7. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL
for Modeling Choreographies. In Society, I.C., ed.: Proceedings of the IEEE 2007
International Conference on Web Services, IEEE Computer Society (2007) 296–303

8. Decker, G., Barros, A.P.: Interaction Modeling Using BPMN. In ter Hofstede,
A.H.M., Benatallah, B., Paik, H.Y., eds.: CBP: Proceedings of the 1st International
Workshop on Collaborative Business Processes. Volume 4928 of Lecture Notes in
Computer Science., Springer (2007) 208–219

9. Kavantzas, N., Burdett, D., Ritzinger, G., Lafon, Y.: Web Services Choreography
Description Language Version 1.0. W3C. (2005) http://www.w3.org/TR/ws-cdl-10.

All links were followed on 2009-02-19.

Creating Message Profiles of Open Nets

Jan Sürmeli and Daniela Weinberg

Humboldt–Universität zu Berlin, Institut für Informatik
Unter den Linden 6, 10099 Berlin, Germany

{suermeli,weinberg}@informatik.hu-berlin.de

Abstract. In a network of services, external and internal decisions,
asynchronous message exchange, and concurrency induce complex in-
teraction protocols. In this paper we introduce the notion of a message
profile of a service that is modeled as a special kind of Petri net.
The message profile is obtained solely from properties of the given net
without requiring knowledge of interacting nets. It provides insight into
the interactional behavior of the service. The information may then be
used to enhance existing service analysis techniques as well as to verify
the service model on a message basis.

1 Introduction

The central part of the evolving paradigm of Service-Oriented Computing (SOC)
are services. A service represents a self-contained software unit that offers an
encapsulated functionality over a well-defined interface. The promising goal of a
SOC architecture is to ensure for each participating service to be loosely coupled
with another service with little effort [1] and thus, creating a network of services,
that is able to handle certain tasks. In contrast to other paradigms it is possible
to create a heterogenous network that crosses organizational boundaries.

In general, a service is not designed to be used stand-alone. It is the stateful
interaction of different services that adds significant value to SOC. Therefore,
with respect to SOC, we are interested in whether every service instance will
eventually terminate in a well-defined state with no useless (dead) activities be-
ing pending. This idea has already been formalized as usability in [2]. We use the
term controllability instead of usability to avoid misunderstandings w.r.t. other
well established meanings of “usability”. We analyze whether two services S and
S′ can interact properly [3]. A service S′ that properly interacts with service
S is a controller of S. In our approach, we model a service as an open net [4,
5], which is a special class of Petri nets that extends classical Petri nets by an
interface for communication with other open nets. We assume an asynchronous
setting in which the order of sending messages does not necessarily correspond
to the order of receiving those messages.

In a network of two or more services, external and internal decisions, asyn-
chronous communication, and concurrency induce complex interaction protocols.
In this paper, we introduce techniques that can be used to create a message pro-
file of a given service S. This profile may then serve as a guide for a controller

Creating a message profile for open nets 75

C with respect to which messages may be sent to S as well as how often S
accepts a particular message. The message profile is gained from analyzing the
open net model of S. Thus, knowledge of C is not required. With the help of the
behavioral properties stored in the message profile, we are able to characterize
possible controllers. So, we can exclude certain controllers before-hand which
enhances established methods such as partner synthesis [6] or the computation
of the operating guidelines of S [5]. Furthermore, we enable the modeler of S to
verify that the model mirrors its designated interactional behavior.

This paper is structured as follows. First, we briefly introduce open nets and
controllability notions in Sect. 2. In Sect. 3, we present techniques to build up
the message profile and show how it can be obtained by analysis of an open net.
Finally, we conclude our results in Sect. 4.

2 Open Nets and Controllability

We model services with open nets [4], which enhance classical Petri nets. An open
net is a tupel N = (P, T, F, Pin, Pout, m0, Ω) with P being the set of places, T the
set of transitions and F the flow relation. The set Pin ⊆ P (Pout ⊆ P) represents
the input channels (output channels) of the service. For the rest of this paper,
we call Pin (Pout) input (output) places and Pin ∪ Pout the interface of N . For
node n ∈ P ∪T the set •n = {x | (x, y) ∈ F} (n• = {y | (x, y) ∈ F}) is the preset
(postset) of n. We demand that •p = ∅ (p• = ∅) for every p ∈ Pin (p ∈ Pout) and
Pin ∩ Pout = ∅. Transition t ∈ T with •t ⊆ Pin / t• ⊆ Pout / •t ∪ t• &⊆ Pin ∪ Pout

is called a receiving / sending / internal transition. m0 is the initial marking and
Ω is the set of final markings, which constitute the set of final states that the
service should reach. The inner of a net N is obtained from N by removing the
input/output places and adjacent edges from N . The set LL = {mk, . . . ,mn} is
a livelock iff all mi ∈ LL are mutually reachable and from no mi an mj &∈ LL is
reachable.

Figure 1 depicts our example open net N1. The net has got five input places,
namely a, b, c, d, e and one output place F. The initial marking of N1 is [p0]
(depicted as a black token on place p0) and the set of final markings is {[p2], [p7]}.
We can easily see that from [p0] N1 is not able to reach a different marking unless
there is an additional token either on input place a, b or e. A token on an input/
output place represents a message. The open net N1 is able to send a message
to the output place and to receive messages from its input places. Therefore, we
are able to model the interaction between different open nets and thus have a
formal notion for modeling the interaction of services.

The interaction of two different open nets N and C is expressed by their
composition N ⊕C which is obtained by merging every input place of one open
net with the equally labeled output place of the other net (if that one is present).

Intuitively, controllability of an open net N means that N can properly in-
teract with some other net. So, N is controllable if there exists an open net C,
such that the composed open net N ⊕ C fulfills certain properties. Throughout

76 Jan Sürmeli und Daniela Weinberg

p0t0

p1

t1

t2

p2

t3

p3

t4

p4

t7

p5

t6t5

t8

p6

t9p7

t10p8

a c

F

db

e

Fig. 1. Example open net N1.

this paper we will call C a controller of N . We distinguish between DF-, WT-,
and RI-controllers based on the following notions [3].

Deadlock-Freedom (DF) states that all deadlocks of the composition N ⊕
C are final states of N ⊕ C and Weak-Termination (WT) (equal to Livelock-
Freedom) specifies that from every marking of N ⊕C a final marking of N ⊕C
is reachable. The property of open nets called responsiveness [3] can easily be
mapped to the composition of two services – Responsive Interaction (RI). A
composition is responsive if either from every marking m of N⊕C a final marking
of N ⊕ C is reachable, or from m a marking m′ is reachable such that either N
or C has sent or received a message. We further demand that each message sent
will eventually be received.

Controllability is only decidable for those open nets whose reachability graph
of the inner net is finite [7]. We also demand that the communication between
two open nets is limited – there are no more than k messages (k ∈) on any
interface place at any reachable marking of the composition [5, 7].

3 Message Profile

In this section, we introduce techniques that analyze the net N in order to create
a message profile of N . All methods avoid state space exploration and do not
require knowledge of a controller C of N .

In the message profile we store different kinds of information – how often
a specific message can be received, dependencies between messages, and which
messages are not to be sent to N by a controller.

Creating a message profile for open nets 77

Intuitively, there are two requirements for an arbitrary service S to receive
a message x: (1) S is in a state in which it accepts x, (2) a message x has been
sent by controller C already. These requirements can easily be mapped to an
open net N . Thus, (1) a receiving transition for x is enabled in the inner of N
and (2) a token is available on the corresponding input place.

When analyzing a receiving transition t in the inner of N one less precondition
for t to be enabled has to hold – the edge to its corresponding input place has
been removed. Thus firing t does not depend on the number of tokens on that
input place any more. So, we conclude that t can not fire more frequently in
N ⊕ C than in the inner of N . Knowing how many times a receiving transition
fires in the inner of N can thus lead to insights regarding the receiving behavior
of N in N ⊕ C. A firing limit for a transition t is a natural number n such
that there exists no path in the reachability graph with t occurring more than
n times.

There exist methods to compute the firing limit of a transition in a Petri net
that avoid state space exploration. Currently, we are looking for an approach
that fits best w.r.t. to the open net models of real processes. In this paper, usage
of the term firing limit will refer to some firing limit determined by an arbitrary
method. In the inner of our example open net N1 (Fig. 1) 1 is a firing limit for
{t0,t1,t2,t3,t9,t10} and ∞ for transitions {t4,t5,t6,t7}.

We can use the firing limit for receiving transitions in the inner of the net
as a basis and as an additional constraint for the creation of the message profile
without requiring any knowledge about C.

3.1 Receiving Limit

The idea behind the receiving limit n of a message x is to determine how often
x can be received by a service N at most, i.e. how often a receiving transition
for x fires in N ⊕ C. As we aim at being as general and controller-independent
as possible, we make use of the firing limit for receiving transitions in the inner
of N .

We calculate the receiving limit of message a of the example net N1 (Fig. 1).
The only receiving transition for message a is t0. The firing limit for t0 is 1.
Obviously, there is no guarantee that N1 will actually receive a, but it is safe to
say that N1 will receive a only up to once. We set the receiving limit for a to 1.

Let us take a look at transitions t4 and t6 with •t4 = •t6 = {p3}. Due to the
cycle, the firing limits for both t4 and t6 are ∞. Thus, we cannot determine a
finite number for the receiving limit of message d. So, we set it to ∞.

In N1 there exists exactly one receiving transition for each input place. Gen-
erally, for a message x, we set the receiving limit to the sum of the firing limits
of all receiving transitions of x. If there exists no receiving transition for x, the
receiving limit is 0 – N does not accept x in any marking. If we set the receiving
limit for x to ∞, there are two possible reasons – (1) There exists no bound
for N receiving x. Or, (2) we can not narrow down a finite number for such a
bound. Either way, a receiving limit of ∞ does not allow further conclusions.

78 Jan Sürmeli und Daniela Weinberg

Finding a finite receiving limit n for a message x proves to be very useful. Al-
though n might not be precise, as there is no guarantee that x will be received
exactly n times, it is always safe to say that sending x more than n times leads
to x being ignored. Therefore, we can conclude that every RI-controller respects
the receiving limit of each message. Thus, we include it in the message profile.
Summarizing, the receiving limits of the example net N1 are a:1,b:1,c:1,d:∞,e:1.

3.2 External one-time Decisions

So far, the message profile consists of a static number – the receiving limit for
each input message, only. In an open net N , however, there might exist depen-
dencies between messages that influence the actual acceptance of them. From
the structure of N we are able to extract conflicting receiving transitions. The
set of external one-time decisions contains all messages that these transitions
receive, {x, y, z}. Basically, a controller C influences the further course of N by
sending a message x, for instance. Because {x, y, z} are in conflict, messages
{y, z} will now be ignored by N . We include such a set of messages into the
message profile.

We will take a look at the open net N1 of Fig. 1 again. Examining the
transitions t0, t3 and t8 in the inner of N1, we can easily see that there exists
a conflict between them: •t0 = •t3 = •t8. The decision between t0, t3 and t8 is
non-deterministic in the inner of N1. But, considering the interface, the choice is
made by the controller – by sending one of the messages {a, c, e}. Assume message
a is received by N1. Then, no marking is reachable where one of {t0, t3, t8} is
enabled again. Thus, sending message c or e would result in N1 ignoring that
message.

In general, we construct such a set of messages M of an open net N as
follows. We start by finding a set of receiving transitions that are in conflict
with each other in the inner of N , set D. Then, we remove all transitions with a
firing limit of 0 from D, set D′. From the receiving transitions in D′ we extract
the corresponding messages, set M . Set M does not necessarily reflect a global
situation. Hence, we check whether the receiving limit of every message m ∈M
is 1. This way we ensure that there exists no receiving transition t ∈ T \D for m.
If that condition does not hold for a message, we remove it from M . We repeat
that process until the condition holds for each message of M . The resulting set is
now globally valid. So, sending more than one message from M always leads to N
ignoring at least one message. Therefore, no RI-Controller sends more than one
message from M which we include in the message profile. The set of conflicting
messages {a, c, e} forms an external one-time decision of N1.

3.3 Internal Decisions

Internal decisions describe dependencies between receiving transitions and in-
ternal or sending transitions. They potentially induce that messages cannot be
received. Based on the receiving limit we can decide if such a conflict leads to
ignored messages or not.

Creating a message profile for open nets 79

We look at t1 and the internal transition t2 in N1 (Fig. 1). In the inner of
N1, we find •t1 = •t2 = {p1}. Suppose marking m with m(p1) = m(b) = 1. The
decision between firing t1 or t2 is non-deterministic. Thus, we call t1 blocked by
an internal transition. The firing limits are t1:1,t2:1. Once t ∈ {t1, t2} fires, no
marking m′ is reachable such that any t′ ∈ {t1, t2} is enabled. Hence, N1 decides
non-deterministically between ignoring and receiving b .

