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Abstract – The vision of a Semantic Web of 
intelligence knowledge has yet to be fully realized, in 
part because of the tough challenges of ontology 
engineering and maintenance.  Recent developments on 
the World Wide Web and IC intranets demonstrate that 
individual users are willing to supply structured 
information conforming to de facto standards.  This can 
be most prominently seen in ”peer produced” 
folksonomies and knowledge bases such as Wikipedia 
and Intellipedia, its cousin.  Though these structures 
lack the machine reasoning potential of highly 
engineered ontologies, for many purposes they are “good 
enough”.  This paper describes Contrail, a prototype 
information management application, that leverages an 
“emergent” ontology from Wikipedia to model a 
intelligence analyst’s context and exploit that model to 
aid information retrieval, refinding, and sharing 
 

I. INTRODUCTION 
 

The widespread adoption of Semantic Web and other 
ontology-based applications in the intelligence community 
(and indeed the wider web) is that quality ontologies are 
difficult to build, maintain, and exploit.  Ontology 
engineering requires significant subject domain expertise 
and knowledge engineering skills.  For all-source and other 
kinds of analysts, such ontologies span a broad range of 
subject domains, which are constantly evolving.   

 
Wikipedia and Intellipedia are approaches to capturing 

this broad range of knowledge from the community without 
requiring pre-built ontologies.  These knowledge bases are 
not without structure. A prominent example is the World 
Wide Web’s Wikipedia, which contains over fifteen million 
pages. The structure for pages of the same type are very 
similar, illustrating that people are willing to provide 
structure in the form of lightweight ontology-like 
information.  This similarity is discussed in the work on 
Wikitology [4] and dbpedia [1].   

 
While such “ontologies” might not support formal 

automated reasoning system well, they can support other 
useful applications. Our research investigated leveraging 
emergent ontologies for the purposes of representing user 
models of analysts. The work used an ontology derived 

from Wikipedia.  This paper describes our prototype 
application, its use of Wikipedia, and some preliminary 
results. 

 
II. THE CONTRAIL TOOLS 

 
The Contrail tools help analysts find, organize, re-find, 

and share unstructured and semi-structured information 
obtained from the Web (or Intelink), email, documents, and 
other sources [2].  While our focus is on intelligence 
analysts, these tasks are those of many knowledge workers. 
Contrail has been evaluated in several experiments with real 
intel analysts on open source intelligence tasks. 

 

 
Fig. 1 shows the high-level concept of operations for 

the Contrail tools as an analyst does her research online, she 
finds relevant items through web browsing, web searches, 
reading email, etc. Through instrumentation and logging 
services, Contrail is notified of these “information keeping 
actions”, such as the bookmarking of a web page. Contrail 
then performs a semantic analysis of each kept information 
item’s content using text analytics and other methods. Using 
the results of this analysis, Contrail updates its model of the 
analyst’s context and stores a copy of the kept item in her 
Semantic Shoebox.  A user’s Semantic Shoebox can be 
thought of as a semantically grounded container for 

Fig. 1. High-Level Concept of Operations for Contrail Tools 
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accumulated pieces of information.   Contrail supports the 
sharing and retrieval of kept items from other analyst’s 
shoeboxes. The contextual knowledge appended to these 
items by Contrail helps one analyst quickly understand the 
potential relevance and pedigree of an item retrieved from 
another analyst’s shoebox.  

 
The Contrail Refinder tool, shown in Fig. 2, presents a 

more comprehensive view of a Semantic Shoebox and 
displays a variety of information (textually and graphically) 
associated with a kept item including its metadata, content, 
and context tags. A user may do a one button search to 
display those items most relevant to his current context. 
Contrail also presents context-relevant recommendations for 
stored items and potential collaborators in a desktop sidebar. 

 
At the core of Contrail is its Context Aggregator which 

maintains and updates the user’s context at each keeping 
action.  Concepts and their instances (specific people, 
organizations, locations, etc.) are extracted from the text of 
the kept item using a commercial entity extractor.  A 
spreading activation algorithm is used to find related 
concepts in a knowledge base (KB).  These related concepts 
might not be explicitly mentioned in the text itself. 
Extracted and related concepts are thus associated with an 
activation level and the most active concepts represent the 
user’s current context.  Contrail’s KB, grounded in hand-
built OWL ontologies extending the SUMO [3].  

  
This approach worked well, as judged in experiments 

with analysts who periodically reviewed Contrail’s model of 
their contexts. Contrail’s use of an ontologically-grounded 

knowledge base of concepts, however, presented significant 
ontology engineering and maintenance challenges, as well 
being limited by the underlying entity extractor used.  These 
challenges – all potential barriers to Contrail’s deployment –  
included the potential breadth required for ontologies and 
the handling of new concepts and entities in these dynamic 
domains.   

 
III. USING WIKIPEDIA 

 
To alleviate these issues, we have replaced the static 

ontology based context representation with one based on 
Wikipedia.  We used IR based techniques to relate 
documents with pages in Wikipedia and associated a score 
with each relationship.  One significant benefit of this 
approach is the elimination of the need for knowledge 
engineering to update the “ontology.”  Wikipedia serves as a 
publicly maintained emergent ontology, allowing for user 
context to shift as the world changes. 

 
Specifically, keeping actions performed by the users 

associate their interests in particular documents or snippets 
of text.  Based on this text, we query a Lucene index of 
Wikipedia to obtain pages that may be of interest to the 
user.  A weighted merge of the query results is performed 
with their existing contextual information to form their 
updated user model. 

 
It should be noted that given the scale of Wikipedia, 

such queries are very resource intensive.  Despite this 
challenge, the results from leveraging the emergent 
ontology from Wikipedia appear promising. 

 
Fig. 2. Contrail Refinder (Item Browser, Item General Details, and Item Source Details screens) 
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IV. EVALUATION 
 

Initial informal experimentation using this new 
approach for user modeling has shown significant 
improvements over using a traditional static ontology in 
representing user context.  The new approach improves 
finding documents and collaborators.  There was also 
anecdotal evidence that the biggest advantage occurred 
when new concepts and instances were present in the 
emergent ontology that could be immediately leveraged.  An 
example of the differences is shown below.   

 
TABLE 1 

Example of context terms from static ontology and Wikitology 
derived terms 

Static Ontology Wikitology 
Indonesia United Malyas Nat. Org. 
Malaysia Ketuanan Melayu 
Singapore Mahatir bin Muhamed 
June Islam in Malaysia 
2002 Anwar Ibraham 

 
The Wikitology approach consistently provided more 

specific terms that may not easily be found in an ontology or 
by text analytics packages.  Using the old approach, we 
found general terms would dominate the user context.  The 
breadth of Wikipedia does add the potential for significant 
noise, such as pages about specific dates.  Though 
Wikipedia is relatively comprehensive, for specific domains 
pages may not exist.  For emerging concepts, it is critical to 
mirror Wikipedia and update the index regularly.  The 
results of this evaluation will be documented in a future 
research paper. 

V. FUTURE WORK 
 

Our research agenda includes further investigations to 
determine new applications where emergent ontologies can 
be applied.  This investigation will include tools leveraging 
these ontologies for enhanced semantic authoring.  We also 
plan to investigate the extraction of rules from patterns in 
emergent ontologies.  A major focus area will be handling 
the significant scale and rapid updates of Wikipedia.  Both 
of the aspects provide significant challenges and 
opportunities.  Finally, we plan to make additional 
extensions to the Contrail suite of tools to extend the 
representation of user models.  

VI. CONCLUSION 
 

In the large distributed nature of the World Wide Web, 
leveraging massive convergence in terminology and 
structure can be highly useful.  While these structures may 
not replace formal ontologies, they can be appropriate for 
certain applications and they can help bridge a gap to more 
formal structures.  We have demonstrated that the use of the 

ontological structure of Wikipedia for representing context 
has advantages over human-engineered ontologies for at 
least one application and likely many others. 
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Abstract—Analysts are constantly overwhelmed with large
amounts of unstructured data. This holds especially true for
intelligence analysts with the task of extracting useful information
from large data sources. To alleviate this problem, domain-
specific and general-purpose ontologies/knowledge-bases have
been proposed to help automate methods for organizing data
and provide access to useful information. However, problems
in ontology creation and maintenance have resulted in expen-
sive procedures for expanding/maintaining the ontology library
available to support the growing and evolving needs of the
Intelligence Community (IC). In this paper, we will present
a semi-automatic development of an ontology library for the
National Intelligence Priorities Framework (NIPF) topics. We use
Jaguar-KAT, a state-of-the-art tool for knowledge acquisition and
domain understanding, with minimized manual intervention to
create NIPF ontologies loaded with rich semantic content. We
also present evaluation results for the NIPF ontologies created
using our methodology.

Index Terms—ontology generation, National Intelligence Pri-
orities Framework (NIPF).

I. INTRODUCTION

Analysts are constantly plagued and overwhelmed by large

amounts of unstructured, semi-structured data required for

extracting useful information [1]. Over the past decade, on-

tologies and knowledge bases have gained popularity for their

high potential benefits in a number of applications including

data/knowledge organization and search applications [2]. The

data processing burden on the intelligence analysts have been

relieved with the integration of ontologies to help automate

methods for organizing data and provide access to useful

information [3].

Though a number of applications can and have benefited

due to their integration with domain-specific and general-

purpose ontologies/knowledge-bases, it is very well known

that ontology creation (popularly referred to as the knowledge

acquisition bottleneck [2]) is an expensive process [4], [5].

The modeling of ontologies for non-trivial domains/topics is

difficult and time/resource consuming. The knowledge acquisi-

tion bottleneck problems in ontology creation and maintenance

have resulted in expensive procedures for maintaining and ex-

panding the ontology library available to support the growing

and evolving needs of the Intelligence Community (IC).

In this paper, we present a semi-automatic development of

an ontology library for the 33 topics defined in the National

Intelligence Priorities Framework (NIPF). NIPF is the Director

of National Intelligence’s (DNI’s) guidance to the Intelligence

Community on the national intelligence priorities approved by

the President of the United States of America [6].

Lymba’s Jaguar-KAT [3], [7] is a state-of-the-art tool for

knowledge acquisition and domain understanding. We use

Jaguar to create rich NIPF ontologies by extracting deep se-

mantic content from NIPF topic specific document collections

while keeping the manual intervention to a minimum. In this

paper, we discuss the technical contributions of automatic

concept and semantic relation extraction, automatic ontology

construction, and the metrics to evaluate ontology quality.

II. AUTOMATIC ONTOLOGY GENERATION

Jaguar automatically builds domain-specific ontologies from

text. The text input to Jaguar can come from a variety

of document sources, including Text, MS Word, PDF and

HTML web pages, etc. The ontology/knowledge-base created

by Jaguar includes the following constituents:

• Ontological Concepts: basic building blocks of an ontol-

ogy

• Hierarchy: structure imposed on certain ontological con-

cepts via transitive relations that generally hold to be

universally true (e.g. ISA, Part-Whole, Locative, etc)

• Contextual Knowledge Base: semantic contexts that en-

capsulate knowledge of events via semantic relations

• Axioms on Demand: assertions about concepts of interest

generated from the available knowledge; this is useful for

reasoning on text

 

Concept Set 

C3 
C5 

C6 
C4 

Knowledge Base 

C2 

C1 
Contextual 

Knowledge 

C21 

C22 

C23 

C24 

R1 

R2 

R3 

C33 

C36 R4 

Hierarchy 

C7 

R5 C37 

C4 

C3 
C16 

C13 

C14 

C11 

anthrax 

biological 

weapon 

assassinate 

AGT 

THM 

TMP 

rebel 

political 
leader 

may 21 

isa 

isa 
isa 

isa 

pw 

pw 

pw 

Ontology 

C5 

cau 

Fig. 1. An example Jaguar knowledge-base containing concepts, hierarchy
and contextual knowledge.

Figure 1 shows an example Jaguar knowledge-base con-

taining concepts, hierarchy and contextual knowledge. The
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Iteration 0 

1. The rebels had access to chemical weapons, such as nerve gas and other poisonous gases 

2. The nerve gas was created using numerous fluorine-based compounds 

Sentences 

1. Weapon 

Seed Concepts 

Iteration 1 

1. The rebels had access to chemical weapons, such as nerve gas and other poisonous gases 

Sentences being used 

1. Weapon 

2. Chemical Weapon 

Weapon Chemical 

Weapon 

ISA 

Iteration 2 

1. The rebels had access to chemical weapons, such as nerve gas and other poisonous gases 

Sentences being used 

1. Weapon 

2. Chemical Weapon 
3. Nerve gas 

4. Poisonous gas 

5. Gas 

Concepts/SRs Extracted 

Concepts/SRs Extracted 

Weapon Chemical Weapon 
ISA 

Nerve Gas Poisonous Gas 

ISA ISA 

Rebels POS 

Iteration 3 

1. The rebels had access to chemical weapons, such as nerve gas and other poisonous gases 

2. The nerve gas was created using numerous fluorine-based compounds 

Sentences being used 

1. Weapon 

2. Chemical Weapon 

3. Nerve gas 

4. Poisonous gas 

5. Gas 

6. Fluorine-based 

Compound 

Concepts/SRs Extracted 

Gas Gas ISA ISA 

Weapon Chemical Weapon 
ISA 

Nerve Gas Poisonous Gas 

ISA ISA 

Rebels POS 

Gas Gas ISA ISA 

Fluorine-based 

compound 

PW 

Create 

THM 

Seed Concepts 

Used/Added 

Seed Concepts 
Used/Added 

Seed Concepts 
Used/Added 

Fig. 2. An example depicting Jaguar’s iterative process of extracting concepts and semantic relations of interest using seed concepts.

 

stock_market 

exchange 

work_place 

money_market 

market 

industry 

L1 

stock_market 

money_market 

capital market 

financial market 

L2 

stock_market 

exchange 

work_place 

money_market 

market 

industry 

capital market 

financial market 

L1 

� 

Fig. 3. An example depicting Jaguar’s merging of two ontologies through conflict resolution algorithms.

input to Jaguar includes a document collection (Text, MS

Word, PDF and HTML web pages, etc.) and a seeds file

containing the concepts/keywords of interest in the domain.

Jaguar’s ontology creation involves complex text processing

using advanced Natural Language Processing (NLP) tools, and

an advanced knowledge classification/management algorithm.

A single run of Jaguar can be divided into the following two

major phases:

• Text Processing

• Classification/Hierarchy Formation

In Text Processing, the first step is to extract textual content

from the input document collection. The text files then go

through a set of NLP processing tools: named-entity recog-

nition, part-of-speech tagging, syntactic parsing, word-sense

disambiguation, coreference resolution, and semantic parsing

(or semantic relation discovery) [8], [9]. The concept discovery

module then extracts the concepts of interest using the input

seeds set as a starting point and growing it based on the

extracted NLP information [3].

The classification module forms a hierarchical structure

within the set of identified domain concepts via transitive rela-

tions that generally hold to be universally true (e.g. ISA, Part-

Whole, Locative, etc). Jaguar uses well-formed procedures [7]

to impose a hierarchical structure on the discovered concepts

9



set using the semantic relations discovered by Polaris [1] and

with WordNet [10] as the upper ontology.

A. Automatically Building NIPF Ontologies

In this paper, we use Jaguar to create an ontology library

for the 33 topics defined in NIPF. For each NIPF topic, we

collected 500 documents from the web (the Weapons topic

was an exception and its collection had only 50 Wikipedia

documents) and manually verified their relevance to the cor-

responding topic. We then use Jaguar to create an ontology,

for each identified NIPF topic. Jaguar builds each ontology

with rich semantic content extracted from the corresponding

NIPF topic document collection while keeping the manual

intervention to a minimum. These ontologies are fine-tuned

to contain the level of detail desired by an analyst.

