
Transformations Between Specifications
of Requirements and User Interfaces

Sevan Kavaldjian,
Hermann Kaindl

Institute of Computer
Technology

Vienna University of
Technology, Austria
{kavaldjian, kaindl}@

ict.tuwien.ac.at

Kizito Ssamula Mukasa
Fraunhofer Institute for
Experimental Software

Engineering (IESE)
Germany

kizito.mukasa@
iese.fraunhofer.de

Jürgen Falb
Institute of Computer

Technology
Vienna University of
Technology, Austria
falb@ict.tuwien.ac.at

ABSTRACT
Separating requirements from user interface specifications
often leads to unusable systems or to systems that do not
support the users’ needs. We address this issue by introduc-
ing explicit transformations between models of these differ-
ent “worlds”. In fact, we show how to transform artifacts
in a model specifying requirements to artifacts in a model
specifying a user interface, and vice versa (inverse transfor-
mations). We also transform from a more abstract to a more
concrete model of a user interface, and vice versa. In ef-
fect, this allows starting either from requirements and get-
ting support for transforming to a user interface, or from a
user interface prototype and getting support for transforming
to requirements.

INTRODUCTION
Usually, model transformations lead from higher-level to
lower-level models and program code in software develop-
ment, e.g., from architectural to design models. Model-
driven generation of user interfaces (UIs) typically leads
from higher-level task models to UI models (at certain lev-
els of abstraction) and a final UI. Unlike other approaches,
we also transform between models on the same abstraction
level. So, in addition to operationalizing as usual, we make
use of artifacts in one “world” for creating related ones in
another. Additionally, we allow transformations back and
forth between the same pair of models.

We present this approach of bidirectional transformations
between models of the same level of abstraction in the con-
text of our previously defined Requirements Specification
Language (RSL) [3]. In contrast to most other languages
for requirements specification, RSL is a language that inte-
grates requirements with UI specifications [5]. This integra-
tion along the representation dimension is supposed to fa-

MDDAUI 2009.

cilitate combined work on requirements and user interfaces
along the process dimension as well. In particular, we devel-
oped transformations between artifacts of requirements and
UI specifications within RSL.

The remainder of this paper is organized in the following
manner. First we sketch those parts of the RSL Metamodel
needed within the scope of this paper. Then we present our
overall approach of transforming in this context. For elabo-
rating on this overall approach, we specify (MOLA1) trans-
formation rules from the requirements specification to an ab-
stract UI specification, and vice versa. In addition, we spec-
ify such rules for transforming from an abstract UI specifi-
cation to a more concrete UI prototype. Finally, we compare
our approach with related work.

BACKGROUND
In order to make this paper self-contained, we need to sketch
some background material about RSL. In particular, we ex-
plain those parts of its metamodel for specifying require-
ments and UI that we build our transformations upon.

Scenarios and use cases are popular in requirements engi-
neering these days. Therefore, RSL includes ConstrainedLan-
guageScenarios contained in Use Cases. These provide a tex-
tual representation and consist of a sequence of SVO sen-
tences describing the flow of interaction between the user
and the system to be developed. An SVO sentence has a
Subject and a Predicate, which in turn has one Verb, and an
Object. Each word used in a sentence can be mapped to its
specific meaning in the domain vocabulary. It is possible
to define the meaning of each word in this context, also by
reusing terminology from WordNet [7].

For specifying a UI, RSL provides generic elements that
make it possible to define a UI independently of modality
and toolkit. The static aspects of the UI, i.e., its structure and
layout, can be described by using elements like InputUIEle-
ment for data input; TriggerUIElement for triggering actions;
SelectionUIElement for exclusive or non-exclusive selection
from more than two options; and UIContainer or UIPresenta-
tionUnit, which are used as containers of other UI Elements.

1http://mola.mii.lu.lv/

1CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

http://mola.mii.lu.lv/


Figure 1. Overview of specifications and their transformations.

The dynamics of the UI, i.e., the behavior related to user in-
teraction, can be described by using RSL elements like UIS-
toryboard, UIScene, and UserAction. A UIStoryboard is a series
of scenes displayed in a sequence. The “presentations” of
the individual scenes are defined in UIScenes. UIScenes can
be connected by UserActions indicating the triggering action
of the user. A UserAction is performed on one source UIEle-
ment in a predecessor UIScene and can result in a transition
to a successor UIScene as well as influence some of its UIEle-
ments.

Since these UI elements are modality-independent, they spec-
ify an abstract UI (according to [1]), that can be used for the
different modalities found in advanced user interfaces. In
order to make a UI specification more understandable for a
user, a concrete UI [1], which defines the modality, is bet-
ter suited. Therefore, RSL also includes related elements,
whose concrete syntax can even serve for specifying a UI
Prototype, see the bottom of Figure 1.

OUR OVERALL APPROACH OF TRANSFORMING
Based on the RSL language and its metamodel, let us il-
lustrate our overall approach of transforming between re-
quirements and UIs, more precisely their specifications in
the form of models.