For transitions t4 and t6 a similar pattern holds in the inner of N1, •t4 = •t6.
The difference is, that whenever one of {t4, t6} fires, a marking will be reached
in which both transitions are enabled again. Assume now a message d is sent
to N1 – even if t6 is fired consecutively, d can still be received in any reachable
marking.

More generally, a receiving transition t is blocked by an internal or sending
transition t′ if •t′ ⊆ •t holds in the inner of N . We call a a message x blocked
by an internal decision if (1) we find a finite receiving limit for x and (2) each
receiving transition for x is either blocked or has a firing limit of 0. No RI-
controller sends x. DF-controllers might send x, but then the composition will
always contain a livelock. We include an according set of messages in the message
profile. For N1 only message b is blocked by an internal decision, since condition
(1) does not hold for message d.

3.4 Trap Messages

Deficient modeling, modification of an existing service or deliberate design of
error conditions can lead to a structure, where the postset of an internal place
(neither an input nor an output place) of the underlying open net N is either
empty or consists of transitions with a firing limit of 0 in the inner of N . If
such a place is not marked in any final marking, firing a transition in its preset
traps N in a state from which no final state is reachable. We show under which
circumstances messages can be tagged as trap messages in the message profile.

Examining place p8 in the example open net N1 (Fig. 1), we notice that
from any marking m with m(p8) > 0 there will be no marking m′ reachable
with m′(p8) = 0. Additionally, mf (p8) = 0 for each final marking mf . Because
of •p8 = {t10}, transition t10 should never fire. We call m a trap marking,
p8 a trap place and t10 a trap transition. We propagate this property. Because
•t10 = {p6}, we conclude that a token on p6 induces firing of t10 and thus to
trapping the net. Thus, p6 is a trap place and all transitions of •p6 (= {t8})
are trap transitions. So, transition t8 is a trap transition. t8 is also a receiving
transition for message e. Since there exists no other receiving transition for
message e, it is obvious that sending message e will either lead N1 into a trap
state (if t8 fires) or it leads N1 to ignore message e (if t8 does not fire). Therefore
message e is not sent by any WT-controller.

To make sure that a specific message m is to blame for leading to a trap
marking, we analyze its receiving transitions and check if each of them is either
a trap transition or has a firing limit of 0. In that case, we tag m as a trap
message in the message profile. In N1, only message e is a trap message.

80 Jan Sürmeli und Daniela Weinberg

4 Conclusion and Future Work

With the help of the example open net N1 (Fig. 1) we have shown that we are
able to gain knowledge about the interactional behavior directly from the inner
of N1 without knowing any controller C or building up the reachability graph
of N1⊕ C. We now know that any RI-Controller C sends messages a and c not
more than once and completely avoids to send messages b and e. After having
sent a message x ∈ {a, c, e}, C sends no more messages from {a, c, e}.

Currently, we work on a prototypical implementation of our results. We ex-
plore solutions for finding firing limits for transitions. Further, we improve our
analysis methods and work on combining the methods to accomplish synergy
effects. So far, we only focus on receiving messages. It is also possible to extend
the message profile not only by further dependencies between receiving messages,
but to include information about sending messages as well. Regarding that, we
aim at developing a concept of compatibility of message profiles of two services
in order to improve matching of two services.

References

1. Papazoglou, M.: Web Services: Principles and Technology. Pearson - Prentice Hall,
Essex (2007)

2. Martens, A.: Analyzing Web Service Based Business Processes. In: FASE 2005.
Volume 3442 of LNCS., Springer-Verlag (2005) 19–33

3. Wolf, K.: Does my service have partners? Transactions on Petri Nets and Other
Models of Concurrency (2008) (Accepted for publication in November 2008).

4. Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to the
SOA. AMCT 1(3) (2005) 35–43

5. Lohmann, N., Massuthe, P., Wolf, K.: Operating Guidelines for Finite-State Ser-
vices. In: ICATPN 2007. Volume 4546 of LNCS., Springer-Verlag (2007) 321–341

6. Weinberg, D.: Efficient controllability analysis of open nets. In: WS-FM 2008.
LNCS, Springer-Verlag (2008) accepted.

7. Massuthe, P., Serebrenik, A., Sidorova, N., Wolf, K.: Can I find a partner? Inf.
Process. Lett. (2008) accepted.

An efficient necessary condition for compatibility

Olivia Oanea∗ and Karsten Wolf

Universität Rostock, Institut für Informatik
18051 Rostock Germany

{olivia.oanea,karsten.wolf}@uni-rostock.de

Abstract. Composing services makes sense only if they are compatible,
i.e. composition does not lead to problems such as livelocks or deadlocks.
In general, compatibility can be checked using state space explorations
on any kind of formal models of services.
Petri nets, one of the formal models in use, offer a rich theory for reasoning
without exploring a state space. Among the techniques is the so-called
state equation which forms a linear algebraic necessary condition for
reachability of states.
In this article, we show how the state equation can be applied for a
necessary condition for compatibility. This way, the number of expensive
state space based compatibility checks can be drastically reduced. The
condition can be applied even if compatibility is achieved through the
construction of a behavioral adapter (mediator).

1 Introduction

Service behaviors are compatible if their composition forms a closed system
(every outbound channel of a service is merged to an inbound channel of some
other service) and all involved services can execute their control flow completely.
Compatibility can be augmented with the requirement that all or certain activities
in the participating services can occur or other semantical constraints.

In this paper we show an approach for alleviating the costs of the compatibility
check for services modeled with Petri nets using their state equation. The state
equation provides a necessary condition for reachability of the final states of the
services in the composition under several constraints such as the enabling of
some events or choice covering. This result can be applied directly to adapter
synthesis [1]. Service adaptation (mediation) is a semi-automatic approach of
correcting incompatibilities between services in which transformation rules are
provided normally by hand to correct the message flow. The state equation
provides a necessary condition for the existence of such an adapter that uses the
specified rules.

In the remainder of this article, we first introduce notations for Petri net
models for services and the state equation. Section 3 gives the necessary condi-
tions for compatibility and derives other necessary conditions for compatibility
under some additional constraints. Section 4 presents a necessary condition to
adaptability. Section 5 concludes the paper.
∗ Supported by German Research Foundation (DFG) under grant WO 1466/11-1

82 Olivia Oanea und Karsten Wolf

a

b

c

a

b

c

d

d

e

a

b

c

d

e

N N ′ N ′′

e

t1

p

t2

t3

t4

t5p′

Fig. 1: An open net N and its partner open nets N ′ and N ′′

2 Petri nets as models of services and the state equation

Let Σ = {a, b, c, . . . } be a finite message type set, ?Σ = {?a, ?b, ?c . . . } a finite
set of receive events, and !Σ = {!a, !b, !c . . . } a finite set of send events. We also
write ?Σ =!Σ and ?Σ =?Σ.

We consider services modeled as open nets. An open net [2] is a Petri net [3]
with a special set of interface places which represent the communication channels
with other nets.

Definition 1. An open net is a tuple N = (P ∪ Pi ∪ Po, T, F, m0, Mf , l), where

– P, Pi, Po are the pairwise disjunct finite sets of internal/input/output places;
– T is the finite set of transitions so that (P ∪ Pi ∪ Po) ∩ T = ∅ which are

labeled by the partial function l : T →?Σ∪!Σ;
– F : ((P ∪Pi∪Po)×T)∪ (T × (P ∪Pi∪Po)) → N represents the flow function

so that F (p, t) = F (t′, p′) = 0, for all (p, t) ∈ Po × T and (t′, p′) ∈ T × Pi;
– m0, Mf represent the initial state (marking) and the finite set of final states,

respectively. We consider states as vectors over the set of places.

An open net is called closed when its interface is empty, i.e. Pi ∪ Po = ∅. The
projection of an open net on its transitions and internal places is a closed net
denoted by N . Open nets over ?Σ∪!Σ are composed [2] by merging their interface
places (i.e. an input and with an output place denoting the same message channel)
and is denoted by ⊕, with the corresponding initial and final markings. Figure 1
shows three open nets N, N ′, N ′′, each with the final marking with a token on
its double circled place.

A transition t ∈ T is enabled in a marking m if F (p, t) ≤ m(p) for all places
p. An enabled transition may fire yielding a (reachable) marking m′ so that

An efficient necessary condition for compatibility 83

m′(p) = m(p)− F (p, t) + F (t, p) for all places p, which is denoted by m
t−→ m′.

The reachability relation can be extended to sequences of transitions σ ∈ T ∗,
which is denoted by σ−→. Two open nets are called compatible if their composition
weakly terminates, i.e. from each state reachable from the initial state of the
composition, it is possible to reach a final state of the composition. A weaker
notion of compatibility is deadlock-freedom, i.e. at each non-final reachable state
(in the composition) it is possible to fire a transition.

Reachability analysis for Petri nets can be achieved by using typical structural
methods, e.g. methods which find algebraic approximations of the state space
with finite representation. The state equation [4] relates the behavior of a net
(given by states and firing sequences) and its structure (incidence matrix) and
can be solved using standard linear programming [5].

The incidence matrix CN ∈ N(P∪Pi∪Po)×T is defined by CN (p, t) = F (t, p)−
F (p, t) for all (p, t) ∈ (P ∪ Pi ∪ Po)× T . Let σ ∈ T ∗ be transition sequence. The
Parikh vector of σ is a vector σ̄ ∈ NT which assigns to each transition t ∈ T
its number of occurrences in σ. Let σ̄(a) = t∈T :l(t)=a σ̄(a) denote the number
of occurrences of all transitions labeled by a ∈!Σ∪?Σ. Given a firing sequence
m

σ−→ m′ of N , the firing equations for all places of N and all transitions in σ
can be written in matrix form m′ = m + C · σ̄, which is called the state equation.

Proposition 1 (Necessary condition for reachability). For every finite
firing sequence m

σ−→ m′ of N , the state equation m′ = m + CN · σ̄ holds.

3 Necessary condition for compatibility

We state now a necessary condition for compatibility as weak termination of two
composed open nets. The first conditions represent the state equations of the
open nets without their interface places. The last condition means that in all
solutions to the equation the number of occurrences of receiving events should
be equal to the number of occurrences for sending events for each such event.

Corollary 1. If N and N ′ are compatible (w.r.t. weak termination), then the
system LP(C

N
, C

N ′ , m0, m′
0, mf , m′

f , x, x′) is feasible.

LP(C
N

, C
N ′ , m0, m

′
0, mf , m′

f , x, x′) :
mf = m0 + C

N
· x x ∈ NT

m′
f = m′

0 + C
N ′ · x′ x′ ∈ NT ′

x(a) = x′(ā) ∀a ∈?Σ∪!Σ

If the equation does not have any solution then the final marking will not be
reachable in the composition from the initial marking.

Remark 1. In case services have more final states, separate systems of equations
are solved for each possible combination. For the nets N and N ′ in Figure 1
LP(C

N
, C

N ′ , m0, m′
0, mf , m′

f , x, x′) does not have any solution. Therefore, N
and N ′ are incompatible. Note that the converse does not hold, e.g. the nets
N and N ′′ in Figure 1, x′′(?a) = x(!a) = 2, x(?b) = x′′(!b) = 1, x(!d) =
x′′(?d) = 1, x(!c) = x′′(?c) = 0 and x(!e) = x′′(?e) = 0 is a solution for
LP(C

N
, C

N ′′ , m0, m′′
0 , mf , m′′

f , x, x′′), however N and N ′′ are incompatible as we
shall see in the remainder.

84 Olivia Oanea und Karsten Wolf

If N ⊕N ′ is deadlock-free then at each non-final reachable marking in the
composition there is an enabled transition, i.e. adding the disabling condition for
each transition leads to an infeasible system.

Corollary 2 (deadlock-freedom). If N⊕N ′ is deadlock-free then the following
system of inequations has no solution:

m = m0 + C
N

· x x ∈ NT , m ∈ NP

m′ = m′
0 + C

N ′ · x′ x′ ∈ NT ′
m′ ∈ NP ′

x(a) = x′(ā) + m′′(pa) ∀a ∈?Σ∪!Σ
m <> mf ∧m′ <> m′

f ∧ m′′ <> 0Pi∪Po m′′ ∈ NPi∪Po

p:FN⊕N′ (p,t)>0((m + m′ + m′′)(p) < FN⊕N ′(p, t)) ∀t ∈ T ∪ T ′

3.1 Necessary conditions for compatibility under constraints

Several variations for compatibility notions have been introduced [6–8] which
define behavioral constraints which can imposed on interacting services. Among
these settings we mention transition cover and place cover.

Message and event cover

Definition 2. We call an action a in ?Σ∪!Σ covered locally/globally iff a tran-
sition/all transitions labeled by a in the composition eventually becomes enabled
in the composition. A message place (channel) p ∈ Pi ∪ Po is called covered if
m(p) > 0, for some reachable marking m in the composition.