1) Extracting Textual Content: We first extract text from

the input NIPF document collections and then filter/clean-up

the extracted text. The NIPF text input to Jaguar comes from

all possible document types, including MS Word, PDF and

HTML web pages, and is therefore prone to having many ir-

regularities, such as incomplete, strangely formatted sentences,

headings, and tabular information. The text extraction and

filtering mechanism of Jaguar is a crucial step that makes the

input acceptable for subsequent NLP tools to process it. The

extraction/filtering rules include, conversion/removal of non-

ASCII characters, verbalization of Wikipedia infoboxes and

tables, conversion of punctuation symbols, among others.

2) Initial Seed Set Selection: For each NIPF topic, Jaguar

is provided with an initial seed set containing on average

51 concepts of interest. The seed set is used to determine

the set of text sentences of interest in a topic’s document

collection. The initial seed set selection for the NIPF topic

was performed manually based on the concepts found in the

topic descriptions. The initial seed selection process is the

only manual step that we use in our NIPF ontology creation

process. We are currently exploring automated methods for

creating the initial seed set using a combination of statistical

and semantic clues in the document collection.

3) Concept and Relation Discovery: For each NIPF topic,

the set of text files extracted from the document collection are

processed through the entire set NLP tools listed in Section II.

The NLP processed data files are then passed through the

concept discovery module, which identifies noun concepts in

sentences which are related to the NIPF topic target words or

seeds. The concept discovery module analyzes the syntactic

parse tree of each processed sentence and scans them for

noun phrases. Though Jaguar has the capability to extract

verb concepts by analyzing verb phrases, for our current

NIPF ontology creation experiment, we focused only on noun

concepts and their semantic relations. Each noun phrase is then

processed and well-formed noun concepts are extracted based

on a set of syntactic patterns and rules.

Noun concepts (which are part of the seed set), their seman-

tic relations (extracted from the semantic parser, Polaris [8],

[9]) and the noun concepts involved in semantic relations with

the seed set concepts are added into data structures for subse-

quent processing into the ontology’s hierarchy. The resulting

data structures are processed and used to populate one or

many semantic contexts, groups of relations or nested contexts

which hold true around a common central concept. The seed

set is then augmented with concepts that have hierarchical

relations with the target words or seeds. The entire process

of sentence selection, concept extraction, semantic relation

extraction and seed concepts set augmentation is repeated in

an iterative manner, n number of times (by default, n is set

to 3). While processing the NIPF topic collections through

Jaguar, we used ISA, Part-Whole and Synonymy semantic

relations for automatically augmenting the seeds concept set.

Figure 2 depicts this iterative process of extracting concepts

and semantic relations of interest using seed concepts.

4) Creating Concept Hierarchies: The extracted NIPF topic

noun concepts and semantic relations are fed to the classi-

fication module to determine the hierarchical structure. Cer-

tain hypernymy relations discovered via classification contain

anomalies (causing cycles) or redundancies. Hence, we run

them through a conflict resolution engine to detect and correct

inconsistencies. The conflict resolution engine creates a NIPF

topic hierarchy link by link (relation by relation) and follows

a conflict avoidance technique, wherein each new link is

tested for causing inconsistencies before being added to the

hierarchy.

5) Ontology Merging: Although single runs of Jaguar yield

rich NIPF ontologies, Jaguar’s real power lies in providing an

ontology maintenance option to layer ontologies from many

different runs. Figure 3 depicts the process of merging two

ontologies through conflict resolution algorithms. Jaguar can

merge disparate ontologies or add new knowledge by using the

aforementioned conflict resolution techniques. The merge tool

merges the two ontologies’ concept sets, hierarchies (using

conflict resolution), and their knowledge bases (set of semantic

contexts). Given two ontologies or knowledge bases, ontology

merging is performed by enumerating the relations in the

smaller ontology and adding them to the larger or reference

ontology. A relation may either be represented by a similar

relation in the reference ontology, may create a redundant

path between concepts or may be a new relation that can

be added to the reference ontology. The conflict resolution

techniques are then used for handling the conflict induced in

the ontology to generate a merged ontology. Merging is useful

for distributed or parallel systems where small chunks of the

input text may be processed on some portions of the system

and then subsequently merged. It also provides a foundation

for future work in contextual reasoning and epistemic logic.

The resulting rich NIPF knowledge bases can be viewed at

many different levels of granularity, providing an analyst with

the level of detail desired.

III. EVALUATION OF JAGUAR’S NIPF ONTOLOGIES

Since the mid-1990s, various methodologies have been

proposed to evaluate ontology generation/maintenance/reuse

techniques [11]. All the proposed methodologies have focused
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TABLE I
SUBSET OF SEMANTIC RELATIONS USED TO EVALUATE THE PERFORMANCE OF JAGUAR’S AUTOMATIC NIPF TOPICAL ONTOLOGY GENERATION FROM

TEXT.

Semantic Relation Definition Example Code

ISA X is a (kind of) Y [XY] [John] is a [person] ISA

Part-Whole/Meronymy X is a part of Y [XY] [The engine] is the most important part of [the car] PW

[XY] [steel][cage]

[YX] [faculty] [professor]

[XY] [door] of the [car]

Cause X causes Y [XY] [Drinking] causes [accidents] CAU

TABLE II
PERFORMANCE RESULTS FOR JAGUAR’S AUTOMATIC TOPICAL NIPF ONTOLOGY GENERATION FROM TEXT WITH RESPECT TO THE SEMANTIC

RELATIONS DEFINED IN TABLE I.

Number of NIPF Precision Coverage F-Measure

Annotators Topic Correctness Correctness+ Relevance Correctness Correctness+ Relevance Correctness Correctness+ Relevance

3 Weapons 0.610090 0.501499 0.702424 0.657122 0.653009 0.568859

1 Missiles 0.533867 0.485364 0.793775 0.777747 0.63838 0.597715

2 Illicit Drugs 0.471938 0.274506 0.801422 0.701122 0.594053 0.39454

1 Terrorism 0.388788 0.291019 0.822285 0.776206 0.527953 0.423323

TABLE III
SEMANTIC RELATION AND CONCEPT EXTRACTION STATISTICS FOR THE EVALUATED NIPF ONTOLOGIES PRESENTED IN TABLE II.

NIPF Unique Semantic Relations Unique Concepts

Topic ISA PW CAU Others Total In ISA/PW/CAU Others Total

Weapons 1683 766 113 946 3508 2620 1012 3473

Missiles 2939 2296 646 2692 8573 5982 3539 7873

Illicit Drugs 2356 2040 817 5464 10677 5107 4982 7935

Terrorism 2590 4219 1497 5405 13711 7929 6247 11638

on some facet of the ontology generation problem, and depend

on the type of ontology being created/maintained and the

purpose of the ontology [12]. It is noted that not much

progress has been achieved in developing a comprehensive and

global technique for evaluating the correctness and relevance

of ontologies [13].

P r(Correctness)=
Nj(correct)+Nj(irrelevant)

Nj(correct)+Nj(incorrect)+Nj(irrelevant)

P r

0

B

B

B

B

B

@

Correctness

+

Relevance

1

C

C

C

C

C

A

=
Nj(correct)

Nj(correct)+Nj(incorrect)+Nj(irrelevant)

Cvg(Correctness)=
Nj(correct)+Nj(irrelevant)

Ng(correct)+Ng(irrelevant)+Ng(added)

Cvg

0

B

B

B

B

B

@

Correctness

+

Relevance

1

C

C

C

C

C

A

=
Nj(correct)

Ng(correct)+Ng(added)

(1)

We evaluated the quality of Jaguar’s NIPF ontologies by

comparing them against manual gold annotations. Following

the ontology evaluation levels defined in [12], our evaluations

are focused on the Lexical, Vocabulary, or Data Layer and

the Other Semantic Relations levels. For a NIPF topic, the

ontology and document collection were manually annotated

by several human annotators and used in the evaluation of the

ontology. Viewing an ontology as a set of semantic relations

between two concepts, the annotators:

• Labeled an entry correct if the concepts and the semantic

relation are correctly detected by the system else marked

the entry as Incorrect

• Labeled a correct entry as irrelevant if any of the

concepts or the semantic relation are irrelevant to the

domain

• From the sentences added new entries if the concepts and

the semantic relation were omitted by Jaguar

The annotation rules provide feedback on the automated

concept tagging and semantic relation extraction and also

are used for computing precision (Pr) and coverage (Cvg)

metrics for the automatically generated ontologies. Equations

in (1) capture the metrics defined by Lymba to evaluate

Jaguar’s automatic topical NIPF ontology generation from

text. In (1), Nj(.) gives the counts from Jaguar’s output and

Ng(.) correspond to counts in the user annotations. Table II

presents our initial evaluation results for 4 NIPF topics using a

subset of 3 semantic relations (ISA, PW and CAU relations)

defined in Table I. Table III presents the semantic relation and

concept extraction statistics for the four NIPF ontologies being

evaluated in this paper.

We use the metrics defined in (1) to evaluate the ontolo-

gies against the manual annotations from different human

annotators. The results in Table II represent the evaluation

scores which have been averaged over the results for different

annotators. The first column in Table II identifies the number

of annotators for each topic. Jaguar obtained the best Preci-

sion results in both Correctness and Correctness+Relevance

evaluations for the Weapons NIPF topic. Please note that as

shown in Table III, smaller number of concepts/semantic-
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relations were extracted for this topic due to its smaller

collection size (50 documents versus the 500 document set

for the other topics). The Terrorism NIPF topic obtained the

best Coverage result for the Correctness evaluation and it

was also very close to the best Coverage result obtained

by the Missiles NIPF topic for the Correctness+Relevance

evaluation. The Weapons NIPF topic obtained the best F-

Measure result (β = 1) for the Correctness evaluation while

the Missiles NIPF topic obtained the best F-Measure result for

the Correctness+Relevance evaluation.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the semi-automatic development

of an ontology library for the NIPF topics. We use Jaguar-KAT,

a state-of-the-art tool for knowledge acquisition and domain

understanding, with minimized manual intervention to create

NIPF ontologies loaded with rich semantic content. We also

defined evaluation metrics to assess the quality of the NIPF

ontologies created using our methodology. We evaluated a

subset of Jaguar’s NIPF ontologies by comparing them against

manual gold annotations. The results look very promising and

show that a decent amount of knowledge was automatically

and accurately extracted by Jaguar from the input document

collection while keeping the manual intervention in the process

to a minimum. We plan to perform further analysis of the

results and identify methods for improving the precision and

coverage of text processing and ontology generation.
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Abstract—One of the distinguishing characteristics of the 

intelligence community is the strict security framework that is 
used to control classified information.  A counterproductive side-
effect of this strict security is that intelligence analysts are often 
not aware of information that is relevant to their analysis.  
Semantic technology and ontologies can help analysts discover 
relevant information even if that information is under the strictest 
controls and even if the analysts are not cleared to access the data.  
These techniques can be applied immediately within the current 
security framework of the intelligence community. 
 

Index Terms—Discovery, Information Sharing, Metadata, 
Redaction, Semantics 
 

I. INTRODUCTION 

HE many agencies of the United States intelligence 
community – and the corresponding organizations of her 

friend and partner countries around the world – employ a strict 
security framework to protect and control classified 
information.  The basis of this framework is that a person is 
granted access to a sensitive document only if they need to 
know those data to perform their duties.   

This basis creates two immediate impediments to 
information sharing and discovery across the boundaries of 
security levels and compartments.  When sensitivity 
classifications are assigned to an entire document, it prevents 
an unapproved analyst from seeing any portion of the 
document, even when the document may actually contain a 
mixture of sensitive and unclassified information.  To make 
matters worse, it is often the case that an unapproved analyst is 
prevented from knowing even the existence of that document.  
In the former case, the analyst can at least ask for permission 
to read the document and fulfill her duties; in the latter case, 
there is virtually no hope for the analyst ever to see the data.   

II.  PHYSICALLY -SEPARATE STANDARD SEMANTIC METADATA 

We have developed an approach to discovering and sharing 
information that is particularly well-suited to the intelligence 
community, an approach based on physically-separate standard 
semantic metadata.  “Metadata” is a general term that refers to 
data that describes other data.  Metadata for a document may 
explicitly identify the title of the document, provide a table of 
all the geographic locations mentioned in the document, or 

include any other information about the properties or content 
of the document.  “Physically separate” means that the 
metadata is stored in a separate file rather than being 
embedded within the data file itself – an important contrast to 
the dominant practice of embedding all metadata within 
documents.  “Semantic” means that the metadata represents the 
meaning of the data, as opposed to just syntactic sugar.  In 
particular, our approach focuses on expressing the semantics 
of the content of the document, i.e. the actual body text, rather 
than facts about the document which are typically found in the 
header.  “Standard” means that the metadata is represented 
using semantics standards such as the Resource Description 
Framework (RDF) and Web Ontology Language (OWL).  In 
addition, “Standard Semantic” means that the metadata strictly 
corresponds to an ontology so that the meaning is explicit and 
can be processed by automated tools.   

Using physically separate semantic metadata for discovery 
is not a new idea – this is a technique that has been used 
successfully by libraries for centuries.  A card (whether paper 
or electronic) in a card catalog is metadata for a book in a 
library’s holdings.  The card for a rare and delicate book is 
itself neither rare nor delicate, and therefore does not have to 
be subject to the same protections as the book itself.  Whereas 
the book may be held in a special collection accessible only to 
approved scholars, the card describing the book can be 
publicly accessible, updated frequently, and copies can be 
distributed to other libraries.  In contrast, metadata that is not 
physically separate from the data – metadata that appears in 
the front matter of a book, for instance – cannot be updated 
and can only be accessed by those who already have access to 
the book itself.   

Within the intelligence community, working with physically 
separate metadata has all the advantages of working with 
catalog cards, and also solves fundamental security problems 
that stand in the way of discovery and sharing of information.  
There are two keys to this aspect of the solution.  First, the 
physically separate metadata can be at a lower level of 
classification than the data itself.  It is entirely possible that the 
very nature of the metadata makes it lower level; or the system 
can be specifically designed so that the metadata is of a lower 
classification, if necessary.  Second, the physically separate 
metadata can be stored on a different network (or several 
different networks) than the original data.  The bottom line is, 
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while an organization may not be able to share much of its data 
for security reasons, it may be able to share a great deal of 
metadata.  That metadata will allow intelligence analysts to 
discover the existence of information that is important to them 
even if they have not been cleared to access the data itself.   

It should also be noted that since electronic metadata files 
can be much larger than physical index cards in a traditional 
card catalog, the metadata may easily contain a wealth of 
valuable content information that can be exploited 
independently of the actual data file.  Of course, the metadata 
might not have the same authority as the actual data (see the 
sample scenario below), but it certainly can be used to suggest 
hypotheses.   

III.  ONTOLOGIES FOR DISCOVERY 

Rich ontologies are essential to the success of the approach 
to discovery described here.  Ontologies allow semantic 
searches to match even if the query concept is more specific or 
more general than the concept in the metadata.  Semantic 
metadata is data about the meaning of the data.  Meaning has 
the property that it can be abstracted, which is important for 
both discovery and security reasons.  An aircraft ontology, for 
instance, may indicate that the B-2 is a stealth bomber, a 
stealth bomber is a type of bomber, and that bombers are a 
type of airplane.  This will allow a semantic search for the 
concept “airplane” to discover documents that mention 
specific types of aircraft such as the B-2 (even when the 
documents do not contain the query word “airplane”).  And if 
the fact that a B-2 was used for a particular mission makes a 
document classified, unclassified metadata can be generated by 
referring to the more abstract concepts of “stealth bomber” or, 
if necessary, “bomber” or just “airplane”.  By abstracting as 
little as possible to meet security requirements, the semantic 
metadata can make the maximum amount of information 
available for discovery and exploitation.  Rich standard 
ontologies facilitate this type of searching and abstraction.  In 
the ideal case, the ontologies themselves will be standards 
used across the intelligence community – a central topic of this 
conference.   