Assume that a requirements engineer has specified a sce-
nario using SVOScenarioSentences [3]. Instead of having a UI
designer manually create a related UI specification, transfor-
mation rules according to T1 in Figure 1 may be applied.
They would lead to a partial model of an abstract UI. Apply-
ing transformation rules according to T2 would then lead to

part of a more concrete UI, i.e., a UI Prototype. Of course,
this prototype is most likely not the user interface of the real
application yet, but it may well serve the purpose of illus-
trating the textual scenario in the requirements specification
to users. When concrete scenarios are directly used for UI
design, they may well lead to bad UIs, since they may in-
duce an interaction approach defined ad hoc in a different
context. So, such scenarios should be made more abstract
first to capture the essence [2].

We may also assume that it goes the other way round. Users
themselves or together with a UI designer have developed a
prototypical storyboard, already using the GUI modality in
its concrete syntax. This approach facilitates their intuition
of how a system to be built may be used. For developing
such a piece of software, however, a requirements specifica-
tion may still be needed or simply useful for the developers.
Instead of having a requirements engineer manually write
such a specification, transformation rules according to T2’
in Figure 1 may be applied. They would lead to a partial
model of an abstract UI, this time based on the UI Proto-
type. Applying transformation rules according to T1’ would
then lead to a part of the requirements specification, a sce-
nario. Again, the generated scenario might not be in the final
version yet, but it is consistent with the UI Prototype.

TRANSFORMATIONS FROM REQUIREMENTS SPECIFI-
CATIONS VIA UI SPECIFICATIONS TO UI PROTOTYPES
Let us illustrate now what transformation rules are needed to
transform our concrete example in Figure 1. It consists of a
ConstrainedLanguageScenario composed of the following two

2



Figure 2. MOLA Rule R1 for T1.

SVOScenarioSentences: 1. “User confirms selection.” and 2.
“User selects exercise.”

The following rules implement the transformation T1:

Rule 1: Each SVOScenarioSentence whose verb implies “se-
lection” is transformed into a SelectionUIElement. Its name
is the Noun in the VerbPhrase (see [3] for the definition of
VerbPhrase).

Rule 2: Each SVOScenarioSentence whose verb implies “trig-
gering an action/event” is transformed into a TriggerUIEle-
ment. Its name is the Noun in the VerbPhrase.

Rule 3: Each SVOScenarioSentence whose verb implies “show-
ing information” is transformed into a UIPresentationUnit. The
name of this UIPresentationUnit is the Noun of the Object in
the VerbPhrase.

Note, that these rules both require and utilize a mapping be-
tween synonyms. We reuse this mapping from WordNet.

Rule 4: Each ConstrainedLanguageScenario is transformed into
a UIStoryboard of a similar name.

Rule 5: Each SVOScenarioSentence in a ConstrainedLan-
guageScenario is transformed into a UIScene. Its sceneDescrip-

tion is the text of the Sentence and its sceneNumber equals
the seqNumber of that sentence. The UIScene is linked to the
UIPresentationUnit corresponding to this sentence.

Rule 6: Each SVOScenarioSentence whose subject is not “Sys-
tem” is transformed into a UserAction. Its source is the UIEle-
ment (other than the UIPresentationUnit) associated with the
sentence. The predecessor of this UserAction is the UIScene
of the previous sentence and its successor is the UIScene of
the current sentence.

Applying these rules to our example results in the UI Specifi-
cation Model in the right box of Figure 1. The rule execution
order has no impact on the generated model.

Figure 2 illustrates the formalized Rule 1 for T1 in MOLA,
composed of the following elements. The outer bold rect-
angle symbolizes a for-each loop. The rounded rectangle
inside represents the actual rule, that will be repeated for
each matched element. The small boxes inside the rule rep-
resent different kinds of classes, depending on their border-
line style. When the thickness of the border line is regular,
they represent a “normal” class. A bold border lined box
represents a loop variable. A dashed lined box border repre-
sents a class that will be created by the transformation rule.
The small black circle represents the starting point of the
rule. The double rounded circle represents the end point of
the rule. In particular, Rule 1 iterates over all SVOScenar-
ioSentences. Whenever the type of the verb is “select” and
the noun is not plural, the rule matches. In this case, a Se-
lectionUIElement of the UI Specification Model is generated.
The name attribute is set to the name of the noun and the
maximumSelectableOptions attribute is set to 1.

The following rule is one example of transformation T2:

Rule 7: Each SelectionUIElement that only allows the selection
of one Option is transformed into a Class associated with the
Combobox Stereotype. The name of the class is composed
of the name of the SelectionUIElement and “ComboBox”.

Figure 3 illustrates the formalized Rule 7 for T2 in MOLA. It
iterates over all SelectionUIElements where the attribute max-
imumSelectableOptions is set to 1 in the UI Specification and
creates one class each. The name attribute of the class is
set to the SelectionUIElement name to which the suffix “Com-
boBox” is added. It also creates an association with the cor-
responding stereotype.