Let N and N ′ be two open nets and a ∈?Σ∪!Σ. We state now conditions
which should be added to LP(C

N
, C

N ′ , m0, m′
0, mf , m′

f , x, x′) to enforce local,
global event cover, place and message cover.

local event cover x(t) > 0 (t ∈ T : l(t) = a) or x′(t′) > 0 (t′ ∪ T ′ : l(t) = a);
place cover for p ∈ P there exists a t ∈ T so that F (p, t) > 0 and x(t) > 0

(similarly if p ∈ P ′);
global event cover x(t) > 0, for all t ∈ T : l(t) = a or x′(a) > 0;
message channel cover x(a) > 0 and x′(ā) > 0.

In N⊕N ′′ in Figure 1, a is locally covered but not globally covered (transition
t1). The message channel e is covered neither in N ⊕N ′ nor in N ⊕N ′′.

Free-choice sending cover Here, we want to strengthen the previously stated
condition by taking into account that compatibility does not refer to a single
execution (as the state equation would suggest). If an execution passes an
internal decision of one service then its partner needs to be able to react to all
possible outcomes for this decision. With the following consideration, we want to
incorporate this observation into our condition at least for so-called free-choice
decisions [3].

An efficient necessary condition for compatibility 85

Let x ∈ P ∪ T . The conflict cluster ν(x) of x is the smallest set satisfying
(1) : x ∈ ν(x), (2) : ∀q ∈ T : •q ∩ ν(x) %= ∅ =⇒ q ∈ ν(x) and (3) : ∀q ∈
P : q• ∩ ν(x) %= ∅ =⇒ q ∈ ν(x). We write ν when x is clear from the context.
A conflict cluster ν(x) so that |ν(x)| > 2 is called a sending free-choice conflict
cluster (SC) iff for all t1, t2 ∈ ν ∩ T , •t1 ∩ •t2 %= ∅ implies •t1 = •t2 and l(t) ∈!Σ
for all t ∈ T ∩ ν. In Figure 1 {p, t1, t2} represents such a SC in N . Note that a
SC in N is also a SC in N .

A SC in the composition of two nets N and N ′ is called covered if each
transition of the SC is in some firing sequence from the initial marking to the
final marking of the composition. For compatible partners, every reachable SC
in a service should be resolved by the partner.

Corollary 3. Let ν be a SC with ν ∩ T = {t1, t2} in N . If N and N ′ are
compatible and ν is covered in N ⊕N ′, then CLP(C

N
, C

N ′ , ν) is feasible.

CLP(C
N

, C
N ′ , ν) :

LP(C
N

, C
N ′ , m0, m′

0, mf , m′
f , x, x′)

LP(C
N

, C
N ′ , m0, m′

0, mf , m′
f , x̄, x̄′)

x(t1) > 0 ∧ x′(t2) > 0
{ν′ SC in N ′|ν′ ∩ T ′ = {t′1, t′2} ∧ x̄(t′1) > 0 ∧ x̄′(t′2) > 0∧

∧l′(t′1) = l(t1) ∧ l′(t′2) = l(t2)}

The last condition checks for the existence of a conflict cluster ν′ receiving
the messages sent by ν. The open nets N and N ′′ in Figure 1 are incompatible
as CLP(C

N
, C

N ′ , ν) has no solutions (the choice between the transitions labeled
by !a and !d in N ′′ is not covered) even if LP(C

N
, C

N ′′ , m0, m′′
0 , mf , m′′

f , x, x′′)
has solutions.

Remark 2 (deadlock-freedom under constraints cover). We can relax the deadlock-
freedom condition in Corollary 2 to express a necessary condition for local event
(transition) cover and SC cover:

t cover p:FN⊕N (p,t)>0(m + m′ + m′′)(p) ≥ FN⊕N ′(p, t), where t ∈ T ∪ T ′;
SC cover p:FN⊕N (p,t)>0(m + m′ + m′′)(p) ≥ FN⊕N ′(p, t) for all t ∈ ν.

Remark 3 (behavioral SC). The transition t4 of N in Figure 1 is dead and
removing it from N does not influence compatibility of N with any other partner.
Hence we can consider “behavioral” SC’s (e.g. {p′, t3, t5}) to be checked for
cover.

4 Necessary condition for adapter synthesis

The open nets N1 and N2 in Figure 2 do not satisfy the necessary condition in
Corollary 1, hence they are incompatible. Adapters are used to solve incompati-
bilities between interacting services. We consider here the approach in [1] with
weak termination as compatibility notion, where adapters are partially specified
by transformation rules on messages called SEA (Specification of Elementary
Actions). A general rule is described by r : x +→ x′, where x ∈ N!Σ and x′ ∈ N?Σ .

86 Olivia Oanea und Karsten Wolf

b

c

d

N1

a

b′

b′′

r4: !d !→

r2: b !→?b′+?b′′

r1: !→?a

r3: !→?c

t1r

t2r

t3r

t4r

N2AE

Fig. 2: Two open nets N1 and N2 and their partial adapter AE

The example in Figure 2 shows typical transformation rules: creation of a message
(e.g. !d !→), deletion of a message (!→?c), splitting a message into two messages
(!b !→?b′+?b′′). Each transformation rule is transformed into an open net which
communicates with the initial services and with an entity which controls the
application of these rules (e.g. the transition t1r) and the sending/receiving of
messages (denoted by dashed arrows). The open net obtained from the trans-
formation rules is called partial adapter AE . The adapter synthesis procedure
computes a partner C which controls N1 ⊕ AE ⊕ N2 and the final adapter is
C ⊕AE .

A direct consequence of Corollary 1 is that compatible partners have a solution
to their own state equation. We state this condition for the adapter setting.

Corollary 4. If N1 and N2 are adaptable by the set of transformation rules R,
then the state equation for ̂N1 ⊕AE ⊕N2 with initial marking m1

0 +m2
0 and final

marking m1
f + m2

f holds.

The state equation for ̂N1 ⊕AE ⊕N2, where AE is the partial adapter for the
rules {r1, r3, r4}, does not yield any solution, thus N1 and N2 are not adaptable
by {r1, r3, r4}.

In addition, we can formulate a necessary condition for transformation rule
cover. Let r : σ −→ σ′. We add to the state equation of ̂N1 ⊕A⊕N2 the con-
straint x(tr) > 0, where tr is the transition corresponding to the application of
the rule. Thus, we can eliminate rules which will never be fired in conjunction
with a proper terminating execution. In Figure 2, r3 and r4 are redundant rules.

5 Conclusion

In this paper we stated some necessary conditions for service compatibility using
the state equation for Petri nets. The advantage of using this approach to state

An efficient necessary condition for compatibility 87

space methods (e.g. [9–11]) is its lower computational complexity [5] (polynomial
for real solutions/exponential in the worst case for integer solutions). An area
of application for this approach is service discovery and service composition [8,
2], i.e. finding well-behaved partners for a particular service in a repository of
services. Service discovery and composition are inherently costly job (both from
time and space) w.r.t. the size of the repository and of the services themselves.
Using such a quick check can ease the task of a broker for discovering/adapting
potentially compatible partners for a service by disposing of those services which
do not satisfy the necessary criterion.

The approach presented in this paper allows for (in)compatibility to be
analyzed in a compositional way (incorrectness of a component can be used to
derive the incorrectness of the composition). This is complementary to structural
methods used in soundness analysis [12, 13] of monolithic workflow. As future
work, we plan to implement the state equation approach as a preliminary check for
service composition and adaptability and evaluate the efficiency of this approach
in the large on a set of case studies provided by industry.

References

1. Gierds, C., Mooij, A.J., Wolf, K.: Specifying and generating behavioral service
adapter based on transformation rules. Technical Report CS-02-08, Universität
Rostock, Rostock, Germany (2008)

2. Wolf, K.: Does my service have partners? LNCS ToPNoC 5460(II) (2009) 152–171
Special Issue on Concurrency in Process-Aware Information Systems.

3. Desel, J., Esparza, J.: Free Choice Petri nets. Volume 40 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press (1995)

4. Schmidt, K.: Narrowing Petri net state spaces using the state equation. Fundam.
Inform. 47(3-4) (2001) 325–335

5. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience series
in discrete mathematics. John Wiley & Sons (1986)

6. Wolf, K.: On synthesizing behavior that is aware of semantical constraints. In:
Proceedings of AWPN 2008. Volume 380 of CEUR Workshop Proceedings., CEUR-
WS.org (2008) 49–54

7. Lohmann, N., Massuthe, P., Wolf, K.: Behavioral constraints for services. In: BPM
2007. Volume 4714 of LNCS. (2007) 271–287

8. Stahl, C., Wolf, K.: Deciding service composition and substitutability using extended
operating guidelines. Data Knowl. Eng. (2008) (Accepted).

9. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL web services. In: WWW
’04, ACM (2004) 621–630

10. Schlingloff, B.H., Martens, A., Schmidt, K.: Modeling and model checking web
services. Electr. Notes Theor. Comput. Sci. 126 (2005) 3–26

11. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of service protocols using process
algebra and on-the-fly reduction techniques. In: ICSOC. Volume 5364 of LNCS.
(2008) 84–99

12. K. van Hee, Oanea, O., Sidorova, N., Voorhoeve, M.: Verifying generalized soundness
for workflow nets. In: PSI. Volume 4378 of LNCS., Springer (2007) 235–247

13. Verbeek, H.M.W., van der Aalst, W.M.P.: Woflan 2.0: A Petri-net-based workflow
diagnosis tool. In: ATPN 2000. Volume 1825 of LNCS., Springer (2000) 475–484

Umstrukturierung von WS-BPEL-Prozessen zur
Verbesserung des Validierungsverhaltens

Thomas S. Heinze1, Wolfram Amme1, Simon Moser2

1 Friedrich-Schiller-Universität Jena
{T.Heinze,Wolfram.Amme}@uni-jena.de

2 IBM Entwicklungslabor Böblingen
smoser@de.ibm.com

1 Einführung

Innerhalb der letzten Jahre wurde eine Vielzahl von Methoden zur Analyse von
verteilten Geschäftsprozessen der Sprache Web Services Business Process Execu-
tion Language (WS-BPEL) [2] entwickelt [3]. Mit Ausnahme einzelner Ansätze
konzentrieren sich die meisten der Techniken auf die Analyse des Kontrollflusses
und ignorieren die Datenabhängigkeiten der untersuchten Prozesse. Ein solches
Vorgehen birgt aber die Gefahr der Verfälschung von Analyseergebnissen in sich.
Insbesondere für die Analyse von Eigenschaften wie der (Verhaltens-) Kompati-
bilität [6] ist die Berücksichtigung der Datenabhängigkeiten von Bedeutung.

Ein Prozessfragment dass nicht fehlerfrei analysiert werden kann, falls Da-
tenabhängigkeiten ignoriert werden, ist in Abbildung 1 dargestellt. Die abgebil-
dete Aktivität OrderingSequence ist möglicherweise Bestandteil eines größeren
Geschäftsprozesses zur Realisierung eines Online-Shop. Darin kann ein Kunde
mehrere Bestellungen aufgeben (Nachricht Order), und so die Auftragsabwick-
lung (Aktivität OrderProcessing) zu jeder Bestellung einleiten. Nachdem der
Kunde alle Bestellungen übertragen hat, kann er den Bestellvorgang beenden
(Nachricht Complete). Zur Umsetzung enthält die Aktivität OrderingSequence
eine Schleife (While), deren Ausführung durch die boolesche Variable doOrder
gesteuert wird. Anfangs wird die Variable mit dem Wert true belegt und die
Schleife daher durchlaufen. Die Pick-Aktivität innerhalb der Schleife führt dann
entweder die Sequenz OrderProcessing aus, falls Nachricht Order empfangen
wird, oder die Sequenz Termination, falls der Kunde die Nachricht Complete
übermittelt. Im letzten Fall wird der Wert von doOrder auf false gesetzt und so
die Schleife beendet. Der Schleifenabbruch wird demzufolge durch Empfang der
Nachricht Complete ausgelöst, entsprechend nennen wir das verallgemeinernde
Muster auch nachrichtengesteuerter Schleifenabbruch. Da im Sprachumfang von
WS-BPEL derzeit kein Gegenstück zur break-Anweisung aus Sprachen wie Java
enthalten ist [2], kann dieses Muster nur unter Verwendung einer Schleife mit
einer booleschen Variablen als Schleifenbedingung realisiert werden.