Discovery based on physically-separate metadata is often 
viewed as a last resort – a technique to be used only when 
security restrictions prevent access to the data itself.  Indeed, 
one could argue that it should be a last resort when only very 
basic document metadata (e.g. Title, Author, Date) is 
available.  However, semantic metadata can be arbitrarily rich, 
containing a detailed, unambiguous, machine-interpretable 
version of the information contained in a document.  Since rich 
metadata provides an unambiguous and direct representation 
of the meaning of a document, metadata can serve as a better 
basis for discovery and automatic exploitation than even the 
document itself.  As rich semantic metadata becomes available 
for more and more documents in a repository, search recall 
should increase, because exact matches are not necessary; and 
as the metadata becomes richer, the precision should increase 
as well, since fine-grained concepts from an ontology are less 

ambiguous than English words.  Once sufficiently rich 
semantic metadata is available, metadata-based discovery can 
exceed both the recall and the precision of keyword searching 
against full text documents.   

IV.  SAMPLE SCENARIO OF SEMANTIC DISCOVERY 

An intelligence analyst is creating a map of the locations of 
certain objects of interest.  In the past, creating such maps 
required reading intelligence cables that describe, in ordinary 
English, the locations of the objects at various times.  The 
analyst would then have to type all the coordinates into a 
geographical information system (GIS) to create the map – a 
tedious and error-prone task.   

In our approach, as each cable arrives, a metadata file is 
created that contains RDF descriptions of what objects were at 
what locations at what times based on standard ontologies.  
This RDF can be automatically generated using existing 
information extraction technology such as NetOwl from SRA 
International, TextTrainer from Northrop Grumman, or 
AeroText from Rocket Software.  A semantic metadata search 
– either a live search initiated by the analyst, or an automated 
“batch” query that runs overnight – is then used to discover all 
the metadata files that describe locations of objects of interest.  
Having standard ontologies greatly facilitates the indexing and 
retrieval required for this type of search.  Since RDF is 
completely structured, the resulting locations can automatically 
be loaded into the GIS application.  As a result, maps that 
previously took weeks to create manually are now 
automatically generated in seconds more accurately from a 
more comprehensive set of sources.   

After automatically generating a new map, the analyst sees 
an alarming pattern and decides to write a report.  Of course, 
she can’t use metadata as source information for a formal 
intelligence report, so she logs on to the data repository (to 
which she has access) to verify the pattern against the original 
reporting.  However, she is denied access to several of the 
cables because they are stored in a restricted collection.  
Through official channels (referenced in the metadata) she 
requests access to the restricted collection, receives access, 
confirms the accuracy of the map, and produces an important 
report.  In the past, she never would have seen the pattern in 
the first place because she wasn’t aware of the reports in the 
restricted collection.   

V. ONTOLOGIES FOR INFORMATION SHARING 

The approach and claims described above for using 
semantic metadata to improve discovery hold true equally well 
for information sharing – one can simply view the sharing as a 
“push” of metadata across security boundaries whereas 
discovery is like a “pull”.  However, the use of ontologies and 
rich semantic metadata can enhance information sharing in a 
radical way.   

Recall that our semantic metadata is represented in a 
standard language (RDF) that is well-defined and machine-
interpretable, and that we can create rich ontologies in OWL 
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that are also machine-interpretable.  For discovery, these 
ontologies enable semantic searching by abstracting the query 
concepts; to aid information sharing, ontologies can be used to 
automatically abstract or redact the semantic metadata itself.   

Another feature of OWL is that it can encode inferences and 
other logical constructs which can then be automatically 
processed in software.  Classification guides rules and policies 
can be represented in OWL, and the computer can 
automatically apply those rules and policies to semantic 
metadata.  This allows the automatic redaction or abstraction 
classified metadata so that it conforms to the lower 
classification level.  Semantic technologies that exist today 
enable us to automatically redact metadata for information 
sharing.   

We can actually take this one step further.  We can write a 
classification guide in OWL in such a way that a theorem 
prover can be used to mathematically prove that the redacted 
data does not violate any classification rules.  Pellet is one 
example of a widely-used and well-respected open source 
theorem prover.   

VI.  SAMPLE SCENARIO OF SEMANTIC SHARING 

Local law enforcement has a need-to-know whenever FBI 
identifies an individual in the local community with terrorist 
connections.  However, local law enforcement does not have 
the need-to-know (nor do they even care) the source or 
methods FBI used to obtain such information.  In the past, 
whenever a new terrorist connection was established and 
documented, the entire data record was classified because it 
described how FBI obtained the information to create the 
connection.  The only way local law enforcement came to 
know about the connection would be if an FBI agent read the 
entire report, distilled it down to an unclassified version, 
obtained the relevant approvals, and finally sent the 
information to local law enforcement.   

In our approach, as each suspect interview summary report 
is generated, an RDF metadata file is generated containing 
names and known-terrorist connections.  Again, this can be 
automatically generated using existing information extraction 
technology.   This RDF metadata is automatically routed to 
local law enforcement via a fully accredited hardware/software 
guard device at the FBI network boundary.  This guard reads 
the RDF, compares it to classification guides and policies 
encoded in OWL, and performs a logical redaction of the 
simple metadata facts.  The redacted RDF metadata is then 
allowed to pass outside the FBI network and travels on to local 
law enforcement, where it can automatically be added to a 
database or reformatted into a textual message.  Through 
official channels (referenced in the RDF), local law 
enforcement can request confirmation of the information at 
any later date.   

VII.  CONCLUSION 

Discovering information in an environment with strict 
security constraints is a critical problem for the intelligence 
community.  Physically-separate metadata can be used to 
overcome some of these problems.  Metadata can have a lower 
level of classification than the data itself, and can reside on a 
different network than the data itself.  In this way, more 
accessible metadata indexes can be created and exploited 
while fully maintaining the security of the source data.  This 
means that even the most sensitive documents can be 
discoverable, and much of the information they contain can be 
exploited – even by analysts that have absolutely no access to 
the source documents themselves.  Effective discovery and 
exploitation, however, depends on the availability of rich 
content metadata that is based on extensive ontologies.   

There is an inherent conflict in the intelligence community 
between the responsibility to share information and the 
responsibility to protect it.  This dilemma can be finessed by 
protecting data and sharing rich metadata.  This approach can 
be implemented within the current strict security framework 
and will benefit significantly from the type of ontology work 
discussed at this conference.   

Semantic technologies that exist today enable us to 
automatically convert documents to metadata, automatically 
redact that metadata to any security level, and automatically 
prove that the redaction is sound and complete.   
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Abstract — This paper demonstrates a semantic 
wiki application that helps tactical users manage data 
from diverse sources and multiple locations. 

Index Terms — semantic wiki, tactical intelligence, 
ontology, threat characterizations. 

INTRODUCTION 

Military forces operating from Forward Operating 
Bases (FOBs) currently have inadequate means to collect 
and organize information in ways that can aid in rapid 
understanding of the evolving conditions and threats in an 
area.  Until recently, only anecdotal evidence existed 
indicating that lots of structured and unstructured datasets 
were available “in the wild” but went underexploited by 
tactical users due to semantic and syntactic 
incompatibilities. [1].  

We have conducted a study to quantitatively profile 
data sources of relevance to tactical intelligence operations 
in a counterinsurgency [2].  The viewpoint of our study is 
from the perspective of tactical ground military 
intelligence support to operations at the regiment, battalion 
or company level, particularly semi-independent task 
forces at these echelons.  At this level, the intelligence 
element of a military organization often serves as the 
primary data repository and the principal data analysis cell 
that produces products to support decision-making.  While 
various organizations assign specific information storage 
and analysis responsibilities to different sub-elements, the 
intelligence cell typically draws on a broad range of data 
sets and offers some level of support to virtually the full 
spectrum of counterinsurgency operations, from civil 
affairs (CA) and psychological operations (PSYOPS) to 
kinetic targeting. 

The study compiled representative data sources used 
in theater during combat operations in Iraq and 
Afghanistan and identifies over 250 sources relevant to 
tactical operations of conventional and special operations 
forces engaged in a counterinsurgency.  We identified 
more than 50 formats such as disparate spreadsheets or 
summarized in text reports that circulate in the field as e-
mail attachments.  These formats are easy to produce in the 
field but the information they contain is hard to exploit 

when it comes time to find quick answers to operational 
questions.  

In this paper we present a demonstration of a semantic 
wiki application that helps tactical users manage these data 
sets “in the wild”.  The Semantic Wiki we have developed: 

1. Integrates heterogeneous information coming 
from diverse sources and multiple locations; 

2. Uses a flexible ontology that can be evolved by 
the user community to organize that information 
in a way that makes it easy for users to capture 
and understand how each piece of data connects.  
This makes it possible to analyze information 
interactions and dependencies; 

3. Uses standard web technology such as REST 
Application Programming Interface to present and 
extract that information to other tools and 
systems. 

We demonstrate how this semantic wiki application 
allows non-technical users to integrate and manage data 
sets in the field and answer contextual analytical questions 
from its data, without the assistance of specialized IT 
personnel. 

SEMANTIC WIKI IMPLEMENTATION 

A semantic wiki is one of the newly emerging Web 
3.0 capabilities. Web 1.0 put information on-line by 
creating and connecting web pages with URLs and HTTP 
that computers could understand.  Web 2.0 enabled people 
to easily publish information, leading to blogs, social 
networking and the “traditional” wiki.  With the Web 3.0 
semantic wiki, people and computers both use a common 
information structure, allowing each to optimize around 
the things they do best.  Computers connect, monitor and 
process large quantities of data sources and information, 
while people are much better at observing, interpreting and 
connecting information.  The common structure is a set of 
web pages representing people, events and other types of 
entities, with links connecting different types of pages 
according to an ontology.  The structure of the ontology is 
accessible to computers and easily understandable by 
people. 

The ontology is defined and maintained by the user 
community and drives the information organization. When 
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new information is collected, it is categorized and linked 
into the overall, evolving collection of linked pages 
(semantic graph) according to the structure provided by 
the ontology.  Any type of entity may be represented in the 
ontology, from the general (person, facility, event, place, 
network) to the specific (financial withdrawal, graffiti, 
railroad siding).  A new instance of one of these types 
(Person: John Doe) is created, structured and linked 
according to ontology.  Thus John Doe will have person 
attributes such as height, gender, or ethnicity rather than 
event attributes such as type, location and time.  The types 
of linkages that John Doe can have are also appropriate to 
a Person, such as father-of, employed-by, and similar 
connections.  Compared to other semantic approaches, 
which utilize a fixed ontology, our approach recognizes 
and supports the notion that the relevant information 
structure has to vary over time to stay relevant.  We allow 
this to be done by the community of users in the field to 
accurately track tactical understanding as situations evolve. 

The Semantic Wiki is implemented using our 
commercial semantic engine, Tango. Like other semantic 
technologies, such as Twine [3], Zemanta [4] and Noovo 
[5], Tango is built on top of a relational database, and not 
an RDF store.  The Tango meta-model may be thought of 
as being conceptually closer to an object/UML orientation. 

Much of Tango — including the UI — is controlled 
through the schema. When it starts up, a schema, which is 
stored in a custom XML format, is read in from disk.  A 
UML representation of the loaded schema is generated to 
disk. The schema can be updated while Tango is running, 
and the schema changes persisted to disk.  These 
dynamically introduced schema changes are properly 
reapplied if Tango is ever restarted.  

We recently added an OWL counterpart to the UML 
generator, and an OWL file is also generated at start up.  
The OWL and UML representations can also be generated 
on demand while the application is running.  This is 
important because a goal of ours is to support dynamic 
lists of concept instances within the ontology.  Users 
define temporal, spatial and semantic constraints for set 
membership into these lists and group them to create threat 
characterizations, and we want to be able to capture that 
user knowledge and make it available to other services via 
OWL.  Instance data can be returned in a variety of 
formats, including KML, our own TORI XML [6] 
structure, and JSON, and we recently introduced support 
for RDF.  

In an effort to keep the ontology OWL-DL compliant, 
certain features of our meta-model are not currently 
exported, including relationship certainty, and evidentiary 
associations. 

The main driver for our support of OWL/RDF is to 
facilitate re-use of data by other emergent analytical tools 
and systems that can deal with OWL/RDF structured data 
[7].  As the integration and interoperability efforts with 
other systems continue within our on-going projects we 
expect to receive feedback on the ontology and its 
structure, and identify future user requirements from the 
program transitions we will be doing next year.  

DEMONSTRATION 

The demonstration is based on some of the current 
capabilities we have developed under the ONR Large 
Tactical Sensor Networks project in support of Marine 
Corps Intelligence needs [8].  This Semantic Wiki 
Implementation for Marines (SWIM) combines Marine 
Corps customized data connections, ontology and threat 
models with our commercial semantic engine, Tango.  We 
use the ontology and threat models provided by tactical 
intelligence users with current counterinsurgency 
operations experience to detect and issue indications and 
warning alerts on enemy threats in progress based on those 
previous observations. The demonstration uses 
representative but unclassified IMINT, SIGINT and 
HUMINT data.  IMINT data includes suspicious event 
data from processed UAV video with focus on activities of 
vehicles possibly involved in threat activities.  HUMINT 
and SIGINT data includes representative formats and 
entity types from tactical and national data sets.  As this 
data is collected, reports are created and the data is 
presented to software applications and analysts who 
semantically link it based on the ontology.  Fig. 1 shows 
the customized SWIM data processing pyramid, with the 
raw data at the lower level and the tactical intelligence 
analyst interacting with the semantic wiki on top.  

From a capabilities perspective, our demonstration 
focuses on three important specialized types of concepts 
supported within the Semantic Wiki: Smart Lists, 
Characterizations and Semantic Widgets: 

Smart Lists — A Smart List is a set of pages that 
match any criteria, such as new people entering a 
controlled area (HUMINT), calls from a monitored phone 
(SIGINT) during a certain time of day, or vehicles 
behaving erratically in the vicinity of an operation 
(IMINT).  The Semantic wiki keeps every list dynamically 
up-to-date and can be combined with alerts for a powerful 
mechanism to monitor virtually any change to data 
relevant to the mission. 
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Fig. 1. Semantic Wiki for Tactical Intelligence Applications — Data Processing Pyramid 

Characterizations — User-definable 
characterizations are the method tactical intelligence 
analyst can use to ask specific operational questions and 
determine if the information to answer them is available.  
A simple characterization might be used to mark as 
suspicious anyone who contacts a person on a watch list 
(represented as a Smart List).  More complex 
characterizations can provide alert “clues” based on threat 
models of enemy Tactics, Techniques and Procedures 
(TTPs), or link specific devices to events based on 
complex associations.  

One example of a characterization is the question: “Is 
this individual still at this location?”, based on the 
operational need to verify information before a raid.  
Specific indicators could include SIGINT clues such as 
tipoff phone calls or a sudden absence of phone calls; 
IMINT might show vehicles leaving an area or people 
scattering through a field.  HUMINT indications might 
involve an enemy operative seen buying food in a different 

town than expected.  And, the characterization can 
combine these into both logical and temporal patterns: a 
flurry of calls followed by silence, with vehicles seen 
leaving an area shortly thereafter is a much stronger 
indicator than any of those detectable features in isolation. 

A second example involves operational questions 
around whether an informant can be trusted.  A call from a 
known bad guy may or may not be suspicious, since most 
informants associate with unsavory characters.  However, 
a call from an unknown phone originating in the vicinity of 
a facility where suspicious activities have been observed 
represents a much more suspicious pattern. 