TRANSFORMATIONS FROM UI PROTOTYPES VIA UI SPEC-
IFICATIONS TO REQUIREMENTS SPECIFICATIONS
This section introduces transformations for T1’ and T2’, from
UI Prototypes via UI Specifications to Requirements Speci-
fications.

The following rule for T1’ represents the exact opposite to
Rule 1 in T1:

Rule 1’: Every SelectionUIElement with the attribute maximum-
SelectableOptions set to 1 is transformed into an SVOScenar-

3



Figure 3. MOLA Rule R7 for T2.

ioSentence. The Verb “select” is the representative of the
equivalence class for selection. The noun is the value of the
name attribute of the SelectionUIElement.

This rule looks quite similar to Rule 1 in T1, but there is a
subtle difference with the inverse transformation, since Rule
1’ always transforms to the verb “select”. If another verb
of the same type is used in the source model of T1, e.g.,
“chose”, then applying T1 and subsequently T1’ will not re-
sult in the identical model. This is more of theoretical than
of practical interest, since transforming back and forth iden-
tically is not needed for applying this approach.

The following rule for T2’ represents the exact inverse to
Rule 7 in T2:

Rule 7’: Every class with the suffix “ComboBox” in the
name attribute is transformed into a SelectionUIElement with
the maximumSelectableOptions attribute set to 1.

The transformation T3 can be seen as a composition of trans-
formation rules for T1 and T2. The transformation T3’ can
be seen as a combination of the rules for T1’ and T2’.

RELATED WORK
Mori et al. [4] introduced ConcurTaskTrees (CTT) as task
models, from which they can derive and semi-automatically
generate UIs. Their approach leads from higher-level to
lower-level models (like our T2 transformation). Our ap-
proach as presented in this paper does not start from high-
level task models, but from detailed requirements specifica-
tions. Alternatively, our approach can start from concrete
UIs and lead automatically to artifacts in a requirements
specification.

Panach et al. [6] propose a method to bring Software Engi-
neering (SE) and Human-Computer Interaction (HCI) closer
together, much as we do with our transformation approach.

They capture interactions with sketches and transform them
into structural patterns of CTT. Similarly to our approach,
they transform up and downwards in the reference frame-
work [1]. In addition, we transform horizontally (on the
same level of abstraction) and between different “worlds”.

CONCLUSION
This paper presents a model-driven approach to transforma-
tions from requirements to UI specifications and vice versa.
We are not aware of any transformation approach between
these different “worlds”, which are partly even on the same
level of abstraction. And it is new to have transformations
back and forth between the same pair of models.

This approach of explicit transformations may help to bridge
the usual gap between separated requirements and UI spec-
ifications. It may also make the overall development more
efficient, since it makes explicit use of artifacts from any
one “world” to create artifacts in the other one.

ACKNOWLEDGMENT
This research has been carried out in the ReDSeeDS project
and is partially funded by the EU (contract number IST-
33596 under the 6th framework programme), see http:
//www.redseeds.eu.

REFERENCES
1. G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg,

L. Bouillon, and J. Vanderdonckt. A unifying reference
framework for multi-target user interfaces. Interacting
With Computers Vol. 15/3, pages 289–308, 2003.

2. L. Constantine and L. A. D. Lockwood. Software for
Use. ACM Press, New York, NY, 1999.

3. H. Kaindl, M. Śmiałek, D. Svetinovic,
A. Ambroziewicz, J. Bojarski, W. Nowakowski,
T. Straszak, H. Schwarz, D. Bildhauer, J. P. Brogan,
K. S. Mukasa, K. Wolter, and T. Krebs. Requirements
specification language definition. Project Deliverable
D2.4.1, ReDSeeDS Project, 2007. www.redseeds.eu.

4. G. Mori, F. Paterno, and C. Santoro. Design and
development of multidevice user interfaces through
multiple logical descriptions. IEEE Transactions on
Software Engineering, 30(8):507–520, 8 2004.

5. K. Mukasa and H. Kaindl. An integration of
requirements and user interface specifications. In
Proceedings of the Sixteenth IEEE International
Requirements Engineering Conference (RE’08),
September 2008.

6. J. I. Panach, S. Espana, I. Pederiva, and O. Pastor.
Capturing interaction requirements in a model
transformation technology based on MDA. Journal of
Universal Computer Science, 14(9):1480–1495, 2008.

7. K. Wolter, M. Smialek, D. Bildhauer, and H. Kaindl.
Reusing terminology for requirements specifications
from WordNet. In Proceedings of the Sixteenth IEEE
International Requirements Engineering Conference
(RE’08), September 2008.

4

http://www.redseeds.eu
http://www.redseeds.eu

	Introduction
	Background
	Our Overall Approach of Transforming
	Transformations from Requirements Specifications via UI Specifications to UI Prototypes
	Transformations from UI Prototypes via UI Specifications to Requirements Specifications
	Related Work
	Conclusion
	Acknowledgment
	REFERENCES 