Die in der Arbeit [6] angegebene und auf Petrinetzen basierende Kompa-
tibilitätsanalyse führt für Prozesse, die Fragmente dieses Muster enthalten, zu
fehlerhaften Ergebnissen. Dazu kann beispielsweise ein Partner zur Aktivität

Umstrukturierung von WS-BPEL-Prozessen 89

O
rd

er
in

g
 P

ar
tn

er
L

in
k

P
ar

tn
er

L
in

k
S

h
ip

p
in

g

$doOrder = true()

$index = 0

Invoke Shipment

$orderList[$index] = $order

$index = $index + 1

Reply Confirmation

$doOrder = false()

Reply OrderList

Complete

Order

Confirmation

OrderListing

Shipment

Pick

OnMessage Order OnMessage Complete

While($doOrder)

OrderingSequence

OrderProcessing Termination

pLoop

... ...

tLoopEntertLoopExit

...

...

Pick

Complete

Order

While

Abb. 1. OrderingSequence (links) und Teil des zugehörigen Petrinetzmodells (rechts)

OrderingSequence betrachtet werden, der genau eine Bestellung aufgibt. Die
Kommunikation besteht dann aus den aufeinanderfolgenden Nachrichten Order,
Confirmation, Complete und OrderList. Offensichtlich sind die beiden Frag-
mente kompatibel [6], da es zu keiner Verklemmung kommen kann. Die Kompa-
tibilitätsanalyse kommt aber zum gegenteiligen Schluss. Um die Analysierbar-
keit des darin verwendeten Petrinetzmodells zu gewährleisten, werden bedingte
Schleifen und Verzweigungen durch Nichtdeterminismus modelliert. Die Schleife
in OrderingSequence wird demnach auf die in Konflikt stehenden Transitionen
tLoopEnter und tLoopExit, zur Repräsentation des Schleifenein- und -austritts,
abgebildet (siehe auch Abbildung 1). Da der Konflikt willkürlich zu lösen ist,
kann die Schleife beliebig oft durchlaufen werden. In der Folge ist möglich, dass
die Aktivität OrderingSequence weitere Bestellungen erwartet, obwohl Nach-
richt Complete bereits empfangen wurde. Es kommt zu einer Verklemmung und
die Analyse zum Ergebnis, dass die beiden Fragmente nicht kompatibel sind.

Zusammenfassend ist die Kompatibilitätsanalyse in [6] im Hinblick auf das
beschriebene Muster nachrichtengesteuerter Schleifenabbruch fehleranfällig. Das
Weglassen der Datenabhängigkeiten von bedingten Schleifen und Verzweigungen
bedeutet eine zu starke Abstraktion innerhalb der verwendeten Petrinetzmo-
dellierung. Um die Zahl der dadurch verursachten Analysefehler zu verringern,
schlagen wir eine Umstrukturierungsmethode für Geschäftsprozesse der Sprache
WS-BPEL vor. Diese stellen wir im Folgenden anhand des nun eingeführten
Prozessfragments OrderingSequence vor. Die Methode erlaubt bedingte Schlei-
fen immer dann so zu transformieren, dass deren Datenabhängigkeiten in Kon-
trollabhängigkeiten umgewandelt werden können, wenn deren Schleifenbedin-
gungen zur Laufzeit nur auf Konstanten beliebigen Typs zugreifen. Das Resultat
dieser Transformation ist ein semantisch äquivalenter Prozess, indem die Daten-
abhängigkeiten der Schleifen, dass heißt deren Bedingungen, entfernt werden
können. Derart lässt sich die Anzahl von nichtdeterministischen Strukturen im
Petrinetzmodell verringern und so diese mögliche Fehlerquelle einschränken.

90 Thomas Heinze, Wolfram Amme und Simon Moser

2 Prozessrepräsentation

Um eine verlustfreie Repräsentation von Geschäftsprozessen der Sprache WS-
BPEL zu ermöglichen, verwenden wir eine Erweiterung von Workflow-Graphen.
Workflow-Graphen [8] werden häufig zur Analyse von Geschäftsprozessen ge-
nutzt, repräsentieren aber nur deren Kontrollfluss. Durch Anreicherung mit ei-
nem weiteren Repräsentationsformat, der Concurrent Static Single Assignment
Form (CSSA-Form) [5, 7], lassen sich auch die Datenabhängigkeiten modellierter
Prozesse wiedergeben. Wir nutzen daher eine Kombination beider Formate.

In Abbildung 2 ist der so erweiterte Workflow-Graph für das oben beschrie-
bene Prozessfragment OrderingSequence dargestellt. Darin modellieren Kno-
ten die Aktivitäten und Kanten verbinden die Knoten gemäß dem Kontrollfluss.
Elementare Aktivitäten (beispielsweise Reply Confirmation) werden unter Ver-
wendung eines einzelnen Knotens abgebildet. Sequenzen elementarer Aktivitäten
sind dann durch mehrere sukzessive verbundener Knoten repräsentiert. Im Fall
der Verzweigung Pick werden spezielle Knoten genutzt, um die Aufspaltung
(Pick) und Vereinigung (Merge) des Kontrollflusses darstellen zu können. Dies
gilt auch für die enthaltene Schleife While, für die der Knoten zum Aufspalten
des Kontrollflusses (Branch) die Schleifenbedingung enthält und der Knoten zur
Vereinigung (Header) des Kontrollflusses als Schleifenkopf bezeichnet wird.

CompleteOrder

5
n : Pick

True

False

41
n : Merge

2 13
!orderList = (orderList , orderList)

!index = (index , index)
3 24

4 2 3
!doOrder = (doOrder , doOrder)

!
1

orderList = (orderList , orderList)
init 3

n : Header
3

1 42
!index = (index , index)

2 1 4
!doOrder = (doOrder , doOrder)

2 1
n : index = 0

1
n : doOrder = true()
1

n : Reply Confirmation
01

n : OnMessage Complete
11

16
n : order = OnMessage Order

2 31
n : doOrder = false()

3 11
n : Reply OrderList(orderList)

n : Invoke Shipment(order)
17

3
n : index = index + 1

28

orderList , index , order)
3 11

2
n : orderList = update(

9

2
?(doOrder)

n : Branch
4

Abb. 2. Erweiterter Workflow-Graph

Umstrukturierung von WS-BPEL-Prozessen 91

Grundlegende Eigenschaft der CSSA-Form ist, dass Variablen (statisch) nur
einmal definiert werden dürfen.1 Zu diesem Zweck werden die Variablen in
OrderingSequence so umbenannt, dass jede Variablendefinition einen eigenen
Namen besitzt (beispielsweise doOrder1, . . . , doOrder4 für doOrder). Dadurch
verhalten sich alle Variablen wie konstante Werte. Insbesondere sind Beziehun-
gen zwischen Definition und Gebrauch einer Variablen nun explizit wiederge-
geben. Ein besonderes Vorgehen ist notwendig, falls mehrere Definitionen einer
Variablen auf verschiedenen Pfaden des Kontrollflusses in einem Knoten zusam-
mentreffen (so in Merge und Header). In diesem Fall werden Φ-Funktionen
eingefügt, um die konkurrierenden Definitionen zusammenzufassen (beispiels-
weise doOrder4 = Φ(doOrder2, doOrder3) in Merge). Die Operanden einer Φ-
Funktion bilden gerade die Variablendefinitionen und der Funktionswert ent-
spricht der Definition, die zur Laufzeit tatsächlich ausgeführt wurde.

3 Umstrukturierung

Aufbauend auf dieser Prozessrepräsentation lassen sich die Bedingungen von Ver-
zweigungen und Schleifen analysieren. Die Bedingung der in OrderingSequence
enthaltenen Schleife entspricht genau der Variablen doOrder2. Deren Wert wird
durch eine Φ-Funktion im Schleifenkopf Header definiert. Diese führt die kon-
kurrierenden Definitionen der Variablen vor Ausführung der Schleife (doOrder1)
und nach Ausführung eines Scheifendurchlaufs (doOrder4) zusammen. Dabei ist
die Definition nach Ausführung eines Durchlaufs ebenfalls durch eine Φ-Funktion
angegeben, die die Werte auf den zwei möglichen Pfaden innerhalb der Schlei-
fe zusammenfasst (doOrder2, doOrder3). Da alle Definitionen entweder einer
Konstantenzuweisung oder einer Φ-Funktion entsprechen, hängt der Wert von
doOrder2 lediglich vom Pfad des Kontrollflusses zur Laufzeit ab: Wird die Schlei-
fe zum ersten Mal ausgeführt, wird doOrder2 der Wert von doOrder1, also true,
zugewiesen und die Schleifenbedingung daher erfüllt. Dasselbe gilt für jeden
weiteren Durchlauf, solange bis die Zuweisung in Knoten n12 ausgeführt wird.
Danach wird doOrder2 der Wert von doOrder3, also false, zugewiesen. In der
Folge ist die Bedingung nicht mehr erfüllt und die Schleife wird abgebrochen.

Wir nennen Schleifenbedingungen dieser Art, in denen alle Variablen aus-
schließlich durch ineinander geschachtelte Φ-Funktionen und Konstantenzuwei-
sungen definiert sind, dynamisch konstant. Da der Wert einer solchen Bedingung
nur vom zur Laufzeit ausgeführten Kontrollflusspfad abhängig ist, können die
Datenabhängigkeiten der Bedingung offenbar auch durch Kontrollabhängigkei-
ten repräsentiert werden. Durch eine geeignete Transformation der zugehörigen
Schleife lassen sich die entsprechenden Kontrollabhängigkeiten erzeugen.2 Auf
diese Weise wird die Schleifenbedingung redundant und kann innerhalb des um-
strukturierten Prozessfragments entfernt werden.
1 Aufgrund der statischen Betrachtungsweise werden auch Variablendefinitionen in-

nerhalb von Schleifen als einmalige Definitionen angesehen.
2 Als eine Einschränkung der Umstrukturierungsmethode werden solche Φ-Funktionen

ausgeschlossen, die innerhalb von Schleifenköpfen anderer Schleifen definiert werden.

92 Thomas Heinze, Wolfram Amme und Simon Moser

...

1

2
n

2 1 4
doOrder = (doOrder , doOrder)!

...

3

?(doOrder)
2

n : Branch
4

False

n : doOrder = true()
1

n : Header

...

...

n : doOrder = true()
1 1

2
n

...
2

!
1 2

doOrder = (doOrder , doOrder , doOrder)
3

3
n : Header

?(doOrder)
2

n : Branch
4

False

...

4 2 3
!

...

14
n : Merge

doOrder = (doOrder , doOrder)

True

5
n

10
n

13
n

312
n : doOrder = false()

...

...

True

5
n

10
n

13
n

312
n : doOrder = false()

...

...

Abb. 3. Überführung der Schleife in Normalform

Vor der eigentlichen Transformation einer Schleife mit dynamisch konstanter
Schleifenbedingung, wird diese in Normalform überführt. Die Normalform ist
durch die Auftrennung aller Pfade des Kontrollflusses charakterisiert, auf denen
in einem beliebigen Schleifendurchlauf unterschiedliche Werte für die Variablen
der Schleifenbedingung definiert werden. Diese Überführung ist für die Schleife
des Prozessfragments OrderingSequence in Abbildung 3 dargestellt. Die Varia-
ble der dort vorhandenen Bedingung (doOrder2) kann, wie oben beschrieben,
für einen beliebigen Schleifendurchlauf drei verschiedene Werte annehmen. Die
Wahl des Wertes wird dabei durch den zuvor ausgeführten Kontrollflusspfad
bestimmt. Um nun die Pfade aufzutrennen, muss der Knoten Merge aufgelöst
werden, da er zwei der drei möglichen Werte zusammenführt (doOrder2 und
doOrder3). Da der unmittelbare Nachfolger dieses Knotens gerade dem Schlei-
fenkopf Header entspricht, reicht es dazu aus, die Vorgängerknoten n10 und n13

direkt mit dem Kopf zu verbinden und die Operanden der darin enthaltenen
Φ-Funktionen anzupassen (Operand doOrder4 durch doOrder2 und doOrder3

ersetzen). Anschließend kann der Knoten Merge entfernt werden.
Die Normalform wird dann als Blaupause im folgenden Transformations-

schritt genutzt. In diesem Schritt werden mehrere Instanzen der Blaupause er-
zeugt und miteinander verbunden. Wir nennen den Schritt dementsprechend
Schleifeninstanziierung. Jede Instanz repräsentiert eine mögliche Belegung der
in der Schleifenbedingung genutzten Variablen mit konstanten Werten. Für die
Schleife in OrderingSequence werden so zwei Instanzen erzeugt, wie in Abbil-
dung 4 dargestellt. In der ersten Instanz (Instance 1) wird die Variable doOrder2

durch den Wert true ersetzt, in der zweiten (Instance 2) durch den Wert false.

Umstrukturierung von WS-BPEL-Prozessen 93

...

n : doOrder = true()
1 1

2
n

Instance 1

...

15
n : Header

Instance 2

...

n : Header
3

4
n : Branch

?(true())
False

16
n : Branch

?(false())
False

10 13

12

n n

n : doOrder = false()
3

22 25

624

n n

n : doOrder = false()

True

...