We demonstrate specific examples of how 
characterizations help answer contextual questions such as: 
“Are these events a threat precursor, based on known 
tactics and trends?” 
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Semantic Widgets — The Semantic Wiki dashboard 
is home to widgets: mini-applications that let a tactical 
analyst perform common tasks and provide fast access to 
information.  Because all the data on the Semantic Wiki is 
conformant to the ontology, the output of one widget can 
be linked to be the input to another, allowing users to 
create analytical pipes that capture best practices and serve 
to maintain knowledge continuity across rotations. 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Abstract— Intelligence analysts rely on reports that are subject 

to many varieties of uncertainty, such as noise in sensors; 
deception or error by human sources; or cultural 
misunderstanding. To be effective, intelligence analysts must 
understand the relationship between reports, the events or 
situations reported upon, and the hypotheses of interest to which 
those events or situations are evidential. Computerized support 
for intelligence analysts must provide assistance for managing 
evidential reasoning. For this purpose, computational 
representations are needed for categories and relationships 
related to evidential reasoning, such as hypotheses, evidence, 
arguments, sources, and credibility. This paper describes some of 
the entities and relationships that belong in an ontology of 
evidence, and makes the case for the fundamental importance of 
a carefully engineered ontology of evidence to the enterprise of 
intelligence analysis. 
 

Index Terms— Evidence, probabilistic ontologies, intelligence 
analysis, inferential reasoning, source credibility 

I. INTRODUCTION 
vidential reasoning is fundamental to the practice of 
intelligence analysis. Much of an intelligence analyst’s 

time is spent constructing complex chains of argument from 
evidence to conclusion, weighing the force of each argument 
and the credibility of its component sources, and arriving at 
overall judgments that, while falling short of certainty, provide 
useful inputs to decision makers. Reports that give rise to 
intelligence assessments are characterized by many varieties 
of uncertainty: noise in sensors; deception or error by human 
sources; poor understanding of situation or context. To be 
effective, intelligence analysts must understand the 
relationship between reports, the events or situations reported 
upon, and the hypotheses of interest to which those events or 
situations are evidential. 

It follows that effective computerized support for 
intelligence analysts must support processes of evidential 
reasoning.  For this purpose, computational representations are 
needed for categories and relationships related to evidential 
reasoning, such as hypotheses, evidence, sources, credibility, 
and the like.  

Some have argued that computational representations of 
evidential categories and relationships, while necessary to 
intelligence analysis, do not belong in an ontology. Ontology, 
the argument goes, is the systematic study of existence: the 
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categories of things that can exist and the relationships they 
can bear to one another. In the field of information systems, 
the term has come to mean the engineering discipline of 
constructing computational representations of various domains 
of application. By contrast, epistemology is the study of 
knowledge: how agents come to know about things that exist. 
The ontologies we construct, the argument goes, should be 
about what is, not what might or might not be, or what agents 
can reasonably infer from available evidence. 

Computational support for intelligence analysts requires the 
ability to represent, store, and manipulate evidence, 
hypotheses, and arguments relating evidence to hypotheses. 
Such representations must be stored in a computational 
structure, which, for want of a better term, we might call an 
epistemological repository.  Let us consider what such an 
epistemological repository might contain.  It would represent 
concepts such as hypothesis, evidence, source, and report. It 
would contain relationships such as relevance of evidence to 
hypothesis, or the source-of relationship connecting a source 
with a report produced by the source. It would be quite natural 
to construct the representation using the languages and tools 
commonly applied in the discipline of ontological engineering.  
In other words, this epistemological repository would look 
rather like a domain ontology, where the domain being 
represented is epistemology – the field devoted to how we use 
evidence obtained from the world around us to arrive at 
knowledge about the world. The natural person to build this 
repository would be someone schooled in constructing such 
representations – that is, an ontological engineer. To call such 
a repository an ontology of evidence would hardly seem 
unreasonable.   

In this paper, we argue for the fundamental importance of a 
carefully engineered ontology of evidence to the enterprise of 
intelligence analysis for the need for an ontology of evidence, 
and describe some of the entities and relationships that such an 
ontology would represent. 

II. EVIDENCE AND ARGUMENT 
Schum [1] has written a systematic treatise on evidence and 

its role in constructing arguments. All evidence, according to 
Schum, has three major credentials: relevance, credibility, and 
inferential force or weight. Relevance concerns the degree to 
which the evidence bears upon the hypothesis under 
consideration. Credibility means the degree to which the 
evidence is believable; whether or not the evidence is 
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trustworthy. Inferential force concerns the strength of the 
relationship between evidence and hypothesis – the degree to 
which the evidence sways our belief in the hypothesis. 

Evidence can come from diverse types of sources (e.g. 
physical sensors, human reports, direct tangible evidence such 
as objects or documents), each with different degrees of 
relevance, levels of credibility, and force.  

As examples of the factors bearing the credibility of a 
source, evidence coming from physical sensors needs to be 
evaluated with respect to environmental conditions, distance 
from observer, and physical characteristics of the respective 
sensor. Human sensors, on the other hand, must be scrutinized 
with respect to opportunity, competence, and veridicality. 
Opportunity concerns whether the person was in a position to 
have observed the event or verified the fact. Competence 
concerns whether the source was capable of making the 
distinction in question. Veridicality concerns whether the 
source is telling the truth. Clearly, there may be complex 
chains of inference involved in ascertaining any of these 
factors influencing credibility. Approaches for dealing with 
the weight or strength of evidence include both qualitative and 
quantitative aspects of the reasoning process adopted to draw 
inferences from it (e.g. probability theory, logical reasoning, 
etc). 

A vital (and too often overlooked) distinction to be made is 
the difference between an event and evidence that the event 
occurred, or between a fact and evidence that the fact obtains. 
Schum uses the notational device of an asterisk to make the 
distinction between event or fact E and evidence E* relating to 
E. It is important to note that E* does not entail E; the 
inference to E depends on the credibility of the source of E*. 

We do not always have the luxury of a direct report E* on 
an event or fact E of interest. We may need to reason 
indirectly from a report R* to an event or proposition R whose 
truth bears on the truth of E, and from there to E itself. 
Collections of interrelated propositions can be chained 
together into complex arguments. We often think of an 
argument as a linear chain from evidence through a collection 
of intermediate conclusions to a final conclusion. However, 
each link in such a chain must be justified. A judgment must 
be made that each antecedent in the chain is relevant to its 
consequent. The evidential force of each link must also be 
established. These judgments often require evidential 
reasoning in their own right. Schum uses the term ancillary 
evidence to refer to evidence about the nature and force of an 
evidential relationship. Intelligence analysts require support 
for keeping account of chains of argument and the ancillary 
evidence on which their force depends. 

III. PROBABILISTIC TREATMENTS OF EVIDENCE 
The past century has brought broad appreciation of the 

statistical regularities underlying the seeming complexity of 
physical, biological, psychological, and societal phenomena 
[2]. Computational advances are enabling automated and 
semi-automated support for many “knowledge tasks” once 
thought to be the exclusive province of human cognition. 
Intelligence analysts increasingly rely upon computerized 

systems that allow them to catalog, organize, and explore the 
implications of large collections of reports and other evidence.  
Quantitative measures of the strength of evidence are useful as 
a way to summarize and communicate the implications of 
large bodies of evidence. A natural candidate for such 
summarization, with a long and respected intellectual tradition 
behind it, is probability. Systematic deviations of intuitive 
human reasoning from the tenets of probability theory (e.g., 
[3]) have been cited as justification for heuristic approaches to 
combining strength of evidence (e.g., [4]). Nevertheless, 
naturalistic human reasoning can usefully be treated as a 
computationally bounded approximation to a probabilistic 
norm (c.f., [5], [6]).   There is a robust literature on the use of 
probability and decision theory to support human inference 
and decision making, and to protect against errors that can 
occur in naïve human reasoning (e.g., [7], [8]). Furthermore, 
heuristic techniques introduced as cognitively natural ways to 
overcome perceived disadvantages of probability theory have 
been shown to admit a probabilistic interpretation (e.g., [9]). 
When the independence conditions justifying the probabilistic 
interpretation are met, such heuristic weighting factors can 
work well, but they can produce disastrous results when 
applied without regard to whether these conditions are met. 
There is no match for probability theory in its generality, 
logical coherence, and well-developed methodological base. 
For this reason, we focus on probability theory as a logically 
justified approach to combining numerical measures of 
evidential force. 

We provide several examples to illustrate how probability 
can be used to represent and reason about credibility, to 
combine reports from different sources, and to handle 
subtleties such as dependence relationships that can stymie 
naïve heuristic weighting schemes.  Our examples are 
deliberately kept simple to illustrate the key points. They are 
not intended to represent the full complexity of the evidential 
reasoning problems faced in real applications. Nevertheless, 
they illustrate the building blocks from which a more 
sophisticated reasoning capability can be constructed. 

Figure 1 shows a Bayesian network that illustrates the 
combination of three independent pieces of evidence regarding 
the whereabouts of Osama bin Laden. Prior to receiving the 
reports, the probability is 3% that he is in Kandahar. After 
receiving the first report, the chance increases to 11%. After a 

 
Figure 1: Three Independent Reports Increase Probability of 

Hypothesis from 3% to 69% 
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second report, the probability is 35%; the third report brings 
the probability to 69%. The figure shows the situation after the 
third report has been received. The top rectangle represents 
hypotheses about bin Laden’s location and their probabilities 
(Kandahar at 69%; Other at 31%). The three reports are shown 
below the location hypotheses. The gray color indicates that 
they have been specified as evidence, with 100% probability 
assigned to the actual reported location. Figure 2 extends this 
example to explicitly represent report credibility. The figure 
now shows credibility hypotheses (low, moderate and high) 
for the three reports. If we had specified no evidence about the 
credibility values, the results would have been the same as 
Figure 1. But if we specify that the credibility of the third 
report is low, then the probability decreases to 55% that bin 
Laden is in Kandahar. That is, lowering the credibility of a 
report decreases its evidential force, resulting in less change in 
belief when the report is received. 

Our final example illustrates an issue not easily accounted 
for by heuristic methods for assigning and combining 
evidential weights.  Suppose we discover that two of the 
reports, which we had originally treated as independent, may 
have actually come from the same informant. We can treat this 
case by explicitly representing a hypothesis for whether the 
reports came from the same source. In Figure 3a, we indicate 
that the sources of the two reports are different. In this case, 
they can be treated as independent evidence items, and the 
resulting belief in bin Laden’s location is the same as in Figure 
1. However, if we specify that the sources are the same 
(Figure 3b), the probability that bin Laden is in Kandahar is 
reduced to 35%, the same as if we had received only two 
independent reports. The structural assumptions (the 
independence relationships represented in the graphs) together 
with the numerical probability values ensure that subtleties 
such as source credibility and common sources are properly 
accounted for in evidential reasoning. 

Additional treatments of probabilistic representations of 
relevance and credibility in evidential reasoning can be found 
in [10] and [11].  

IV. A PROBABILISTIC ONTOLOGY OF EVIDENCE AND 

INFERENTIAL REASONING 
The above concepts pertain to the use of evidence as an 

informational asset and to the inferential process that 
transforms it into knowledge. This is clearly a multi-

disciplinary subject.  Practitioners from many disciplines can 
profit from a formalization of the discipline of evidential 
reasoning. Due to its heavy dependence on evidence in almost 
every aspect of its operations, the domain of intelligence 
analysis would be a prime beneficiary of an ontology of 
evidence. Benefits of an ontology of evidence include a 
common, shared vocabulary for important features and 
relationships that occur across different applications of 
evidential reasoning, as well as the ability to share information 
among diverse systems. 

Despite considerable diversity and individual variation in 
the conduct of investigation and analysis, there are 
fundamental common structures and processes. Examples 
include assessing the credibility and relevance of individual 
items or of masses of evidence, or constructing reasoning 
chains to connect evidence to hypothesis. A formal 
representation of evidence and evidential relationships 
provides the obvious benefit of allowing analysts to query a 
knowledge base not just for conclusions (e.g., “Where is 
Osama bin Laden?”), but also for the evidence on which the 
conclusions are based (e.g., “What is the evidence that bin 
Laden is in Kandahar?”)  Analysts can reason about the 
relevance of evidence to hypotheses, the credibility of sources, 
errors that may be common to several evidential reasoning 
chains, and other subtleties of evidential reasoning. 

There has been an increasing emphasis in recent years in 
sharing knowledge among intelligence applications. An 
ontology of evidence and inferential reasoning is a first step in 
that direction. Ontologies provide shared representations of 
the entities and relationships characterizing a domain, into 
which vocabularies of different systems can be mapped so to 
provide interoperability among them. Techniques for making 
semantic information explicit and computationally accessible 

 
Figure 2: Low Credibility Reduces Force of Report 

 
a. Sources for Rep1 and Rep2 are Different 

 
b. Sources for Rep1 and Rep2 are the Same 

Figure 3: Common Source Reduces Force of Report 
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are key to effective exploitation of evidence from diverse 
sources, with distinct grades of credibility and relevance. 
Shared formal semantics enables systems with different 
internal representations to exchange information, and provides 
a means to enforce business rules such as access controls for 
security. 

However, traditional ontologies do not provide a principled 
means to ensure semantic consistency with respect to issues of 
uncertainty related to credibility of sources, relevance of  
evidence, and other aspects of the evidential reasoning 
process. Because uncertainty is a fundamental aspect of 
evidential reasoning, this is a serious deficiency.  

When faced with the challenge of representing uncertainty 
in an ontology, the natural tendency is to introduce a means to 
annotate property values with information regarding their level 
of confidence. This approach addresses only part of the 
information that needs to be represented in a full ontology of 
evidence. To understand why more is needed, consider the 
example from Section II above, in which evidence from 
several sources is combined to draw an inference about the 
current location of Osama bin Laden. We saw that the 
inferential force of each report depended not only on that 
report’s credibility, but also on whether the information from 
which it was derived overlapped with the information on 
which another report was derived. In other words, we need to 
represent not just a single credibility number, but information 
about how that credibility was derived. An assessment from 
source x, in order to be used in conjunction with evidence 
coming from other sources would not only state that (say) 
"with 75% probability, Osama bin Laden is in Kandahar." To 
be part of a comprehensive probabilistic model capable of 
performing sophisticated evidential reasoning, such a 
statement would have to include the supporting evidence and 
how its credibility affects the overall assessment. A simple 
example would be “with 75% probability, given reports that 
his physician was spotted in a local market (evidence E1) and 
that a radio communication regarding his whereabouts was 
intercepted (evidence E2),” accompanied by information 
clarifying how this number changes as the credibility of E1 
and E2 varies. Further, as new evidence accrues, a 
sophisticated evidential reasoning system must be capable of 
capturing the impact of additional evidence on the body of 
evidence being analyzed. As an example, if a source were 
found to be a double agent, the credibilities of all reports from 
that agent would need to be called into question. A system that 
relies on or can represent only numerical weights of individual 
arguments cannot cope with the complexity and dynamic 
aspect of real world multi-source evidential reasoning. 

In short, annotating a standard ontology with numerical 
probabilities is not sufficient, as too much information is lost 
due to the lack of a good representational scheme that captures 
structural constraints and dependencies among probabilities. 
Over the past several decades, semantically rich and 
computationally efficient formalisms have emerged for 
representing and reasoning with probabilistic knowledge (e.g., 
[12]). A true probabilistic ontology must be capable of 
properly representing the nuances these more expressive 

languages were designed to handle. We have argued elsewhere 
(e.g. [5]) that for domains characterized by uncertainty, 
probabilistic ontologies ([13], [14]) provide a principled 
means to represent the structural and numerical aspects of 
evidential reasoning. Indeed, many researchers have pointed 
out the importance of structural information in probabilistic 
models (e.g. [15], [16]), and it is well known that some 
questions about evidence can be answered entirely in 
structural terms ([1], page 271). Shafer ([17], pages 5-9) 
argues that probability is more about structure than it is about 
numbers. Numerical probabilities enable quantitative 
assessment of the force of evidence, which depends on the 
strength of relevance and credibility arguments. Exploring the 
details of probabilistic ontologies is not in the scope of this 
work, but the interested reader is referred to http://www.pr-
owl.org. 