...

17
n

True

5
n

...

...

Abb. 4. Transformation unter Verwendung von Schleifeninstanzen

Dadurch ist die Schleifenbedingung in beiden Instanzen statisch auswertbar.
In der Folge lassen sich die Bedingung und die unmöglichen Kontrollflusspfade
in OrderingSequence entfernen (Kanten (n4, End) und (n16, n17)). Das Ergeb-
nis dieser Umstrukturierung ist in Abbildung 5 angegeben. Offenbar ist darin
der Abbruch der Schleifenausführung, nach Empfang der Nachricht Complete,
explizit durch den Kontrollfluss wiedergegeben. Innerhalb des zugehörigen Petri-
netzmodells [1] kann daher auf die Verwendung nichtdeterministischer Konflikte
verzichtet, und so eine folgende Kompatibilitätsanalyse präzisiert werden.

1

2 1

n : doOrder = true()

n : index = 0

1

5
n : Pick

Order Complete

2 31

3

n : OnMessage Complete
11

n : doOrder = false()

1
n : Reply OrderList(orderList)

1

orderList , index , order)
3 11

n : Invoke Shipment(order)

3
n : index = index + 1

2

1

n : order = OnMessage Order
1

8

6

7

n : Reply Confirmation
01

2
n : orderList = update(

9

n : Header
3

!orderList = (orderList , orderList)
1 init 2

1 32
!index = (index , index)

Abb. 5. Umstrukturiertes Prozessfragment

94 Thomas Heinze, Wolfram Amme und Simon Moser

4 Zusammenfassung

Der vorliegende Beitrag beschreibt eine bereits vollständig entwickelte Umstruk-
turierungsmethode für verteilte Geschäftsprozesse der Sprache WS-BPEL. Die
vorgestellte Methode ist in der Lage die Datenabhängigkeiten einer bestimmten
Art von Schleifen in semantisch äquivalente Kontrollabhängigkeiten zu trans-
formieren. Auf diese Weise können die Prozessmodelle bestehender Analysen
präzisiert und so die Verfälschungen von Analyseergebnissen verringert werden.

Die vorgestellte Umstrukturierungsmethode kann auch auf Verzweigungsbe-
dingungen angewendet werden und ist nicht auf Bedingungen mit einer einzelnen
Variablen oder auf boolesche Variablen beschränkt. Eine detaillierte Darstellung
der Methode, einschließlich der Beschreibung verwendeter Algorithmen und ei-
nem Korrektheitsbeweis, erfolgt in einem technischen Bericht [4].

Literatur

[1] Aalst, W. M. P. d. ; Hirnschall, A. ; Verbeek, H. M. W.: An Alternative
Way to Analyze Workflow Graphs. In: Pidduck, A. B. (Hrsg.) ; Woo, C. (Hrsg.) ;
Mylopoulos, J. (Hrsg.) ; Ozsu, M. T. (Hrsg.): Proceedings of the 14th International
Conference on Advanced Information Systems Engineering (CAiSE 2002), May 27-
31, 2002, Toronto, Canada, Springer-Verlag, 2002 (LNCS 2348), S. 535–552

[2] Alves, Alexandre ; Arkin, Assaf ; Askary, Sid ; Barreto, Charlton ; Bloch,
Ben ; Curbera, Francisco ; Ford, Mark ; Goland, Yaron ; Gúızar, Alejandro ;
Kartha, Neelakantan ; Liu, Canyang K. ; Khalaf, Rania ; König, Dieter ; Marin,
Mike ; Mehta, Vinkesh ; Thatte, Satish ; Rijn, Danny van ; Yendluri, Prasad ;
Yiu, Alex: Web Services Business Process Execution Language Version 2.0. 2007

[3] Breugel, Franck van ; Koshkina, Maria: Models and Verification of BPEL. 2006
[4] Heinze, Thomas S. ; Amme, Wolfram ; Moser, Simon: Resolving Conditional

Branches in WS-BPEL Business Processes / Friedrich-Schiller-Universität Jena, Fa-
kultät für Mathematik und Informatik. 2009. – noch nicht erschienen

[5] Lee, Jaejin ; Midkiff, Samuel P. ; Padua, David A.: Concurrent Static Single
Assignment Form and Constant Propagation for Explicitly Parallel Programs. In:
Li, Zhiyuan (Hrsg.) ; Yew, Pen-Chung (Hrsg.) ; Huang, Chua-Huang (Hrsg.) ;
Chatterjee, Siddharta (Hrsg.) ; Sadayappan, P. (Hrsg.) ; Sehr, David (Hrsg.):
Proceedings of the 10th International Workshop on Languages and Compilers for
Parallel Computing (LCPC ’97), August 7-9, 1997, Minneapolis, Minnesota, USA,
Springer-Verlag, 1998 (LNCS 1366), S. 114–130

[6] Martens, Axel ; Moser, Simon ; Gerhardt, Achim ; Funk, Karoline: Analyzing
Compatibility of BPEL Processes. In: Proceedings of the Advanced International
Conference on Telecommunications and International Conference on Internet and
Web Applications and Services (AICT/ICIW 2006), February 19-25, 2006, Guade-
loupe, French Caribbean, IEEE Computer Society Press, 2006, S. 147

[7] Moser, Simon ; Martens, Axel ; Görlach, Katharina ; Amme, Wolfram ; God-
linski, Artur: Advanced Verification of Distributed WS-BPEL Business Processes
Incorporating CSSA-based Data Flow Analysis. In: Proceedings of the 2007 IEEE
International Conference on Services Computing (SCC 2007), July 9-13, 2007, Salt
Lake City, Utah, USA, IEEE Computer Society Press, 2007, S. 98–105

[8] Sadiq, Wasim ; Orlowska, Maria E.: Analyzing Process Models Using Graph
Reduction Techniques. In: Information Systems 25 (2000), Nr. 2, S. 117–134

Improving Control Flow Verification in a
Business Process using an Extended Petri Net

Ganna Monakova, Oliver Kopp, and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart, Germany
{monakova, kopp, leymann}@iaas.uni-stuttgart.de

Abstract. In a business process, control flow decisions are based on the
evaluation of conditions. Thus, conditions must be considered for control
flow verification. This paper shows how the Petri nets based control flow
verification can be improved by analysing conditions and logical relations
between them. We outline a Petri net extension with predicate transitions,
which are responsible for conditions evaluation based on the collected
knowledge, and effect places, which contain fact tokens representing the
effects of certain operations and decisions made.

1 Introduction

Motivating Example: Verifying constraints,

x ! 100x > 100
if

y := 10*x

B

x ! 100x > 100

switch
x>1000x>100

A

y := 20*x

if
y ! 50y > 50

A B

BPEL switch execution semantic:

C D - B will never be executed

- The whole switch will be skipped if x <= 100

The rule C must always be executed if A has

! The data conditions constrain the set of possible markings

The rule C must always be executed if A has

been executed is satisfied for this process

! The data conditions constrain the set of possible markings

! Assign, receive produce facts

! Currently the data conditions in the petri net can b evaluated to the runtime,

b t t t th d i ti

4

but not to the design time

Fig. 1. Example process
fragment

As the complexity of business processes grows,
the need for automatic verification becomes more im-
portant. We show an approach for verification for
processes modelled with Petri nets. The properties
to verify represent the constraints on possible execu-
tion traces. An example of such a constraint is “the
payment must always be followed by a shipment”,
which can be expressed using LTL as G(Payment→
FShipment). To show that this constraint is fulfilled,
it must be proved that there is no possible execu-
tion path that contains a payment before a shipment
(temporal dependency) and that there is no execution
path that contains payment without shipment (causal
dependency). Note that the above constraint allows the execution of shipment
without payment.

The process fragment depicted in Fig. 1 shows why the data relations should
be considered for the control flow verification. The fragment presents two if-
construcrts, each having two branches. We define an acivity execution condition
as a Boolean expression that is constructed recursively by analyzing all conditions
that have to be satisfied to enable the execution of this activity [1]. For example,
the execution condition of activity A from Fig. 1 is (x > 100) and the execution
condition of B is (x ≤ 100).

Assume that the constraint “A must always be followed by C” must be
satisfied for a process containing this fragment. This constraint is always satisfied,

96 Ganna Monakova, Oliver Kopp und Frank Leymann

since the execution condition of C is implied by the execution condition of A
and the fact that y becomes equal to 10 ∗ x if the left branch of the first if is
executed. Current Petri net based verification approaches abstract from the data
and their relations and therefore make non-deterministic choice in both of the
switch-constructs, which makes the phantom execution path (A;D) possible.

This paper shows how a Petri net can collect knowledge and use the collected
knowledge to reason about the next step. Sect. 2 presents related work in this
field. The proposed extensions are shown in Sect. 3. Sect. 4 describes how the
process knowledge is collected during the Petri net analysis and Sect. 5 shows
how the collected knowledge is used for the predicate transitions evaluation.
Sect. 6 demonstrates the analysis of the process fragment shown in Fig. 1 using
the presented approach before Sect. 7 concludes.

2 Background and Related Work

A number of non-deterministic decisions take place during the analysis of a
Petri net: selection of a specific if-branch, skipping or executing an activity, and
entering or exiting a loop. In the business process the decisions depend on the
evaluation of the corresponding conditions: branching condition, join condition,
loop condition. A join condition is a starting condition of a branch and is a
Boolean formula over the states of all incoming links [2]. Typically, the translation
of a business process to a Petri net ignores these conditions. The justification is
that the actual data coming into the process is not known at static validation
and therefore the conditions cannot be evaluated. The process model, however,
contains read-write dependencies between the activities, which can be used for
an advanced verification [3]. Logical relations between variables can be captured
by execution conditions as described in [1]. In this paper, we show how logical
relations can be used for a more precise Petri nets based control flow verification.
The technique presented in this paper can be used as extension to the mapping
of a BPEL process to the corresponding Petri net [4].

An overview of existing BPEL formalizations and verification approaches is
provided in [5]. We presented in [1] a summary of the presented approaches and
showed that none of them includes the interplay between previous and following
decisions. Thus, all of the approaches include the phantom path (A;D) in their
analysis. The work of [1] put loops and scopes as future work. In the work
presented here, we include loops and scopes, since the mapping of BPEL to Petri
nets is complete [4].

3 An Extension for Petri Nets

The conditions constrain the execution of the business process. In addition, the
control flow decisions made in the past can influence the decisions in the future,
as the example of Fig. 1 illustrates: if the left branch of the first if-activity is
taken, then y is set to 10 ∗ x, where x > 100 according to the branch condition.
This will influence the branch selection of the second if-activity. This implies
that the execution trace, which contains activity A and activity D, is impossible.
It will, however, be considered as possible during the Petri net analysis if the data

Improving control flow verification in a business process 97

conditions are neglected. Such phantom execution trace can only be detected if
the relation between decisions leading to the execution of the activities A and D
are known.

Each decision is bound to a certain condition. If a decision has to be made,
the condition is evaluated and, depending on the evaluation result, a certain path
in a workflow is chosen. During process runtime, the evaluation of the condition
is simple, since instance data is available. At design time, however, instance data
is not available and thus only relations between process variables and between
conditions can be analysed. If a certain path in a workflow is chosen, then the
condition of this path is true (e.g. x > y). Thus, even if we do not know the
actual data, we know that the data relations captured in the path condition (e.g.
x > y) are in force. We also say that the decision produces an effect relations.

Switch Extension

if

A B

C1 C2

A B

(! C1 " C2)==trueC1==truePT1 PT2

D1 D2

A B

C2 = trueC1 = trueP1 P2

8

Fig. 2. if activity in an extended Petri
net

We add a predicate transition to
decide whether a certain path can be
executed. A predicate transition is re-
sponsible for the evaluation of the con-
dition for a certain execution trace
based on the collected knowledge. A
decision transition is the transition
responsible for selecting the actual ex-
ecution trace from all possible execu-
tion traces. A trace is considered to
be an alternative if the corresponding
condition was evaluated to true or un-
known by the predicate transition, see
Sect. 5. We record the effect of the decision made by producing a token for an
effect place added after each fired decision transition. This token means that the
condition on this path is true and thus the relation represented by this condition
is in force.

Effect places, predicate and decision transitions for an if -activity with two
branches are shown in Fig. 2. The predicate transitions PT1 and PT2 are respon-
sible for the evaluation of the branch conditions: C1 for the left and C2 for the
right branch. If the corresponding condition evaluates to true, the token will be
produced in the outgoing place, which in its turn will enable the selection of the
corresponding branch. If the condition evaluates to false, then the token from
the incoming place will be consumed and no token for the outgoing place will be
produced. Note, that the branch conditions are adjusted in such a manner that
only one of the conditions can simultaneously evaluate to true. This complies with
the if-activity execution semantic [6]. If evaluation of both conditions returns
unknown, both predicate transitions will produce a token and the if-branch will
be chosen non-deterministically. As soon as the branch selection decision has been
made by a decision transition, the relations between process variables represented
by the recorresponding branch condition come in force. This is indicated by a
token in the corresponding effect place: P1 for the left and P2 for the right branch.
Note that the effect places cannot be put directly after the decision transitions,

98 Ganna Monakova, Oliver Kopp und Frank Leymann
Join Extension

Li1, ...Lin

A

Li1 Lin...
Join control flow

Lo1, ...Lok

JC(A)==true JC(A)==falsePT3 PT4

The activity has a join condition on

links Li1, ... Lin: Join(1...n)

Execute A

JC(A)=falseJC(A)=true

Skip A

P3 P4

D3 D4

For each join condition add a rule to

Jena for dead path elimination :

Join(1...n) ->Lo1 = false,

Split control flow

Lo1 Lok...() ,

...Lok = false

Where Lo1...Lok are outgoing links of

this activity

9

y

(a) flow ac-
tivity

Join Extension

Li1, ...Lin

A

Li1 Lin...
Join control flow

Lo1, ...Lok

JC(A)==true JC(A)==falsePT3 PT4

The activity has a join condition on

links Li1, ... Lin: Join(1...n)

Execute A

JC(A)=falseJC(A)=true

Skip A

P3 P4

D3 D4

For each join condition add a rule to

Jena for dead path elimination :

Join(1...n) ->Lo1 = false,

Split control flow

Lo1 Lok...() ,

...Lok = false

Where Lo1...Lok are outgoing links of

this activity

9

y

(b) flow activity extended Petri net

Fig. 3. flow activity
to honor the fact that both branch conditions can evaluate to unknown and thus
the actual decision will be made by the decision transition.

Fig. 3(a) shows an activity in a BPEL flow. The activity has n incoming
links and a join condition defined on the status of these links. Fig. 3(b) shows
an extended Petri net for this activity. Here, the predicate transitions PT3 and
PT4 are responsible for evaluation of the join condition, which helps the decision
transitions D3 and D4 to decide whether the activity A is to be executed or
skipped. The extension required for loop constructs is similar to the if -activity
extension and is not shown in this paper due to the space limitations. An assign-
activity establishes relations between process variables which are come in force
after the activity has been executed. Therefore, an additional effect place is added
after the transition representing an assign activity. The next section presents how
the produced effects can be stored to enable reasoning on the colected knowledge.

4 Collecting Knowledge

The variable and condition relations currently in force are represented by the
tokens in the effect places. The effect places, and thus the knowledge about the
data relations, may either result from a decision effect or from a relation between
process variables introduced by an assign activity. A decision effect is a result of a
decision made for transition conditions, join conditions, if and pick branches. Let
C be the condition of the path selected by the decision transition. Then a new fact
C = true is added to the knowledge base. The relations between process variables
captured in the assign statements can also influence decisions. For example, if an
assignment y := x + a was executed and it is known that a > 0, then it can be
derived that y > x. If an assign activity x := f(y1, . . . , yn) is executed, then the
statement x = f(y1, . . . , yn) becomes a fact and is added to the knowledge base.
Thereby, every occurrence of the same variable on the left side of assignment
gets a new index each time an assignment fact is added to the knowledge base.
If a variable occurs on the right side of the assignment, the variable with the
highest index currently available in the knowledge base is used. Note that this is
different to the CSSA approach [7], as in this case there is no need to consider the

Improving control flow verification in a business process 99

exclusive or concurrent read-write accesses to the same variable (expressed with
the φ and π-functions in CSSA). The reason for this is the step-by-step analysis
considered in this paper, which implies that the knowledge base cannot contain
contradictory information: only the relations captured in the assign statements
on the chosen branch are added to the knowledge base and the order of the
concurrent assignments is the one selected by the Petri net navigator. A receive,
pick and invoke activity can be considered to contain an implicit assign of the
message content to the process variables.

5 Reasoning on the Collected Knowledge

A predicate transition represents an invocation of a reasoner. A reasoner evaluates
the transition condition based on the current knowledge in the knowledge base.
This section shows how the evaluation of the condition can be reduced to the
satisfiability problem. Let F1, . . . , Fn be the current facts in the knowledge base,
let C be the condition to be evaluated. The condition evaluates to true if it
can be proved that C can be derived from the current facts in the knowledge
base. Formally speaking, the following must hold: F1, . . . , Fn ! C. To prove
this, the following formula is checked for its satisfiability:

(∧
i∈{1,...,n} Fi

)
∧ ¬C.

If this above formula is unsatisfiable, then C will always evaluate to true for
this execution path and therefore a token will be produced by the predicate
transition responsible for the evaluation of the condition C. If the above formula
is satisfiable, the following formula is checked:

(∧
i∈{1..n} Fi

)
∧C. If this formula

is unsatisfiable, then C will always evaluate to false for this execution path. In
this case the transition will not produce any token. If both formulas are satisfiable,
then the decision can only be made based on the concrete data and therefore both
cases should be considered for the analysis. In this case, the predicate transition
produces a token which will compete with other tokens. The actual decision will
be made non-deterministically by the decision transition in the same way as for
the non-extended Petri net: one of the tokens will be consumed, the others will
remain in their places and wait for the backtracking and selection/consumption
of the next token. The collected facts in the knowledge base represent the logical
relations between process variables currently in force. The satisfiability of the
above formulas based on the current relations is checked using the Satisfiability
Modulo Theories (SMT) solver Yices [8]. An SMT solver solves satisfiability
problems for Boolean formulas containing predicates of underlying theories. Such
theories can be, for example, theories of arrays, lists and strings [9]. In addition,
an SMT solver can be extended with new theories as shown in [10].

6 Example

Fig. 4 illustrates the analysis of the process fragment from Fig. 1. Fig. 4(a) shows
the first invocation of the reasoner on the current knowledge base. Since no
previous information is available, the knowledge base is empty and therefore
returns unknown for both conditions. Fig. 4(b) shows the status after the left
branch was non-deterministically taken. This decision transition produces a token

100 Ganna Monakova, Oliver Kopp und Frank LeymannPetri net simulation – Example

x!100x>100

x!100x>100

y:= 10*x

y=10*x

y:= 20*x

y=20*x

A Buknown

y 10 x y 20 x

y!50>50 y!50y>50

15

C D

y ! 50y>50

(a)

Petri net simulation – Example

x ! 100x>100

x ! 100x>100

y:= 10*x

y=10*x

y:= 20*x

y=20*x

A B

y 10 x y 20 x

y!50>50

x[0] > 100

y!50y>50

16

C D

y ! 50y>50

(b)Petri net simulation – Example

x ! 100x>100

x ! 100x>100

y:= 10*x

y=10*x

y:= 20*x

y=20*x

A B

y=10 x y 20 x

y ! 50>50

x[0] > 100

y[0] = 10*x[0]

true
falsey ! 50y>50

true
false

17

C D

y ! 50y>50

(c)

Petri net simulation – Example

x ! 100x>100

x ! 100x>100

y:= 10*x

y=10*x

y:= 20*x

y=20*x

A B

y=10 x y 20 x

y ! 50>50

x[0] > 100

y[0] = 10*x[0]

y ! 50y>50

18

C D

y ! 50y>50

(d)

Fig. 4. Analysis using knowledge base and a reasoner

Improving control flow verification in a business process 101

in the effect place x > 100 and the corresponding relation is added as a fact to
the knowledge base. Fig. 4(c) shows the next invocation of the reasoner. There,
the condition y > 50 evaluates to true and y ≤ 50 evaluates to false. Fig. 4(d)
shows the status after the firing of the predicate transitions for the second if

statement. The predicate transition of the right branch consumes the token on
its input place, but does not produce an output token, since y ≤ 50 evaluates to
false, while the predicate transition of the left branch produces an output token.
Thus, only the left branch of second if activity is enabled.

7 Conclusions and Outlook
This paper showed how a Petri net based verification of a business process
can be enhanced by adding effect places and predicate transitions. We showed
how the conditions on the predicate transitions can be evaluated using the
knowledge collected during the Petri net analysis. This enables resolving the non-
deterministic decisions if the current decision strongly depends on the previously
made decisions. Thus the “phantom” paths can be removed from the reachability
graph which makes the analysis more effective and precise.

The presented approach can also be used to analyze compositions of business
processes, called choreographies. In this case, the knowledge base is shared by all
processes and thus each process is aware of the constraints on the input data.

Our future work is to investigate the impacts of our work on current Petri
net reduction techniques. We are going to integrate the presented approach in
LoLA [11] to prove the applicability of the approach.

References

1. Monakova, G., et al.: Verifying Business Rules Using an SMT Solver for BPEL
Processes. In: BPSC. (2009)

2. Leymann, F., Roller, D.: Production Workflow – Concepts and Techniques. Prentice
Hall PTR (2000)

3. Moser, S., et al.: Advanced Verification of Distributed WS-BPEL Business Processes
Incorporating CSSA-based Data Flow Analysis, IEEE Computer Society (2007)
98–105

4. Lohmann, N.: A Feature-Complete Petri Net Semantics for WS-BPEL 2.0. In:
WS-FM. (2007)

5. Breugel, F.v., Koshkina, M.: Models and Verification of BPEL. http://www.cse.
yorku.ca/~franck/research/drafts/tutorial.pdf (2006)

6. OASIS: Web Services Business Process Execution Language Version 2.0. (2007)
7. Lee, J., Midkiff, S.P., Padua, D.A.: Concurrent Static Single Assignment Form and

Constant Propagation for Explicitly Parallel Programs. In: International Workshop
on Languages and Compilers for Parallel Computing, Springer (1997)

8. Dutertre, B., de Moura, L.: The YICES SMT Solver (2008) Available at http:
//yices.csl.sri.com/.

9. Beckert, B., et al.: Intelligent Systems and Formal Methods in Software Engineering.
IEEE Intelligent Systems 21(6) (2006) 71–81

10. Nelson, G., D., O.: Simplification by Cooperating Decision Procedures. ACM
Transactions on Programming Languages and Systems 1(2) (1979) 245–257

11. Schmidt, K.: LoLA: A Low Level Analyser. In: ICATPN. (2000) 465–474

Facilitating Rich Data Manipulation in BPEL using E4X

Tammo van Lessen, Jörg Nitzsche, and Dimka Karastoyanova

Institute of Architecture of Application Systems
University of Stuttgart

Universitaetsstrasse 38, 70569 Stuttgart, Germany
{firstname.lastname}@iaas.uni-stuttgart.de

http://www.iaas.uni-stuttgart.de

Abstract. The Business Process Execution Language (BPEL) uses XML to spec-
ify the data used within a process and realizes data flow via (globally) shared
variables. Additionally, assign activities can be used to copy (parts of) variables to
other variables using techniques like XPath or XSLT. Although BPEL’s built-in
functionality is sufficient for simple data manipulation tasks, it becomes very
cumbersome when dealing with more sophisticated data models, such as arrays.
ECMAScript for XML (E4X) extends JavaScript with support for XML-based data
manipulation by introducing new XPath-like language features. In this paper we
show how E4X can help to significantly ease data manipulation tasks and propose
a BPEL extension that allows employing JavaScript/E4X for implementing them.
As E4X allows defining custom functions in terms of scripts, reusability with
respect to data manipulation is improved. To verify the conceptual framework we
present a proof-of-concept implementation based on Apache ODE.

1 Introduction

Business Process Management (BPM) and the workflow technology [1,2] in particular
have enjoyed a great success and have a heavy impact on industry and research. The
separation of business process logic and implementation of business functions enables
programming on a higher, i.e. business process-oriented level [3], and renders the
workflows flexible. Currently, the language for executable business processes is the
Business Process Execution Language (BPEL) [4] which is standardized by OASIS1.
BPEL is XML based and is a part of the Web Service standard stack [5]. It uses XML as
data model and specifies activity implementations using the Web Service Description
Language (WSDL) [6].

Data flow in BPEL is not explicitly specified but can be realized using (globally)
shared variables. Assign activities can be used to copy (parts of) variables to other vari-
ables using XML data processing techniques. Although arbitrary expression languages
(e.g. XPath [7] and XSLT [8]) can be used to specify expressions to select and copy
data, specifying the data manipulation is still a cumbersome task. For instance, it is not
possible with the conventional use of BPEL to add elements into a node set (i.e. array
operations) or to modify a certain value of a filtered node set.

1 http://www.oasis-open.org/

Facilitating rich data manipulation in BPEL using E4X 103

ECMAScript for XML (E4X) [9,10] extends JavaScript with support for XML-
based data manipulation by introducing new XPath-like language features. The resulting
language provides convinient access to XML data and intuitive scripting primitives
with direct support for e.g. array operations. In this paper we use this extension to
improve BPEL with respect to its data manipulation capabilities and therefore we
propose an extension to WS-BPEL 2.0 to allow defining variable assignments in terms
of JavaScript/E4X expressions. For this we employ the extensibility features of BPEL,
in particular, <extensionActivity> and <extensionAssignOperation>.
This approach contributes a significant enhancement to data manipulation.