Finally, apart from the advantages of knowledge sharing 
tools to the Intelligence Analysis domain, it is important to 
foresee the institutional and cultural implications of 
systematizing and standardizing vocabulary and semantics of 
evidential reasoning.  The very difficulties an effective 
information-sharing scheme is meant to overcome can become 
obstacles to its widespread adoption. Given the nature of the 
field, with highly personalized approaches to analysis, a 
knowledge tool may encounter resistance if it is perceived as 
threatening deeply ingrained processes. Yet, the increasing 
demands within the Intelligence community for effective 
exchange create an opportunity for developing standardized 
representations and approaches. This is an important and 
difficult issue. A probabilistic ontology of evidence is a 
promising first step to provide a structure for knowledge 
sharing that is sufficiently flexible to address the demands of 
the multiple approaches currently used to handle evidential 
reasoning. 

V. SUMMARY AND CONCLUSIONS 
After identifying some concepts regarding the process of 

transforming masses of evidence into knowledge, we explored 
the need for formal representations of evidential processes as a 
means to provide cross-fertilization among domains that 
depend on processes of evidential reasoning. Among these, 
intelligence analysis is paradigmatic. We proposed a 
probabilistic ontology of evidence as a key enabler of this 
vision. Implementation of this concept must be cognizant of 
institutional and cultural barriers. In conclusion, we argue that 
the benefits of effective evidential reasoning and knowledge 
sharing tools far outpace the difficulties in implementing 
them. 
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Abstract— Systems analysis comprehends systems in terms of 

an ontology that relates any system, its elements, and its 

environment in terms of their functional, structural, and 

behavioral relations.  At the heart of systems ontology is “design”, 

the combination of two interactive loops: one loop relating the 

system to its environment, the other loop relating the system to its 

parts.  For systems analysis, e.g. intelligence analysis of remotely 

sensed facilities in denied territory, these loops consider structure, 

function, and process in the context of environment to develop 

information (what), knowledge (how), and understanding (why) 

of the system and elements being studied.  This exposition 

presents the interactive loops of design in systems ontology, 

treating analysis of Soviet national missile defenses as an example 

of successful application of systems ontology. 

 
Index Terms—Ballistic missile defense, cold war, intelligence 

analysis, ontology, systems methodology 

I. INTRODUCTION TO SYSTEMS 

The analysis of design in systems ontology leans heavily on 

the modern concept of a system, especially the definitions of 

“system” due to Bertalanffy and Ackoff. 

Bertalanffy (1969, pp. 55-56) defined systems as follows: 

“A system can be defined as a set of elements standing in 

interrelations.  Interrelation means that elements, p, stand in 

relations, R, so that the behavior of an element p in R is 

different from its behavior in another relation, R’.  If the 

behaviors in R and R’ are not different, there is no interaction, 

and the elements behave independently with respect to the 

relations R and R’.” 

Ackoff’s subsequent restatement suppresses explicit 

mention of the relations among elements (1981, pp. 15-16; see 

also 1972, 1974): “A system is a set of two or more elements 

that satisfies the following three conditions.  (1) The behavior 

of each element has an effect on the behavior of the whole…  

(2) The behavior of the elements and their effects on the whole 

are interdependent… the way each element behaves and the 

way it affects the whole depends on how at least one other 

element behaves…  (3) However subgroups of the elements 

are formed, each has an effect on the behavior of the whole 

and none has an independent effect on it.” 

Ackoff’s and Bertalanffy’s definitions are compatible, but 

Ackoff’s definition avoids explicitly introducing the relations 

R as explaining differences in behavior of p, leaving the 

interdependencies unexplained.  This leads to abandonment of 

reductionism, which is characteristic of systems thinking.  

Bertalanffy’s definition is important for illuminating why it is 

that systems have the kinds of irreducibility that are made 

implicit in Ackoff’s definition: it is the relations of the 

elements to the system and to one another that give the 

elements their system-dependent properties on the one hand, 

and the system its emergent properties on the other.  In a 

nested system-of-systems, Bertalanffy’s definition helps to 

explain what Ackoff’s definition asserts, particularly the 

distinction between functions and purposes. 

Ackoff concludes from his definition that every element of a 

system has essential properties that belong to it only by virtue 

of its being an element in the system, and also that every 

system has essential properties that belong to none of its 

elements, either individually or in aggregation.  Systems 

analysis exploits these two ontological conclusions to locate 

function among the essential properties of an element that it 

has only in virtue of its being in a system, and to locate the 

purpose being served by a function among the essential 

properties of the system that belong to none of its elements. 

These are ontological razors for winnowing candidate 

functions and candidate purposes in systems analysis. 

II. DESIGN IN SYSTEMS ONTOLOGY 

A. Definitions of “Design” 

“Design” as a verb is a rational or economic act of 

requirements transformation.  In engineering, requirements are 

transformed through many stages: from user requirements to 

system operational requirements through conceptual design, 

from system operational requirements to element functional 

requirements through preliminary design, and from element 

functional requirements to production requirements 

(specifications, schematics etc.) through detailed design. 

Engineering design develops efficient applications of 

resources to satisfy needs.  The economic or rational aspect of 

design, combined with functional allocation in design, 

distinguishes designs from other arrangements of parts for a 

collective purpose by the economy of means to an end so that 

nothing is invoked other than what is functionally justified. 

In keeping with the definition of designing as an inherently 

rational or economic activity, “design” as a noun is the 

rationale for the requirements transformations understood in 

the structural, functional, and process relationships between 

the system, its environment, and its parts or elements. 

 The outputs of engineering design are product and 

production specifications in sufficient detail to eliminate 

interpretation in the production process, rather than any 

cognitive basis for requirements transformations.  “Design” as 

a noun is not the outcome of “design” as a verb; schematics 

and specifications are not designs but rather summaries of 

design sufficient for production.  That there is more to a design 

than is captured in schematics and specifications is evident 

when designs are protected as proprietary, or delivered from a 

vendor to a customer in cases of contracting design, or 
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archived for future use.  What is included in an archived 

design, or in a design delivered under a standard contract, or is 

protected as proprietary when safeguarding designs, includes 

performance analyses, trade studies, and the development of 

those alternative system concepts that were evaluated but not, 

in the end, chosen for production.   What is included in the 

object called a “design” is the entire rationale for the 

requirements transformations specified in the design process. 

Complementing the distinction between the noun “design” 

and the products of the activity called “design” is the 

distinction between comprehending the design of something, 

e.g. a surface-to-air (SAM) missile complex, and apprehending 

the prior occurrence of an act of design; to acknowledge the 

design of something is only to judge that the relationships 

between elements and their capabilities at successive 

hierarchical levels of nested systems are rational or 

economical.  The rationality of design is ontological (specific 

to the relations among elements), and specifically an analytical 

rationality (comprehensibility) rather than an etiological 

rationality.  The cause of rationality in design is not the 

rationality of any designer, but rather the environmental, 

technical, and economic constraints within which the system is 

realized.  Failing to appreciate this distinction, by insisting on 

the rationality of causal agents, leads to a characteristic failure 

of analysis discussed in section IV.b below. 

B. Function and Purpose 

Functions are not arbitrary properties of system elements; 

they must be among those properties that are essential to the 

element as an element, in light of the essence of systems (the 

interdependence of behaviors of systems and elements).  This 

distinguishes the intercept function of an anti-ballistic-missile 

(ABM) in a national missile defense (NMD) system from its 

non-functional trans-sonic boom.  Claiming that the sonic 

boom is non-functional is to claim that there is no system that 

can be fully analyzed in terms of the ontology of systems, 

whose design leads to the ascription of any function or purpose 

to the sonic boom of an ABM.  Any well-formed system 

comprising the ABM will avoid such ascriptions; any putative 

system whose analysis entails such ascriptions for the sonic 

boom of the ABM will fail to converge on a design, as 

discussed in section IV.a below. 

Similarly, the ends served by the functions of the elements 

(i.e. the purposes of the system) are among those properties of 

the whole system that are essential to the system as a system.  

For instance, if a function of a search radar in a ballistic-

missile defense (BMD) system is cueing targeting radars, and 

if re-entry vehicle (RV) destruction is the purpose served by 

that function, then this entails (1) that RV destruction is an 

emergent property of the BMD system, (2) that the search 

radar is an element of that system, and (3) that the search radar 

does not cue targeting radars apart from its belonging to a 

BMD system. 

Functions and purposes are separated by one hierarchical 

layer in a nested system-of-systems, but purposes at one level 

are not the same as functions at the next, except by 

coincidence.  So, for instance, if a function of a search radar in 

a BMD system is to cue targeting radars, and if RV destruction 

is a purpose of the BMD system, then that does not entail that 

cueing targeting radars is a purpose of the search radar (i.e. an 

end served by functions of elements of the radar such as the 

antenna, transceiver, beam-former, power supply etc.), nor 

does it entail that RV destruction is a function of the BMD 

system in the national defense architecture.  Both of these 

hypotheses are, in practice, reliable starting points for iterative 

systems analysis, but they are not necessary consequences of 

search radar function or BMD system purpose. 

C. Analogy of Engineering and Analysis 

Design in systems ontology is the combination of two 

interactive loops, one addressing the relationship of the system 

to its environment, the other addressing the relationship of the 

system to its parts.  In systems engineering, the two loops are 

called preliminary design and detailed design, while in systems 

analysis they are called expansion and reduction.  Analysis 

mirrors the structure of engineering even when analysis is 

conducted without access to system designers, because of the 

ontological commitments of scientific realism regarding 

systems: systems being what they are, they must be analyzed 

(and designed, if designed at all) in terms of the underlying 

reality of systems, which involves the two loops of design. 

Viewed from the perspective of any arbitrary element Yb (a 

functionally specified constituent of a system X), preliminary 

design of X and expansion of Yb both determine the function of 

Yb as a contribution to the comprising whole X, while detailed 

design of X and reduction of Yb determine the structure of Yb 

and how it works. 
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Fig. 1.  Nested design loops of systems methodology 

 

The relationship between the systems engineering design of 

X and the systems analysis of one of its elements Yb is 

illustrated in figure 1 above for a system X consisting of 

elements Yi, each of which in turn consists of sub-elements Zij.  

The nesting can continue indefinitely in both directions: X can 

be an element of some other larger comprising super-system 

W, and each Zij can in turn be an object of either design or 

analysis, so that the preliminary design of X may also be part 

of the detailed design of W, and the detailed design of X may 

comprise the preliminary designs of the Yi and the conceptual 

designs of the Zij. 

Figure 1 offers an opportunity to distinguish functions from 

purposes using Bertalanffy’s definition of a system.  Consider 

the relations Rzb found among the elements Zbj in the reduction 

of Yb, and the relations Ry found among the elements Yi in the 
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expansion of Yb.  The functions of the elements Zbj serve 

purposes inherent in Yb, and the function of Yb serves a 

purpose inherent in X.  The question to consider is whether the 

function of Yb and the purposes inherent in Yb are identical.  

Systems ontology answers “no, except by coincidence”, 

because the function of Yb is among those properties that Yb 

has in virtue of relations Ry rather than any alternative R’y, 

while the purposes inherent in Yb are among those properties 

that Yb has in virtue of relations Rzb rather than any alternative 

R’zb.  The function of Yb and the purposes inherent in Yb are 

both at the same hierarchical level (i.e. they are both in Yb), but 

they are determined by distinct relations Ry and Rzb at adjacent 

hierarchical levels, and therefore they are not identical, though 

they may correspond to one another. 

D. Relating Structure, Function, and Process 

As summarized by Gharajedaghi (1999, pp. 112-113), the 

design approach to systems analysis iteratively examines 

structure, function, and process to develop understanding in 

terms of design.  In the ontology of systems, process and 

structure co-produce function in the context of environment, so 

that inquiry necessarily becomes iterative because of the cyclic 

graph ontology of systems.  Structure, function, and process 

are each co-produced by the others, as well as co-producing 

each other.  Therefore, developing new understanding of each 

necessarily modifies understanding of the others, in a 

converging sequence of mutual dependence. 

The producer/product relationship is Singer’s framework for 

explanation in the world of complex objects without sufficient 

causation.  In this framework, producers are necessary but not 

sufficient for their products, in the manner of acorns being 

necessary but not sufficient for oak trees.  Singer (1924, 1959) 

uses the producer/product relationship to develop a pragmatic 

theory of choice, purpose, and free will, and extends the 

relationship in various ways to account for reproducers, co-

producers, potential producers, and other analogues for 

biological and ecological systems.  Following Churchman 

(1971, 1979), systems analysis uses the same ontological 

framework for developing an objective theory of function and 

purpose.  Function is a joint product of structure and process 

in the context of a purpose inherent in the essential 

characteristics of a comprising system. 

III. ANALYSIS OF SOVIET NATIONAL MISSILE DEFENSE 

Sparked by a 1953 joint letter of seven Marshals 

recommending national missile defense (NMD), the Soviet 

Politburo approved their first plan for NMD in 1954.  This 

plan, implemented in stages, adapted the SA-1 SAM in an 

ABM role, and developed the Sary Shagan missile test range 

as well as the Triad targeting radar and the Hen House phased-

array radar.  Among the achievements of this first Soviet NMD 

program was the successful 1961 interception of an SS-4 

warhead by a modified SA-1 interceptor (called V-1000) at an 

altitude of 25 kilometers over Sary Shagan, using a 

conventional explosive warhead.  This interception integrated 

all of the elements of NMD, with a Hen House radar initially 

acquiring the target at a range in excess of 1000 kilometers 

and passing targeting data to Triad radars and the interceptor 

launch site (Lee, 1997). 

Following this successful test, operational deployment of 

missile defense systems began in 1962-63, with simultaneous 

construction of the Moscow zonal missile defense system (with 

its characteristic Dog House and Pillbox radars), and the 

Soviet national BMD system, with its Hen House and Pechora-

class large phased array radars (LPAR), most famously the 

LPAR at Krasnoyarsk. 

American intelligence analysis of Soviet missile defense 

development could only rely on external observations of 

various kinds, such as operating frequencies and pulse 

durations collected from Soviet radars, observation of tests at 

Sary Shagan, and overhead photographs of missile 

installations.  Analyses of this evidence were based on the 

ontology of systems.  During the mid-1960s, while systems 

analysis of Soviet missile defense failed to understand the 

significance of many tests conducted at Sary Shagan or the 

relationship between the Hen House radar network and the 

Moscow missile defense network, US national intelligence 

estimates (NIE) nonetheless correctly determined that the 

Soviets were deploying NMD.  These assessments were 

ultimately challenged in the late 1960s as the USA and the 

Soviet Union began negotiating what would become the 1972 

ABM treaty, and the diplomatic community imposed a change 

in the nature of evidence required for those claiming that the 

Soviets had deployed NMD (Lee, 1997), since Soviet 

authorities denied deploying NMD and the treaty forbade it. 

The 1960s-era systems analyses of Soviet NMD proceeded 

from fixing observed Soviet interceptor limitations (especially 

their slow speed, about 2 kilometers per second, and their 

languid initial acceleration) as technological design constraints 

under the ontological razor of rational economy of means, and 

concluding from this that any Soviet NMD would have to 

operate in battle management mode rather than point defense 

or perimeter defense mode.  With this in mind, the question of 

whether the Soviets were deploying NMD was analytically 

reduced to four core questions, all potentially answerable from 

available intelligence methods: 

[1] Were the SA-5 and the SA-10 interceptors dual-function 

SAM/ABMs? 

[2] Were the Hen House and Pechora-class LPAR radars 

passing target tracking data to missile defenses? 

[3] Was there a central ABM command authority with a 

command, control, and communications (C3) system? 

[4] Did the SAM/ABM missiles have nuclear warheads? 

All NIE participants agreed that if the answers to these 

questions were “yes” (and they were), then the Soviets were 

deploying NMD (Lee, 1997). 

Several things are noteworthy about these questions.  An 

overarching feature of systems analysis in this case was that 

inferences of purpose (NMD) and function (ABM) were being 

made without any testimony of the system’s designers (which 

would become available in the 1990s, corroborating the 1960s-
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era analysis).  The inference was based only on capabilities 

that NMD systems should have that air defense systems would 

not, given rational and economic relationships among system 

elements under the constraints of prevailing Soviet technology.  

This is consistent with function and purpose being matters of 

ontology, matters of the nature and relationships among things 

as they are, rather than being dependent upon the intentions of 

causal agents, or otherwise contingent upon causal history. 

All four core questions address issues of function or purpose 

through analysis of relations.  For instance, the distinction 

between a SAM and an ABM depends on how the interceptor 

is integrated with its associated radars, specifically with the 

function that the interceptors and radars co-produce.  

Similarly, whether the SA-5 and SA-10 interceptor missiles 

had nuclear warheads depended on the proximity of nuclear 

storage facilities to the missile launch sites. 

This case also illustrates a characteristic of systems analysis 

of artificial systems: an ontological analysis often develops 

functional ascriptions which contradict the claims of 

authorities, a characteristic amply documented in Ackoff’s 

many writings on his analyses of government and UN 

agencies, corporations, charities, etc. 

IV. FAILURES OF THE ANALYSIS OF SOVIET NMD 

A. Failures of Systems Analysis 

The various failures of systems analysis of Soviet NMD 

described by Lee are instructive.  For instance, the failure to 

rationalize the sequence of tests at Sary Shagan and the failure 

to understand the relationship between the Hen House and Dog 

House radars (in fact there was none) were both due to the 

same mistake, made by analysts at the beginning of Soviet 

missile defense deployment in the early 1960s and corrected a 

few years later: what was in fact two separate systems, with 

distinct interceptor models, distinct radar models, and distinct 

areas of responsibility (Moscow on the one hand and the 

Soviet Union on the other) was analyzed as though it was all 

one system whose area of responsibility was a topic of 

contention.  The problem of correct delimitation of a system in 

systems analysis remains difficult, and inspiration remains part 

of the solution (Zandi, 2000; Churchman, 1971, 1979). 

It is important to note in the case of Soviet NMD that the 

consequence of initial failure to properly distinguish and 

delimit the systems was not a conclusive faulty analysis, but 

rather it was failure of the ontological analysis to converge.  

This is characteristic of ontological systems analysis, that 

rather than confidently reaching erroneous conclusions from 

false premises, it dissolves into a muddle when its underlying 

premises are incorrect. 

B. Other Failures of Analysis 

Other failures after the analysis of the 1960s reflect 

departures from analysis methods of systems ontology, rather 

than failure of systems analysis to understand Soviet NMD.  

For instance, the mistaken projection by western experts of 

mutually assured destruction (MAD, with its implicit 

disavowal of NMD), upon the Soviet leadership as the Soviet 

national nuclear strategy stemmed from the non-systems-

ontology assumption of rationality on the part of system 

designers (as “rational” nuclear policy was then understood in 

the west), rather than the weaker systems ontology assumption 

of rationality of design relations among elements of a system.  

This kind of strong assumption may not be an error in other 

fields (e.g. it is a core assumption of the diplomatic theory of 

realpolitik), but it is unwarranted in systems analysis, and in 

this specific case it turned out to be materially false. 

A related error committed in mis-analyzing Soviet NMD 

was the inference from high presumed cost and low presumed 

effectiveness of NMD to the conclusion that the Soviets 

weren’t deploying NMD, because doing so would be 

uneconomical, or because NMD just wouldn’t work.  This is 

an example of misplacing the economy inherent in systems 

from the relationship of elements (an ontological matter) to the 

decisions and motives of owners, or making the unwarranted 

assumption that a systems must work to have designs.  For 

these and other reasons systems analysis emphasizes 

understanding the design without attempting to understand 

either the designer or the beneficiary, without even assuming 

that any designer or beneficiary exists.  Only the manifest 

relationships of system elements are understood rationally; 

understanding the designer or the motives that lead to 

existence of the design are not part of the ontological analysis. 

V. CONCLUSION 

Design in systems ontology consists of two interactive 

loops, one relating the design object to its environment, the 

other relating the design object and its elements.  The analysis 

of any system’s design develops information, knowledge, and 

understanding of the system and its elements presuming that 

rational and economic relations among system elements 

determine structure, function, and process in the context of 

environment.  This method is capable of discerning functions 

and purposes that are not apparent from structures alone, or 

from analogy with structures of known function. 
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Ontology-based technologies — Technology
transfer from bioinformatics?

Fabian Neuhaus, NIST

I. INTRODUCTION

In the call for paper for OIC 2008 the description of the
conference contains the following optimistic outlook:

New approaches are required to enable greater flexi-
bility, precision, timeliness and automation of analy-
sis in response to rapidly evolving threats. Ontology-
based technology as applied in the areas such as
bioinformatics has demonstrated the possibility of
gains along all of these dimensions. The time is ripe
to extend these gains to other spheres.

Ontology-based technologies clearly offer great potential for
the intelligence community. In this paper I will discuss whether
the intelligence community could adopt technologies that have
been proven successful in bioinformatics. For this purpose
we have to consider how biologists apply these technologies
and how their needs differ from the needs of the intelligence
community.

II. KINDS OF KNOWLEDGE

Biologists have been very successful at representing biolog-
ical knowledge in a machine-readable form with the help of
ontology-based technologies. However, we should not take for
granted that the technologies that work for biologists would be
appropriate for the intelligence community, because the kind
of knowledge gathered by the intelligence community differs
in important respects from biological knowledge. While the
intelligence community is interested in individual people and
organizations, biologists are producing scientific knowledge
that consist of more or less general laws. Even in cases where
biologists use terms from ontologies to describe the results of
individual experiments, these results are formulated as laws;
for example, laws like ‘if a fruit fly has the mutation x, then
the fly will have red eyes’. Biologists are only interested in the
properties of individual animals or plants if these properties
might provide evidence for or against a general hypothesis.
For this reason, it is usually not necessary, and often not even
possible, for biologists to keep track of the individual entities
that they are experimenting with; e.g., no biologist would care
to uniquely identify the individual fruit flies of a population, let
alone the individual RNA molecules in a particular sample. In
contrast, for the intelligence community it is crucial to identify
individual persons of interest, to keep track of them over time,
and to gather information about them. Furthermore, it is not
the primary purpose of the intelligence community to produce
and test general hypotheses.

III. REASONING WITH INSTANCES

Most biological ontologies are written either in the OBO
Flat File Format [1] or in OWL DL [2]. These ontologies

are used primarily as controlled vocabularies; so far the use
of biological ontologies for automatic reasoning has been
surprisingly limited. However, even when biologists reason
with the content of their ontologies, their needs typically differ
from these in the intelligence community. Biologists are in-
terested in type-level reasoning (so-called ‘TBox reasoning’);
the intelligence community is primarily interested in instance-
level reasoning (so-called ‘ABox reasoning’). For example,
a biologist might be interested in the query ‘What types of
mutation lead to red eyes in fruit flies?’ but a biologist would
never enter the query ‘Find all the fruit flies that have red
eyes’. The reason is, of course, that biologists do not care
about individual fruit flies; and they do not keep track of the
individual animals.

In contrast, analysts in the intelligence community are
interested primarily in instance-level queries about individual
people and organizations and their properties and relations.
For example, a typical query might be ‘Find all people known
to be member of Hamas, currently residents of Paris, and
have been in Tehran in the last three years’. Since instance-
level reasoning is irrelevant for biologists the OBO-format,
which is the knowledge representation language that has been
tailored to their needs, does not even allow assertions about
instances. Consequently, all tools based on it do not support
instance-level reasoning. Ontologies that are written in OWL
DL can be used with reasoners like Pellet or Racer1, which
support instance-level reasoning. However, in spite of impres-
sive performance improvements, as of 2008 these reasoners are
not able to cope with the large-scale instance-level reasoning
(ABox reasoning) that would be required by the intelligence
community [3], [4], [5], [6].

IV. TIME

Another difference between biological knowledge and the
knowledge gathered by the intelligence community is related
to time. Biological laws (and other natural laws) are timeless
in the following sense: if a law like ‘if a fruit fly has the
mutation x, then the fly will have red eyes’ is true then it
is not only true now, but also at any given other time. Of
course, this does not mean that biologists do not care about
change over time. Evolutionary biology is strongly concerned
with the changes of DNA that give rise to new species, and
developmental biologists study the processes and changes that
lead from fertilization to an adult organism. But while the
individual organism changes over time during its development

1Any mention of commercial products or companies is for information
only and does not imply recommendation or endorsement by the author or
the National Institute of Standards and Technology.
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(e.g., today’s caterpillar is tomorrow’s butterfly) the truth-value
of statements about development in biological ontologies (e.g.,
‘The pupal stage follows the larval stage’) does not change
over time. As a result biologists have no need to express that
a statement is true only with respect to a given time.

In contrast, much of the knowledge the intelligence com-
munity needs to represent is time-relative. For this reason, it
turns out that the knowledge representation languages used by
biologists do not meet the needs of the intelligence community.
For example, it would be trivial to express a statement like ‘All
leaders of Hamas are located in the Gaza strip’ in the OBO-
format or in OWL DL but there is no straightforward way to
express ‘All leaders of Hamas are located in the Gaza strip on
August 27, 2008.’ The OBO-format cannot express statements
about instances, but in OWL DL the same problem arises for
statements about instances: e.g., there is no straightforward
way to express ‘John has been married to Sue in 2004 and
John is married to Anne in 2008’ in OWL DL.2

V. SOURCES

Biology, as any evolving science, contains competing theo-
ries that are inconsistent with each other. To maintain con-
sistency, biologists limit the scope of their ontologies to
textbook knowledge – knowledge that has been vetted by the
community and is considered part of the scientific consensus.
Obviously, this approach would not work for the intelligence
community, which has to deal with conflicting information
from unreliable sources. For this reason, it is crucial for the
intelligence community to represent not only the information
itself but also the sources of the information. A knowledge
representation language suitable for the intelligence commu-
nity would enable the representation of statements like ‘Source
x claims that Khaled Mashal will be in Tehran on August 17th
or 19th’. One major advantage of representing sources and the
information they provide within the same formalism is that the
sources are treated as first-class citizens in the knowledge base
and can be used in queries like: ‘Are there two independent
sources who claim that Khaled Mashai will be in Tehran?’ or
’Provide source x and source y inconsistent information?’

The representation of and the reasoning about sources of
information is far beyond the scope of the OBO-format as well
as OWL DL. It is possible to stretch the boundaries of first-
order logic in a way that one can represent information about
sources. However, the resulting ontology is rather convoluted,
and my experiments with Prover9 (a first-order logic reasoner
[7]) showed that as a result the reasoner had difficulties to
answer even fairly simple queries. A knowledge representation
language that is designed to handle this kind of expression is
the IKRIS Knowledge Language (IKL), an extension of the
Common Logic Interchange Format [8], [9], [10]. Unfortu-
nately, there are no reasoning engines for IKL available at
this time.

2Note that it is possible to represent statements whose truth-values change
over time in OWL DL, but the resulting ontologies are rather convoluted, and
– at least in my opinion – OWL DL is a poor choice for ontologies that are
intended to support reasoning with these kind of statements.

VI. CONCLUSION

There are some skills that biologists have developed when
they adopted ontology-based technologies that might be rele-
vant for the intelligence community: techniques to build and
maintain large scale ontologies, evaluation methodologies, and
general design principles for ontologies. However, biologists
and the intelligence community deal with very different kinds
of knowledge and create ontologies for different purposes.
Thus the lessons that the intelligence community can learn
from biologists will be limited: (i) The knowledge represen-
tation languages used by biologists do not meet the needs
of the intelligence community. OWL DL is more expressive
than the OBO-format, but since OWL DL offers no straight
forward ways to deal with time-relative statements and offers
no way to reason over the sources of statements OWL DL is
still not expressive enough. (ii) Existing OWL DL reasoners
are not able to handle the amount of instance-level reasoning
that the intelligence community requires. (iii) Since the tools
developed for biologists work with ontologies either in the
OBO-format or in OWL DL it follows that these tools will
not be useful for the work of the intelligence community.
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Abstract—This paper presents results on developing a general 

intelligence analysis ontology which is part of the knowledge base 

of Disciple-LTA, a unique and complex cognitive assistant for 

evidence-based hypothesis analysis that helps an intelligence 

analyst cope with many of the complexities of intelligence 

analysis. It introduces the cognitive assistant and overviews the 

various roles and the main components of the ontology: an 

ontology of “substance-blind” classes of items of evidence, an 

ontology of believability analysis credentials, and an ontology of 

actions involved in the chains of custody of the items of evidence. 

 
Index Terms—cognitive assistant, ontology, evidence-based 

hypothesis analysis, types of items of evidence, chains of custody 

 

I. THE COMPLEXITY OF INTELLIGENCE ANALYSIS 

ntelligence analysts face the difficult task of analyzing 

masses of information of different forms and from a variety 

of sources. Arguments, often stunningly complex, are 

necessary in order to link evidence to the hypotheses being 

considered. These arguments have to establish the three major 

credentials of evidence: its relevance, credibility, and 

inferential force or weight. Relevance considerations answer 

the question: So what? How does this item of information bear 

on any hypothesis being considered? Credibility 

considerations answer the question: Can we believe what this 

item of information is telling us? Inferential force or weight 
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considerations answer the question:  How strongly does this 

item of evidence favor or disfavor alternative hypotheses we 

are considering? Establishing these three evidence credentials 

always involves mixtures of imaginative and critical 

reasoning. Indeed, as work on an analytic problem proceeds, 

we commonly have evidence in search of hypotheses at the 

same time with hypotheses in search of evidence. First, various 

hypotheses and lines of inquiry must be generated by analysts 

who imagine possible explanations for the continuous 

occurrence of events in our non-stationary world. Second, 

considerable imagination is required in decisions about what 

items of information should be considered in the analytic 

problem at hand. But critical reasoning in intelligence analysis 

is equally important. No item of evidence comes with its 

relevance, credibility, and inferential force or weight 

credentials already established. These credentials must be 

established by defensible and persuasive arguments which 

have to take into account that our evidence is always 

incomplete, usually inconclusive, frequently ambiguous, 

commonly dissonant, and it comes to us from sources having 

any gradation of credibility shy of perfection [1]. 

But the inherent complexity of the analysts' tasks are only 

part of their problems. In many cases, analysts are not given 

unlimited time to generate hypotheses and evidence and to 

construct elaborated and careful arguments on all elements of 

the analysis at hand. One way of describing this problem is to 

say that analysts will neither have the time, or the necessary 

evidential basis, for drilling down or decomposing all elements 

of the problem being considered. In many instances, analysts 

are faced with the necessity of having to make various 

assumptions in which certain events are believed "as if" they 

actually occurred. And always, the world is evolving and the 

yesterday’s analysis needs to be updated with new items of 

evidence discovered today. 