The paper is structured as follows. Section 2 provides background information about
ECMAScript for XML. Subsequently, The BPEL extensions for E4X are presented in
Section 3 and are explained by example in Section 4. Section 5 presents a proof-of-
concept implementation based on Apache ODE. Finally, Section 6 discusses related
work and Section 7 concludes the paper.

2 ECMAScript for XML (E4X)

ECMAScript for XML (E4X) is a language extension that adds native support for XML
to the ECMAScript family [11] (including JavaScript, ActionScript, JScript etc.). Unlike
other programming languages (like Java) that allow accessing XML data either as event
stream or in terms of the W3C DOM object model, E4X allows processing of XML data
directly on the language level. The XML tree can be navigated using an object-like “dot”
notation and allows for addressing XML child elements, attributes and node sets. Node
sets can be filtered using parentheses. The example in Listing 1 illustrates how an E4X
object is created and how subsequently the values of the quantity attribute for all items
with the name “SOA book” are retrieved. The example also shows how E4X can be used
in for loops to sum up the prices of all items in the example shopping cart.! "
var items = <items>

<item name="SOA book" price="40" quantity="2"/>
<item name="BPM book" price="35" quantity="3"/>
<item name="EAI book" price="30" quantity="1"/>

</items>;

alert(items.item.(@name == "SOA book").@quantity);

for each(var thisPrice in items..@price) {
sum += thisPrice;

}# $
Listing 1. E4X sample code

E4X allows assigning data values not only to single XML nodes but also to node
sets. This enables batch-like modifications of multiple nodes with a single assignment
expression (see [12] for further details about E4X).

104 Tammo van Lessen, Jörg Nitzsche und Dimka Karastoyanova

3 E4X Extension for BPEL

BPEL 2.0 introduces effective extensibility mechanisms that allow for defining new
activity types (extension activities) as well as using different mechanisms for data
manipulation (extension assign operations). Since E4X provides powerful language
extensions to directly address and modify XML data, it makes a good candidate for
significantly improving BPEL’s data manipulation capabilities. The E4X extension for
BPEL is defined in terms of an extension namespace and an extension element for
both <extensionAssignOperation> and <extensionActivity> elements.
The extension namespace2 must be declared as a mustUnderstand extension in the
preamble of the BPEL process model to ensure that BPEL engines can understand and
execute E4X expressions. Subsequently, the <js:snippet> element can be used
within assign and extension activities respectively and can contain arbitrary JavaScript
code.

The E4X extension for BPEL comprises two main parts. First, it makes sure that all
visible BPEL variables are injected into the JavaScript context so that they can be treated
as normal E4X variables within the JavaScript code snippet. Second, it defines a number
of functions that are necessary to glue both worlds together. These functions are listed in
Table 1.

load(string...) Allows importing reusable JavaScript libraries. That
way, code snippets can be reused across JS/E4X ex-
tended activities.

print(string...) Allows printing debug messages to the underlying en-
gine’s logging console.

validate(BPELvariable) Makes sure that the given XML object complies with
the variable declaration.

throwFault(...) Creates a BPEL fault with a given QName and fault
message.

processName() Returns the name of the process model that is currently
being executed.

activityName() Returns the name of the activity that executes the
JavaScript snipped that is currently being executed.

piid() Returns the name of the activity that executes the
JavaScript snipped that is currently being executed.

Table 1. E4X/BPEL built-in function list

2 http://ode.apache.org/extensions/js

Facilitating rich data manipulation in BPEL using E4X 105

4 Example

As identified in Section 1 the most burdensome tasks are the (recurring) initialisation
of variables and dealing with arrays (which always requires the use of external XSL
scripts). In Listing 2 we demonstrate how E4X extension assign operations are utilized
in BPEL. The first operation makes use of the string concatenation operator += and
realises a typical Hello World! example. The second operation addresses the problems
mentioned above. First, it loads an external, reusable JavaScript library, which contains
helper methods to create and manipulate XML structures for our shopping cart example.
Instead of manually assigning an XML skeleton to a BPEL variable and setting several
values later on using XPath expressions, we can (re)use a shared method to create an
empty shopping cart. In the last line we use a different JavaScript method to transform
the values of the BPEL variable item, which was received from an external service,
into the XML format prescribed by the shopping cart structure. Subsequently it is added
to the virtual shopping cart (+= is the add operator on a node set).

! "
<assign name="e4x-assign">

<extensionAssignOperation>
<js:snippet xmlns:js="http://ode.apache.org/extensions/js">

myVar.TestPart += ’ World’;
</js:snippet>

</extensionAssignOperation>
<extensionAssignOperation>

<js:snippet xmlns:js="http://ode.apache.org/extensions/js">
load(’shoppingCartUtils.js’);
shoppingCart.parameters = createShoppingCartSkeleton();
shoppingCart.parameters.items += createCartItem(item);

</js:snippet>
</extensionAssignOperation>

</assign># $
Listing 2. JavaScript/E4X as extension assign operation implementation

Listing 3 demonstrates how to use JavaScript/E4X as extension activity implemen-
tation. We assume that the shopping cart has been transformed into a purchase order
structure. Depending on the customer type (gold, silver, besteffort), we want to apply
different discount ratios. After checking whether the ratios are within a reasonable range,
the selected ratio is applied to all items, again by assigning values to a node set. In
addition we set the shipping mode to a non-priority mode for best-effort customers.

5 Implementation

The concepts proposed above have been implemented as an extension to Apache ODE3

and will be part of the upcoming ODE 2.0 release. It was originally intended to be a proof-
of-concept implementation for the also newly introduced implementation of BPEL’s

3 http://ode.apache.org

106 Tammo van Lessen, Jörg Nitzsche und Dimka Karastoyanova

! "
<extensionActivity name="calculateDiscount">
<js:snippet xmlns:js="http://ode.apache.org/extensions/js">
if (goldRatio > 1.0 || silverRatio > 1.0) {
throwFault(’urn:myprocess’, ’IllegalArgumentFault’,

’discount ratios must be <= 1.0’);
}
if (customer.type == ’gold’) {
po.items.item.price *= goldRatio;

} else if (customer.type == ’silver’) {
po.items.item.price *= silverRatio;

} else if (customer.type == ’besteffort’) {
po.shippingMode = ’snailmail’

}
</js:snippet>

</extensionActivity># $
Listing 3. JavaScript/E4X as extension activity implementation

extensibility mechanisms in ODE. It provides an extension operation implementation
which integrates Apache ODE with Mozilla’s Rhino4 as the underlying JavaScript/E4X
engine. Since the internal XML model of Rhino is not compatible with W3C’s DOM
model used by Apache ODE, it was necessary to implement a variable bridge that facili-
tates overlaying BPEL variables in the JavaScript context. This has been implemented
in terms of a Rhino Delegator. The built-in functions are realized by overriding
Rhino’s ImporterTopLevel. The source code is available in Apache’s Subversion
repository5.

6 Related Work

BPELJ [13] is an extension to BPEL that enables the use of Java code within BPEL
activities. While the focus of BPELJ and the approach presented here is similar, BPELJ
does not comply with the extensibility features of BPEL 2.0 yet. Furthermore, selecting
an XML node in a DOM representation is still cumbersome since Java does not enable
selecting XML nodes directly. Hence E4X for BPEL becomes a valuable extension that
addresses this deficiency.

[14] proposes an extension to BPEL enabling data manipulation based on ontological
knowledge. Using the semantics of data used in a process allows abstracting away
the actual implementation of the data manipulation task. It is sufficient to describe
which ontology concepts will be provided as input and what is expected as output to
discover appropriate data mediators using ontology reasoning. Abstracting away the
actual implementation of the data manipulation in processes completely frees process
modellers from defining data transformation in a process model and increases reusability
of data manipulation tasks. The downside of this approach is that performance decreases

4 http://www.mozilla.org/rhino/
5 http://svn.eu.apache.org/repos/asf/ode/trunk/extensions/e4x

Facilitating rich data manipulation in BPEL using E4X 107

because appropriate transformation/mediation implementations have to be discovered
every time data has to be copied from one variable to another. Using the custom E4X
functions however, enables defining highly performant and reusable data manipulation
functionality.

7 Conclusion

Data manipulation in BPEL is based on XML data processing which makes it a cum-
bersome task. In this paper we have proposed a BPEL extension that allows employing
Javascript/E4X for data manipulation tasks in BPEL and we have shown how E4X can
help to significantly ease their implementation. Moreover, reusability with respect to data
manipulation is improved as E4X allows defining custom functions in terms of scripts. To
verify the conceptual framework we have presented a proof-of-concept implementation
based on Apache ODE.

Acknowledgements

The work published in this article was partially funded by the SUPER project6 under the
EU 6th Framework Programme Information Society Technologies Objective (contract
no. FP6-026850).

References

1. Leymann, F., Roller, D.: Production workflow. Prentice Hall (2000)
2. van der Aalst, W., van Hee, K.: Workflow management. MIT Press (2002)
3. Leymann, F., Roller, D.: Workflow-based applications. IBM Systems Journal 36(1) (1997)

102–123
4. A. Alves et al.: Web Services Business Process Execution Language Version 2.0. Committee

specification, OASIS (January 2007)
5. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.: Web Services Plat-

form Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable
Messaging and More. Prentice Hall PTR Upper Saddle River, NJ, USA (2005)

6. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Description
Language (WSDL) 1.1 (2001)

7. Clark, J., DeRose, S.J.: XML Path Language (XPath) Version 1.0. World Wide Web
Consortium, Recommendation REC-xpath-19991116 (November 1999)

8. Adler, S., Berglund, A., Caruso, J., Deach, S., Grosso, P., Gutentag, E., Milowski, R.A.,
Parnell, S., Richman, J., Zilles, S.: Extensible Stylesheet Language (XSL) Version 1.0. World
Wide Web Consortium, Recommendation REC-xsl-20011015 (October 2001)

9. International Organization for Standardization: Information Technology — ECMAScript for
XML (E4X) Specification. ISO/IEC 22537:2006 (February 2006)

10. Ecma International: ECMAScript for XML (E4X) Specification. Standard ECMA-357 (June
2004)

6 http://www.ip-super.org/

108 Tammo van Lessen, Jörg Nitzsche und Dimka Karastoyanova

11. Ecma International: ECMAScript Language Specification. Standard ECMA-262 (December
1999)

12. Tynjala, J.: E4X: Beginner to Advanced. http://developer.yahoo.com/flash/
articles/e4x-beginner-to-advanced.html

13. Blow, M., Goland, Y., Kloppmann, M., Leymann, F., Pfau, G., Roller, D., Rowley, M.: BPELJ;
BPEL for Java. Joint white paper by BEA and IBM (March 2004)

14. Nitzsche, J., Norton, B.: Ontology based data mediation in BPEL(4SWS). In: Proceedings of
the Workshop on Semantics for Web Services (semantics4WS 2008), Milano, Italy (September
2008)

A Method for Partitioning BPEL Processes for
Decentralized Execution

Daniel Wutke, Daniel Martin, and Frank Leymann

Institute of Architecture of Application Systems
University of Stuttgart

Universitätsstrasse 38, 70569 Stuttgart, Germany
{wutke,martin,leymann}@iaas.uni-stuttgart.de

http://www.iaas.uni-stuttgart.de

Abstract Service orchestrations are a common means to compose in-
dividual services to either higher-level services or potentially complex
composite applications. The Web Service Business Process Execution
Language (WS-BPEL) is an example for a language that allows for defi-
ning automatically executable orchestrations of Web services. As of today,
BPEL process are typically executed in a centralized manner; the process
model is deployed on a single workflow management system which, during
process instance execution, interprets the process definition and interacts
with the orchestrated Web services on behalf of the user. In previous work,
we have presented an approach which enables decentralized execution of
BPEL processes based on a decentralized process model and supporting
runtime infrastructure. In this paper we describe a method for automatic
splitting of a process among the partners participating in its execution,
referred to as process partitioning.

Key words: Process partitioning, decentralized process enactment, BPEL

1 Introduction

One of the key aspects of the Service-oriented Architecture (SOA) are service
compositions following the so-called two-level programming paradigm where
individual reusable services are composed into high-level services or potentially
complex service orchestrations which can executed automatically using workflow
management systems (WfMS). The means for defining the “wiring” between the
compound services is provided by workflow definition languages such as the Web
Service Business Process Execution Language (WS-BPEL) [1]. As of today, the
automatic execution of a BPEL process typically comprises the deployment of
the process model to a single WfMS and – after process instantiation triggered
by incoming messages sent by clients to the WfMS – continuous evaluation of (i)
the process’ control flow defined in the process model and (ii) the current state of

This work is supported by the EU funded project TripCom (FP6-027324),
http://www.tripcom.org.