II. DISCIPLE-LTA: ANALYST’S COGNITIVE ASSISTANT 

Disciple-LTA is a unique and complex analytic tool that can 

help an intelligence analyst cope with many of the 

complexities of intelligence analysis [2], [3]. The name 

Disciple, by itself, suggests that it learns about intelligence 

analysis through its interaction with experienced intelligence 

analysts. The word "disciple" has synonyms including: learner, 

advocate, supporter, and proponent. The addition "LTA", 

refers to the fact that Disciple learns analysis [L], it can serve 

as a tutor [T] for novice and experienced analysts, and it can 

assist [A] in the performance of analytic tasks, e.g. in current 

or in finished intelligence analyses. Disciple-LTA has two very 
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distinct differences from other knowledge-based or rule-based 

"expert systems" developed in the field of artificial 

intelligence over the years. Such systems are developed by 

knowledge engineers who attempt to capture and represent the 

heuristics or rules of the experienced expert users so that they 

could be preserved and utilized in new situations. This is a 

very long and difficult process that results in systems that are 

even more difficult to maintain. But Disciple-LTA is 

qualitatively different from these earlier expert systems. 

Instead of being programmed by a knowledge engineer, 

Disciple-LTA learns its expertise directly from expert analysts 

who can teach it in a way that is similar to how they would 

teach a person. However, when it is first used by an expert 

analyst, Disciple-LTA does not engage in this interaction with 

a blank mental tablet. Disciple-LTA already has a stock of 

established knowledge about evidence, its properties, uses, and 

discovery. Some of this knowledge may not be already 

resident in the minds of its expert users, who apply their 

experience with certain analytic contexts that Disciple will 

learn. So, Disciple does learn about specific intelligence 

problems from its users, but it can combine this knowledge 

with what it already knows about various elements of 

evidential reasoning. Conventional expert systems can be no 

better than the expertise of the persons whose heuristics are 

trapped; this represents a "ceiling" on the suitability of these 

earlier systems. But this ceiling is actually the "floor" for 

Disciple-LTA, since this system incorporates basic knowledge 

of the evidential reasoning tasks analysts face in addition to the 

substantive expertise of the analysts who interact with it.  

One basic feature of Disciple-LTA is that it provides the 

analyst the opportunity to decompose a complex problem into 

finer levels; i.e. it rests upon a "divide and conquer" strategy 

for dealing with the analytic complexity of hypothesis in 

search of evidence. In particular, it allows "top-down" 

decompositions to deduce from a stated hypothesis what needs 

to be proven in order to sustain this hypothesis. This 

decomposition eventually results in the identification of 

possible sources of evidence relevant to this hypothesis. 

Consider, for example, the problem of assessing whether Al 

Qaeda has nuclear weapons. This problem can be reduced to 

three simpler problems of assessing whether Al Qaeda has 

reasons, has desires, and has ability to obtain nuclear weapons. 

Each of these simpler problems is further reduced to even 

simpler ones (e.g. by considering specific reasons, such as 

deterrence, self-defense, or spectacular operation) that could 

be solved either based on the available knowledge or by 

analyzing relevant items of evidence. An abstraction of these 

decompositions is presented in the left-hand side of Fig. 1. Let 

us consider “Spectacular operation as reason” which is a short 

name for “Assess whether Al Qaeda considers the use of 

nuclear weapons in spectacular operations as a reason to 

obtain nuclear weapons.” As indicated in the left-hand side of 

Fig. 1, to solve this hypothesis analysis problem Disciple-LTA 

considered both favoring evidence and disfavoring evidence. 

Disciple-LTA has found two items of favoring evidence, EVD-

FP-Glazov01-01c and EVD-WP-Allison01-01, and it has 

analyzed to what extend each of them favors the hypothesis 

that Al Qaeda considers the use of nuclear weapons in 

spectacular operations as a reason to obtain nuclear weapons. 

EVD-FP-Glazov01-01c is shown in the bottom right of Fig. 1. 

Detailed evidence and 
source analysis

EVD-FP-Glazov01-01c

Fig. 1. Hypothesis analysis through problem reduction and solution synthesis.
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It is a fragment from a magazine article published in the Front 

Page Magazine by Glazov J. where he cites Treverton G. who 

stated that Al Qaeda may perform a spectacular nuclear attack 

against United States [4]. To analyze EVD-FP-Glazov01-01c, 

Disciple-LTA considered both its relevance and its 

believability [1], [5]. The believability of EVD-FP-Glazov01-

01c depends both on the believability of Glazov J. (the 

reporter of this piece of information) and the believability of 

Treverton G. (the source). The believability of the source 

depends on his competence and his credibility. The credibility 

of Treverton G. depends on his veracity, objectivity, and 

analytical ability. When the analyst clicks on a problem, such 

as “Credibility” from the left-hand side of Fig. 1, Disciple-

LTA displays the details on how it solved that problem, as 

shown in the right-hand side of Fig. 1. For example, to “Assess 

the credibility of Treverton G as the source of EVD-FP-

Glazov01-01c” Disciple-LTA has assessed his veracity, 

objectivity, and analytical ability. Then the results of these 

assessments (almost certain, almost certain and almost certain) 

have been combined into an assessment of the credibility 

(almost certain). Disciple-LTA may use different synthesis 

functions for the solutions (such as, minimum, maximum, 

average, etc.), depending on the types of the problems. A 

abstraction of the synthesis process is displayed in the left 

hand side of Fig. 1, where the solutions appear in green, 

attached to the corresponding problems. Notice that this 

problem-reduction/solution-synthesis approach enables a 

natural integration of logic and probability. 

In some situations the analysts will not have the time to deal 

with all of the complexities their own experience and Disciple-

LTA makes evident. In other situations, analysts will not have 

access to the kinds of information necessary to answer all 

questions regarding elements of an analysis that seem 

necessary. In such situations Disciple-LTA allows the user to 

decompose (“to drill down”) an analysis to different levels of 

refinement in order to reach conclusions about necessary 

analytic ingredients, by providing mechanisms necessary to 

identify assumptions that are being made and by showing the 

extent to which conclusions rest upon these assumptions [3]. 

For evidence in search of hypotheses, Disciple-LTA allows 

the construction of "bottom-up" structures in which possible 

alternative hypotheses are generated. No computer system, 

even Disciple-LTA, is capable of the imaginative thought 

required to generate hypotheses and new line of inquiry. But 

Disciple-LTA can assist in this process by prompting the 

analyst to consider the inferential consequences of chains of 

thought that occur in the process of generating hypotheses and 

new lines of inquiry and evidence. 

The following sections will discuss the general features of 

the intelligence analysis ontology of Disciple-LTA. 

III. KNOWLEDGE BASE STRUCTURE FOR SHARING AND REUSE 

In addition to the separation of knowledge and control 

(which is a characteristic of all the knowledge-based systems), 

Disciple-LTA is characterized by an additional architectural 

separation at the level of the knowledge base. Its knowledge 

base is structured into an object ontology that defines the 

concepts of the application domain, and a set of problem 

solving rules expressed in terms of these concepts. While an 

ontology is characteristic to an entire domain (such as 

intelligence analysis), the rules are much more specific, 

corresponding to a certain type of applications in that domain, 

and even to specific subject matter experts. This separation 

allows one to easily share and reuse the ontology developed 

for a given intelligence analysis application, when developing 

a new one. Additionally, the ontology in Disciple-LTA is 

organized as a distributed hierarchy of several ontologies, 

which further facilitate its sharing and reuse, as well as its 

development and maintenance. 

IV. MULTIPLE ROLES FOR ONTOLOGY 

The object ontology plays a crucial role in Disciple-LTA 

and in cognitive assistants, in general, being at the basis of 

knowledge representation, user-agent communication, problem 

solving, knowledge acquisition and learning [6]. First, the 

object ontology provides the basic representational 

constituents for all the elements of the knowledge base, 

including the problems, the problem reduction rules, and the 

solution synthesis rules. The ontology language of Disciple-

LTA is an extension of OWL-light [7] that allows the 

representation of partially learned concepts and features. A 

partially learned feature may have both it domain and its range 

represented as plausible version space concepts [6]. One may 

also define different symbolic probability scales, such as Kent, 

DNI, IPCC or legal [8], and automatically convert from one to 

another and into the Bayesian probabilities. For example, the 

left hand side of Fig. 2 shows the symbolic probabilities for 

likelihood, based on the DNI’s standard estimative language, 

while the right hand side 

shows the corresponding 

Bayesian probability 

intervals. The ontology 

also allows the 

representation of items of 

evidence that may contain 

different or even 

contradictory views on 

some entities.  

Second, the agent’s ontology enables the agent to 

communicate with the user and with other agents by declaring 

the terms that the agent understands. As illustrated in the 

upper-right part of Fig. 1, the agent uses natural language 

phrases where the terms from the ontology appear in blue. 

Consequently, the ontology enables knowledge sharing and 

reuse among agents that share a common vocabulary which 

they understand. Third, the problem solving rules of the agent 

are applied by matching them against the current state of the 

agent’s world which is represented in the ontology. The use of 

partially learned knowledge (with plausible version spaces) in 

reasoning, allows solving of problems with different degrees of 

Fig. 2. Symbolic probabilities for likelihood.
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confidence [2]. Fourth, the object ontology represents the 

generalization hierarchy for learning, general rules being 

learned from specific problem solving examples by traversing 

this hierarchy [2], [3], [6]. 

V. ONTOLOGY OF “SUBSTANCE-BLIND” CLASSES 

OF ITEMS OF EVIDENCE 

Being able to categorize evidence is vitally necessary for 

many reasons, one of the most important being that we must 

ask different questions of and about our evidence in the 

process of intelligence analysis in which we encounter 

different recurrent forms and combinations of evidence. If we 

were not able to categorize evidence in useful ways we might 

not be aware of many different questions we should be asking 

of our evidence. However, asked to say how many kinds of 

evidence there are, we could easily say that there is near 

infinite amount, if we considered its substance or content. This 

presents a significant problem: how can we ever say anything 

general about evidence if every item of it is different from 

every other item? Fortunately there is a "substance-blind" way 

of categorizing evidence that does not rely at all on its 

substance or content, but on its inferential properties: its 

relevance and believability. 

Disciple-LTA includes an ontology of “substance-blind” 

classes of items of evidence. Some of the classes based on 

their believability attributes are shown in Fig. 3 [1].  

 

 
 

Fig. 3. “Substance-blind” classes of items of evidence. 

 

If you can pick up the evidence yourself and examine it to 

see what events it might reveal, we say the evidence is tangible 

in nature such as objects, documents, images, and tables of 

measurements. We distinguish between real tangible evidence 

which is an actual thing itself (such as a captured weapon 

component), and demonstrative tangible evidence, which is a 

representation or illustration of this thing (such as a diagram of 

that component). Now suppose you have nothing you can 

examine for yourself and must rely on someone else who has 

made some observation and who will tell you about the 

occurrence or nonoccurrence of some event. This is called 

testimonial evidence, as in a HUMINT report from an asset. 

This person may state unequivocally that some event has 

occurred or has not occurred. Of great concern is how the 

person providing testimonial evidence obtained the 

information reported. Did this person make a direct 

observaton or did he/she learn about the occurrence or 

nonoccurrence of the reported event from another person, in 

which case we have secondhand or hearsay evidence. 

Moreover, there are classes of evidence mixtures, such as 

testimonial evidence about tangible evidence. It would not be 

uncommon in intelligence analysis to encounter evidence 

obtained through a chain of sources (see section VII).  

VI. ONTOLOGY OF BELIEVABILITY ANALYSIS CREDENTIALS 

As discussed above, the “substance-blind” ontology of 

classes of evidence is based on their believability and 

relevance credentials. That is, there are specific credentials for 

each such class. For example, the believability of a source of 

direct testimonial evidence depends on the source’s 

competence and credibility [1], [5]. Assessments of the 

competence of a source require answers to two important 

questions. First, did this source have access to, or did actually 

observe, the events being reported? If it is believed that a 

source did not have access to, or did not actually observe the 

events being reported, we have very strong grounds for 

suspecting that this source fabricated this report or was 

instructed what to tell us. Second, we must have assurance that 

the source understood the events being observed well enough 

to provide us with an intelligible account of these events. So, 

access and understanding are the two major attributes of a 

human source's competence. Assessments of human source 

credibility require consideration of entirely different attributes: 

veracity (or truthfulness), objectivity, and observational 

sensitivity under the conditions of observation.  Here is an 

account of why these are the major attributes of testimonial 

credibility. First, is this source telling us about an event he/she 

believes to have occurred? This source would be untruthful if 

he/she did not believe the reported event actually occurred. So, 

this question involves the source's veracity. The second 

question involves the source's objectivity. The question is: did 

this source base a belief on sensory evidence received during 

an observation, or did this source believe the reported event 

occurred either because this source expected or wished it to 

occur? An objective observer is one who bases a belief on the 

basis of sensory evidence instead of desires or expectations. 

Finally, if the source did base a belief on sensory evidence, 

how good was this evidence? This involves information about 

the source's relevant sensory capabilities and the conditions 

under which a relevant observation was made.  

 Answers to these competence and credibility questions 

require information about our human sources. But one thing is 

abundantly clear: the competence and credibility of HUMINT 

sources are entirely distinct. Competence does not entail 

credibility, nor does credibility entail competence. Confusing 

these two characteristics invites inferential disaster Error! 

Reference source not found..  Disciple-LTA includes an 

ontology of these credentials and Fig. 1 shows an example of 

using such credentials in analyzing the believability of an item 

of evidence. 

34



 

VII. ONTOLOGY OF ACTIONS FROM CHAINS OF CUSTODY  

A crucial step in answering questions on the believability of 

the items of evidence involves having knowledge about the 

chain of custody through which the testimonial or tangible 

item has passed en route to the analyst who is charged with 

assessing it. Basically, establishing a chain of custody involves 

identifying the persons and devices involved in the acquisition, 

processing, examination, interpretation, and transfer of 

evidence between the time the evidence is acquired and the 

time it is provided to intelligence analysts. Lots of things may 

have been done to evidence in a chain of custody that may 

have altered the original item of evidence, or have provided an 

inaccurate or incomplete account of it. In some cases original 

evidence may have been tampered with in various ways, the 

analysts risking of drawing quite erroneous conclusions from 

the evidence they receive. Suppose we have an analyst who is 

provided with an item of testimonial evidence by an informant 

who speaks only in a foreign language. We assume that this 

informant's original testimony is first recorded by one of our 

intelligence professionals; it is then translated into English by 

a paid translator. This translation is then edited by another 

intelligence professional; and then the edited version of this 

translation is transmitted to an intelligence analyst. So, there 

are four links in this conjectural chain of custody of this 

original testimonial item: recording, translation, editing, and 

transmission. Various things can happen at each one of these 

links that can prevent the analyst from having an authentic 

account of what our source originally provided. Fig. 4 shows 

how the believability of the testimonial evidence provided to 

the analyst (EVD-Wallflower-5) depends on the believability 

of the testimony of the informant (i.e. EVD-Wallflower-1), but 

also on the believability of the Recording, Translation, 

Editing,  and  Transmission  actions.  Disciple-LTA  has  an  

 

Fig. 5. Action involved in a chain of custody for an item of evidence. 

ontology of actions that may be involved in a wide variety of 

chains of custody for different types of evidence, such as 

HUMINT, IMINT, SIGINT or TECHINT. For example, Fig. 5 

shows the representation of a translation action. The 

believability of this translation depends both on the translator’s 

competence (in the two languages, as well as the subject matter 

being translated) and on his/her credibility.  

VIII. LESSONS AND STORIES ABOUT 

INTELLIGENCE ANALYSIS CONCEPTS 

Disciple-LTA can be used to helps new 

intelligence analysts learn the reasoning 

processes involved in making intelligence 

judgments and solving intelligence analysis 

problems. In particular, its ontology includes 

lessons and stories about a wide range of 

intelligence analysis concepts, such as the 

lesson on veracity illustrated in Fig. 6 [5]. 

Moreover, its stock of established knowledge 

about evidence, its properties, uses, and 

discovery, makes it a suitable educational tool 

even for expert analysts. 