110 Daniel Wutke, Daniel Martin und Frank Leymann

the process’ instance data by the WfMS’s navigator component; hence we refer
to process navigation being a centralized process.

However, a number of reasons, ranging from outsourcing of process fragments
to runtime performance optimizations without the need for process model changes,
motivate the need for a decentralized execution environment for BPEL processes.
Hence, in previous work [2,3,4], we have presented an approach that allows for
(nearly) arbitrary process splitting by enabling distributed navigation among the
partners participating in a process’ execution. Following this approach, once can
realized different deployment of the same process model within the spectrum
from ranging from centralized execution to fully decentralized execution where
each “step” (i.e. activity) being carried out by the process is executed by a
different process participant. Finding an “adequate” distribution, also referred to
as partitioning, of the process is dependent on a number of influential factors.
Subject of this paper is the presentation and discussion of these factors and a
high-level description of an approach to the process partitioning problem that
addresses each of the identified influential factors.

The remainder of the paper is structured as follows. In Section 2 the EWFN
process model provides the basis for the proposed approach is described to the
extend necessary for the discussion of the partitioning procedure. Based on
this foundation, Section 3 introduces the general idea of process partitioning,
discusses various parameters that influence process partitioning and outlines a
procedure that addresses each of the defined partitioning parameters. In Section 4
a brief overview of a few related approaches which are either particularly relevant
to the problem discussed in the paper due to either addressing the concrete
problem of partitioning BPEL processes or similar parameters influencing process
partitioning are presented.

2 Decentralized Enactment of BPEL Processes

Coordinating a number of distributed clients, where each of those clients realizes
a defined part of an overall process requires communication of both process
control flow and process instance data among the clients participating in the
process’ execution. In this context, control flow refers to the individual client’s
execution being started according to the order defined in the process model; the
term instance data characterizes both data being “visible” in process models
such as BPEL variables, partner links (which can be source or destination of
assignment operations) or correlation sets as well as “invisible” instance data
such as the state of a scope or the state of incoming message activities. While
this information is provided in the WS-BPEL specification through a description
of the language’s operational semantics, this description is – due to its informal
textual nature – neither suitable for automatic execution by WfMSs nor may it
serve as input for process partitioning.

As a result, the formalism of Executable Workflow Networks (EWFN) has
been developed on the basis of colored, non-hierarchical Petri nets [5] and
Boolean networks [6]; it allows for explicitly describing the data communicated

A method for partitioning BPEL processes for decentralized execution 111

during process instance execution using the communication primitives of the the
Linda Tuplespace model [7] – read for non-destructive and take for destructive
consumption of data, write for production of data – plus a number of extensions
that address process execution-specific requirements such as the sync operation
for synchronizing join operations [8].

!"#$%$&&&$%$!"' !()

!"*

!('

!"+

!(,

!('

!"-

!+

!""#$%

&'()'%*'

+',-.

.//012

!#

34(56$3788(9:!072$

372/0/!(25;

!)

34(56<78

7=(2$>?.

!#

@02:90A($

B(=9;

!*

CD$

E2F=702!!+

G:80:H9(/

@:09(FI:8!2(8J026/

D!:8!

D!:8!

3788(9:!072/ G:80:H9(/

>?.$$

D!:!(/

I:8!2(8J026/

E2F(F

E2F(FE2F(F

D!:8!

Figure 1. Example of the EWFN representation of a BPEL Sequence activity
with two contained assign and reply activities.

Figure 1 depicts the EWFN representation of a BPEL sequence activity
with two contained activities. Activities are depicted as dashed rectangles and
comprise (similar to Petri nets) transitions and places. Following the EWFN
formalism, transitions represent a piece of application logic and carry out the
actual processing. Transitions coordinate themselves by consuming tokens from
and producing tokens to places which provide passive buffers for tokens; the tokens
are self-contained in the sense that they provide enough information to uniquely
identify each token communicated in an EWFN. On the level of the infrastructure
supporting execution of EWFNs, places are realized by tuplespaces, transitions
by tuplespace clients. The arcs between transitions and places represent the
individual operations supported by the tuplespace interface and may be annotated
with a weight representing the operation cost, resulting e.g. from the volume of
the data being communicated as part of that operation.

As an example, transition t1 of the assign activity represents an assignment
of a value to either a BPEL variable or a partner link. To represent process
control flow t1 is activated by a token becoming available in its Start place;
once t1 has finished its execution is signals its successful completion to the

112 Daniel Wutke, Daniel Martin und Frank Leymann

subsequent activity by producing a corresponding token to its Ended activity.
Consuming and producing process control flow information is depicted as directed
black arcs between places and transitions and transitions and places respectively.
During execution of their application logic, transitions may consume and produce
further tokens representing instance data; in case of the depicted assign activity
this might include the modification of the value of a variable or the endpoint
reference assigned to a partner link. Similar to BPEL activities, EWFNs can be
nested as presented in the example with the sequence activity surrounding the
assign and receive activities. The operational semantics of the sequence
activity is defined as each contained activity becoming ready to execute once its
preceding activity has completed its execution. In the EWFN this is represented
by collapsing the Ended place of the assign activity and the Start place of the
receive activity into one place.

3 Process Partitioning

The term process partitioning refers to the procedure of assigning information
about the partner the corresponding node of the EWFN is executed by during
instance runtime to each transition and place of an EWFN. This process is
influenced by a number of parameters which can be classified in three groups.

Process model As outlined before, the EWFN of a BPEL process provides
a formal description of (i) the steps carried out during process instance
execution and (ii) the data being communicated along the way. As a result it
is one of the major parameters of the process partitioning procedure.

Service infrastructure Through BPEL’s interaction activities (e.g. invoke
and receive) the BPEL process may interact with Web service clients and
the Web services it orchestrates. As the partners providing a service used by
the process are in any event process participants they are potentially suitable
candidates for executing a part of the processes orchestration logic as well.

Organizational factors Organizational factors reflect parameters that are not
necessarily a result of the process structure or its service landscape, but
are defined manually by users. It might e.g. be desired to manually define
the partition of a certain place that contains BPEL variable data for data
ownership reasons.

The proposed process partitioning approach comprises three phases and is
an extension of the procedure presented in [9] in the sense that it also relies on
the notion of different kinds of nodes – fixed, heavy, and light – whose partition
assignment is addressed in consecutive phases of the partitioning algorithm as
depicted in Table 1; once a partition of a been determined in on of the phases
the node is not considered in the further phases of the algorithm.

Fixed nodes represent nodes with partitioning information defined a priori by
manual user input and reflect organizational partitioning parameters. To allow
for maximum flexibility, each node of an EWFN – transitions and places – can
become a fixed node. Interaction activities, i.e. those points of a BPEL process

A method for partitioning BPEL processes for decentralized execution 113

Phase 1. Fixed Nodes 2. Heavy Nodes 3. Light Nodes

Examined
Objects

Arbitrary nodes Interaction activities:
invoke, receive,
pick, reply

Non-interaction
activities; instance
data

Partitioning
Method

Manual assignment by
user; rules

Automatic service
discovery and service
selection; rules

Graph partitioning
applied to the process’
EWFN

Table 1. Phases of the proposed method to BPEL process partitioning.

where interaction with its service landscape occurs, are referred to as heavy
nodes. Their partitioning information is determined automatically using means
for service discovery (based on the service’s functional characteristics through its
WSDL description) and service selection (based on the service’s non-functional
properties such as service invocation cost, service response time, etc. reflected
through WS-Policy descriptions). In addition, partitioning information of heavy
nodes might be dependent on deployment information (e.g. for defining on which
endpoint the process can receive incoming messages) or other heavy nodes (e.g.
in case of receive-reply pairs to support synchronous Web service bindings).
Light nodes reflect non-interaction activities as well as process instance data
for which no partitioning information has been defined until this point. Their
partitioning is performed by migrating them to the partition of adjacent fixed
or heavy nodes as defined in the process’ EWFN. Since an EWFN is a directed
weighted graph and the problem is a variant of the well-known graph partitioning
problem with the optimization criteria of minimizing the cost of inter-partition
interactions, existing optimization algorithms such as Simulated Annealing [10]
are used to realize this phase of the partitioning algorithm.

4 Related Work

In [11], the authors introduce a workflow system architecture for supporting
large-scale distributed applications called Mentor based on TP monitors and
object request brokers. Decentralized workflow execution in Mentor is achieved
by rule-based partitioning of a workflow based on activity and state charts
into a set of sub-workflows which are then enacted by a number of distributed
workflow engines that are synchronized using Mentor. In [12], a BPEL process
model is manually split by a user (e.g. for reasons of process outsourcing) in a
number of fragments and a corresponding BPEL process (along with necessary
deployment information) is created for each fragment. The BPEL processes are
then deployed and executed at the partners participating in the process’ execution.
For supporting BPEL’s scope and while activities, a central coordinator is
required. In [9] a similar approach to distributed execution of BPEL processes is
presented supporting automatic process partitioning based on an analysis of a
program dependence graph generated for the process and a corresponding cost
model.

114 Daniel Wutke, Daniel Martin und Frank Leymann

5 Conclusions

In this paper we have outlined a process model that enables decentralized
execution of BPEL processes and allows for nearly arbitrarily fragmented process
execution. Thereby we have stressed the need for an algorithm for defining process
partitions based on a number of influential factors and have presented a high-level
overview of the proposed algorithm and how it addresses the individual process
partitioning parameters.

References

1. Organization for the Advancement of Structured Information Standards: Web
Services Business Process Execution Language Version 2.0 – OASIS Standard
(March 2007)

2. Wutke, D., Martin, D., Leymann, F.: Model and Infrastructure for Decentralized
Workflow Enactment. In: SAC ’08: Proceedings of the 2008 ACM Symposium on
Applied Computing, New York, NY, USA, ACM (2008) 90–94

3. Daniel Martin and Daniel Wutke and Frank Leymann: EWFN – a Petri net
dialect for tuplespace-based workflow enactment. Volume 380 of CEUR Workshop
Proceedings., CEUR-WS.org (September 2008) 7–14

4. Martin, D., Wutke, D., Leymann, F.: A novel approach to decentralized workflow
enactment. Enterprise Distributed Object Computing Conference, 2008. EDOC
’08. 12th International IEEE (Sept. 2008) 127–136

5. Jensen, K.: Coloured Petri Nets, Vol. 1: Basic Concepts. EATCS Monographs
on Theoretical Computer Science. Berlin, Heidelberg, New York: Springer-Verlag
(1992)

6. Langner, P., Schneider, C., Wehler, J.: Prozessmodellierung mit ereignisgesteuerten
Prozessketten (EPKs) und Petri-Netzen. Wirtschaftsinformatik 39(5) (1997) 479–
489

7. Gelernter, D.: Generative Communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems 7 (1985) 80–112

8. Martin, D., Wutke, D., Leymann, F.: Synchronizing control flow in a tuplespace-
based, distributed workflow management system. In: ICEC ’08: Proceedings of the
10th international conference on Electronic commerce, New York, NY, USA, ACM
(2008) 1–9

9. Nanda, M.G., Chandra, S., Sarkar, V.: Decentralizing Execution of Composite Web
Services. Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-
oriented Programming, Systems,Languages, and Applications (2004) 170–187

10. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by Simulated Annealing.
Science 220(4598) (1983) 671–680

11. Muth, P., Wodtke, D., Weissenfels, J., Dittrich, A., Weikum, G.: From Centralized
Workflow Specification to Distributed Workflow Execution. Journal of Intelligent
Information Systems 10(2) (1998) 159–184

12. Khalaf, R., Leymann, F.: Role-based decomposition of business processes using
bpel. In: ICWS ’06: Proceedings of the IEEE International Conference on Web
Services, Washington, DC, USA, IEEE Computer Society (2006) 770–780

Autorenverzeichnis

Amme, Wolfram, 88

Decker, Gero, 55

Fahland, Dirk, 8

Heinze, Thomas, 88

Karastoyanova, Dimka, 102
Kaschner, Kathrin, 22
Kopp, Oliver, 49, 68, 95

van Lessen, Tammo, 102
Leymann, Frank, 49, 68, 95, 109
Lohmann, Niels, 22, 61

Martin, Daniel, 109
Monakova, Ganna, 95
Moser, Simon, 88

Nitzsche, Jörg, 102

Oanea, Olivia, 81

Parnjai, Jarungjit, 29

Rosenberg, Florian, 115

Sürmeli, Jan, 74
Schulte, Daniel, 35
Stahl, Christian, 29

Traunecker, Jochen, 42

Weidlich, Matthias, 15
Weinberg, Daniela, 74
Wieland, Matthias, 49
Wolf, Karsten, 1, 29, 61, 81
Wutke, Daniel, 109