 

 
 

Fig. 6. Fragment from the lesson on veracity. 
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Abstract — The advent of commercial tools that 

support reasoning and management of RDF data stores 

provides a robust base for the growth of Semantic Web 

applications.  There is as yet no analogous set of tools and 

products to support advanced logic-based applications.  

This article examines issues that arise when seeking to 

combine the expressive power of Common Logic with the 

scalability of an RDF store. 
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I.  INTRODUCTION 

 

Franz Inc is researching the possibility of 

implementing a Common Logic [1] parser and query 

processor for our RDF [2] store, AllegroGraph.  There 

is a very wide scope for how large a subset of the 

language is implemented, and more significantly, what 
kinds of reasoning are supported.  Here we discuss 

several of the issues and possibilities. 

 

A primary goal for marrying Common Logic (CL) 

to AllegroGraph is to achieve scalable logical 

inference over a dynamic fact base.  We believe the 

AllegroGraph infrastructure is well suited for crafting a 

scalable reasoner, however, expressive logics are 

inherently non-scalable, and there are severe trade-offs 

that must be made to achieve reasoning over billions of 

statements. 
 

As part of the presentation we will discuss our 

proposal for implementation and requirements for the 

intelligence community.   We will discuss a number of 

the tradeoff as described below. 

 

 
II.  COMMON LOGIC IMPLEMENTATION 

 

A full-fledged implementation would include the 

following features: 

 

(i) A user-friendly query language, based on CL, 

that supports arbitrary boolean expressions in the 
“where” clause (here, we are imagining 

augmenting a SQL-like select-from-where syntax). 

 

(ii) Optional support for logic operators that make 

the closed-world assumption and unique id 

assumptions.  We include these because classical 

negation and universal quantification operators are 

inherently non-scalable. 

 

(iii) A CL-based rule language. 

 

(iv)  CL definitions. 

 

(v)  Extensible operators. 
 

Just having a CL-based query language would be a 

big improvement on the current state of RDF-based 

tools.  Unlike SPARQL (introduced below), it would 

have a “real” (model-theoretic) semantics, it would 

have clean syntax that assumes a calculus-like rather 

than an algebraic formulation of clauses, it would be 

expressive, and it wouldn’t break your fingers when 

you type it. 

 

The inclusion of a definition language that 
subsumes OWL (easy) would allow for a calculus that 

spans the range of RDF-based languages with a single 

syntax. 

 

There are several “sweet spots” that could be 

supported; a sweet spot being a language subset that 

supports sound and complete reasoning while being at 

least moderately scalable.  We will note these as we 

examine various trade-offs. 

 

 
III.  A BASELINE SYSTEM 

 

The baseline is a simple query language with 
atomic ground assertions.  Here, we explicitly exclude 

the possibility of rules or definitions.  Such a language 

would allow arbitrary CL expressions to be evaluated 

against the fact base.  However, both universal 

quantifiers and classical negation operators will always 

evaluate to false (or unknown) in this scheme; the 

former due to the absence of any kind of “closure” 

operator, and the latter due (notionally) to the absence 

of statements that can logically contradict one another. 
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The simplest way to “achieve closure” is to admit 

operators that define local closed world assumptions.  

For example, a negation-as-failure operation assumes 

that the facts within the scope of a single query are 

situationally-complete.  A closed-world universal 

quantifier makes a similar assumption.  Both of these 
operators are completely scalable.  In other words, we 

can add them without reducing our expectations on 

how scalable our language is.  The strategy of 

embedding the closure within a language operator, 

rather than, say, within a predicate, minimizes the 

scope of the closures, and allows both open and closed-

world reasoning to be applied to the same model. 

 

Alternatively, one could permit assertion of OWL-

like operators (e.g., max-cardinality and all-values-

from) to achieve closure.  Introducing these operators 

immediately eliminates the possibility of scalable 
reasoning, or complete reasoning, or both.  Here, we 

are discounting databases where large numbers of 

asserted and derived have been laboriously loaded and 

then compiled, yielding a base that melts on the first 

update; a “dynamic” scalable application will support 

real-time updates as a matter of course. 

 

Our baseline would not be complete without a 

transitivity operator.  Transitive closure is the most 

important of all the classes of inference.  Simplest 

would be to include the equivalent of an 
‘owl:TransitiveProperty’ declaration, but practical 

experience has shown that the addition of a transitive 

closure operator to the query language syntax has 

important benefits.  Specifically, it is useful to be able 

to define transitive closures over compound binary 

expressions; something that OWL can’t do.  

AllegroGraph includes specialized accelerators for 

computing transitive closures. 

 

 
IV.  ADDING RULES 

 

The addition of Horn-like rules significantly 

increases the utility of the language.  Here we face a 
choice.  If our rules are recursive, then syntactic 

constraints must be placed upon both the heads and 

bodies of our rules if we are to retain completeness.  

This results in a Prolog-like semantics, with a CL 

syntax.  The accompanying reasoning can be made 

moderately scalable. 

 

Alternatively, we can degree that our rules are 

non-recursive.  Here, we restrict our rules to having 

atomic heads, but we can permit arbitrarily expressive 

tails.  This scheme is both scalable and complete.   We 
know this because these rules do not actually increase 

the expressive power of the query language.  Instead 

they are a convenience (a major convenience).  There 

are relatively few examples of systems built using non-

recursive rules;  however, limited practical experience 

has revealed that most recursive Horn rules can be 

reformulated into equivalent non-recursive rules 

combined with an (expressive) transitive closure 
operator.  The most serious drawback to this scheme 

(non-recursive rules) is that it is theoretically 

uninteresting.  There is nothing semantically to write 

about, so there are no papers on the subject. 

 

Finally, one could design a system that combines 

recursive and non-recursive rules.  This is a quite 

viable option.  The only caveat is that only highly-

disciplined users are likely to reformulate as many 

rules as possible into non-recursive equivalents.  The 

benefits of doing so would be orders of magnitude 

increases in query performance, but your average user 
might not master the technique. 

 

 
V.  DEFINITIONS 

 

We face another choice when we add definitions 

into the mix.  If we interpret our definitions as if-and-

only-if rules, then we have abandoned hope of scalable 

inference.   Alternatively, we can apply an asymmetric 

(if but not only-if) interpretation to Horn-like 

definitions to achieve an expressivity equivalent to 

Horn rules  These are superior to one-directional rules, 

because the only-if portion can be reserved for 
constraint-checking/data validation.  A single syntax 

should suffice for either interpretation of a definition 

(asymmetric or bi-directional); one can envision using 

a single set of definitions for both scalable inference 

and small-scale but rich inference. 
 

 
VI.  INFERENCE 

 

Tableaux-based reasoners appear to be inherently 

non-scalable over dynamic databases.   Instead, we 

focus chiefly on rule-based reasoners.  There are three 

basic classes of rules: (1) backward-chaining rules, (2) 

forward-chaining rules, and (3) rewrite rules.  

Backward-chaining rules are the best-behaved.  They 

are relatively insensitive to database updates (cache-

busting will occur, but it is manageable) and they are 
moderately scalable. 

 

Forward-chaining rules are more powerful (from a 

completeness standpoint) than backward rules.  

However, some form of truth maintenance is required 

to manage derived facts, and bitter experience has 

shown that truth maintenance does not scale.  Hence, 

this option is not viable for large scale applications. 

37



 

Rewrite rules (also called “triggers”) are 

essentially forward rules that don’t bother to clean up 

after themselves when updates are made.  Instead, they 

are interpreted as having a sematics external to the 

system.  This makes them highly useful, but it is 
“buyer beware” when it comes to semantics.  Rewrite 

systems have difficulty managing the trigger portion of 

very expressive rules.  For the handling of expressive 

rewrite rules, we recommend the introduction of 

“trigger” clauses into the syntax.  The assumption is 

that such rules will fire only when updates to the fact 

base are detectible by the trigger portion(s) of the rule; 

other (presumably more expensive) clauses in the rule 

will not be monitored.  Most uses of rewrite rules (e.g., 

Jess rules) are applied only to modest sized databases. 

 

The extensible operator feature allows arbitrarily 
complex operators to be added to the language.  This 

allows for exotic operators like “cut” or modals to be 

added.  This is possible because the specialist 

mechanism includes hooks into the internals of the 

query executor.  High-end inference can be achieved 

by adding additional operators to the rule engine that 

include their own logic interpreters. 

 

AllegroGraph’s implementation of CL will use the 

extension mechanism to provide access  via CL to its 

built-in geospatial, temporal and social network 
analysis features. 

 
VII.  COMMON LOGIC AND RDF 

 

Scalable logic-based applications will most likely 

be built on top of an RDF triple store.  It makes sense 

to ask what contribution Common Logic can make in 

this context.  In fact, a query language based on 

Common Logic would have a number of advantages.  

This is due in part to the fact that SPARQL, the defacto 

standard in the RDF world, has a number of serious 

deficiencies that discourage its use for higher-level 

logic applications. 

 
SPARQL [3] is a W3C-recommended query 

language for RDF data.  It has been designed to enable 

expressions of common, everyday queries in a style 

that mimics a syntax used elsewhere to express atomic 

ground assertions.  The majority of developers of RDF 

stores provide implementations of SPARQL; this has 

significantly spurred the growth of RDF-based tools 

and technology. 

 

One serious drawback of SPARQL is that it takes 

the “kitchen sink” approach to syntax.  SPARQL has 
two “and” operators, two “or operators, and an 

awkward division between predicates evaluated against 

the store versus predicates evaluated by other means 

(e.g., equality, inequality, etc.).  Rather than treating 

the context/graph dimension as simply one additional 

argument (to a triple), it adds orthogonal syntactic 

constructs that interleave with the already cumbersome   

triples and filters.  While simple SPARQL queries are 
fairly readable, when complexities such as disjunctions 

are utilized, SPARQL  queries become very difficult to 

compose and interpret. 

 

In the logic world, a primary weapon to counter 

syntactic complexity is to base the semantics of a logic 

on a small number of primitive operators, and to define 

the remaining operators as compositions of the 

primitives.  In this case, the bulk of language syntax 

may be regarded as syntactic sugar; this makes the job 

of implementing the language much more manageable. 

This is how, for example, KIF [4] and Common Logic 
have been defined.   SPARQL has taken the opposite 

approach; it has a large number of different semantic 

operators, and is defined in terms of a procedural 

semantics rather than a declarative semantics.   That 

means that the traditional compositional semantics 

approach cannot be applied to SPARQL. 

 

The combination of bloated syntax and an 

essentially non-existent semantics means that 

SPARQL cannot readily server as a foundation for the 

addition of rules, modal operators, and other higher 
level constructs.  This leaves the field open to 

competing languages such as Common Logic. 

 
VIII.  EXPRESSIVE POWER EXAMPLES 

 

In this section, we look at some simple examples 

where the expressive power of Common Logic can be 

applied to treat representational problems that are 

difficult or impossible to solve using a SPARQL-like 

language. We will use a KIF-like syntax to express our 

rules. 

 

A common claim made by many RDF advocates is 

that “the Semantic Web is open world”.  Practical 
experience indicates that this statement is a complete 

falsehood; in fact, not only are there “pockets” of 

assertions in most semantic networks best treated using 

close-world semantics, but these “pockets” tend to be 

the locus of the highest-valued information.  Therefore, 

a practical Semantic Web language will include 

constructs to treat close-world models. 

 

Consider the predicate “single”, as in “not married”.  

It is conventional to treat the definition of the “single” 

predicate as the closed-world negation of the predicate 
“married”, e.g., 
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 (<= (married ?p) 

(exists (?s) (spouse ?p ?s))) 

  

 (<= (single ?p) 

(not (married ?p))) 

 

In other words, if you don’t know that a person is 

married, assume s/he is single.  This isn’t guaranteed to 

be true; but its the way that personnel data is utilized a 
great deal of the time. 

 

The semantics of closed-world negation can either 

be assumed to attach to the underlying domain model, 

or to be attributed to a logic operator.  In the latter 

case, since ‘not’ denotes classical negation, we would 

replace ‘not’ by a specific negation-as-failure operator 

(variously called ‘thnot’, ‘unsaid’, etc.) to achieve the 

desired semantics, e.g., 

 
 (<= (single ?p) 

(unsaid (married ?p))) 

 

Next, consider universal quantification.  The rule 

below states that you are “off the hook” if all of your 

children have graduated from college: 

 
 (<= (off-the-hook ?p) 

(forall (?c) 

(implies (child ?p ?c) 

(graduated-from-college ?c) 

 

The trick to evaluating this predicate in a practical 

domain lies chiefly in determining if the set of children 
known for an individual Fred constitutes the complete 

set of Fred’s children.  This kind of information is 

typically hard to locate.  Instead of looking for a 

guaranteed answer, it is more typical to query for all of 

Fred’s children, and ask if each of those retrieved has 

graduated.   This answer can be trusted as far, and only 

as far, as the closed-world assumption holds. 

 

The ability to make closed-world assumptions 

about sets of entities is critical to many real-world 

applications.  Having a universal quantifier in the 
language enables this reasoning to be computed 

endogenously, rather than relegating it to the 

procedurally-evaluated portion of an application. 

 

One would also like aggregate entities to be 

treatable within a logic.  Here is a (somewhat 

simplistic) definition of the term “family”: 

 
 (<= (family ?p ?fam) 

?fam = (setof (?r) (or (spouse ?p ?r) 

(child ?p ?r)))) 

 

Query languages such as SQL and SPARQL do 

not allow for explicit universal quantifiers in their 

syntax.  This has two consequences: (i) it limits the 

kinds of universal quantification expressible in these 

languages (SQL has various aggregate operators; 

SPARQL makes no provisions for universal 

quantification); (ii) it requires that scope rules for 

variables be implicit rather than explicit, which works 

well most of the time, but not always.  Here is an 
example representing a simplification of an application 

that this author encountered, where the lack of an 

explicit existential quantifier (and accompanying 

scoping) made composing the query difficult.  The 

(simplified) problem is to query for two degrees of 

distance from Kevin Bacon, based on a ‘knows’ 

relationship.  Here is the query expressed without 

reference to existential quantification: 

 
 (select ?x (where 

 (or (?x = Kevin) 

(and (knows Kevin ?x1) 

(or (?x = ?x1) 

(and (knows ?x1 ?x2) 

(?x = ?x2)))))) 

 

The query succeeds only if the variable ?x1 is the 

same throughout the query.  In many quantifier-free 

languages (e.g., SPARQL) variables in parallel 

disjuncts can have the same name but not be 

considered the same variable.  This is done for a very 

good reason;  however, it means that we can’t be sure 

how the above query will be evaluated without a 

detailed inspection.  The actual query found in the 
application was more complex than this, because the 

entities were related by more than one predicate.  If 

you replace 

(knows ?x1 ?x2)  above by 
(or (knows ?x1 ?x2) (likes ?x1 ?x2) 

 

then you will have a better approximation of the 

complexity of the query in the application.  Doing so 

makes the scoping that much more tenuous.  In fact, 

the query language used in the application turned out 
to have scoping rules that assumed that the variable 

?x1 was not unique across the query.  This made it 

necessary to rewrite the query, approximately doubling 

its size.  On the other hand, if we have an explicit 

existential quantifier, none of this “guessing” is 

necessary: 

 
 (select ?x (where 

(or (?x = Kevin) 

(exists (?x1) 

 (and (knows Kevin ?x1) 

(or (?x = ?x1) 

 (and (knows ?x1 ?x2) 

(?x = ?x2))))))) 

 

Lastly, a host of logic-based applications find it 

useful (and in a cognitive-sense, “necessary”) that the 

language support n-ary predicates and n-ary functions.  

The Franz product features a suite of geospatial, 
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temporal, and semantic network reasoners that are best 

exploited using queries that employ n-ary predicates.  

The query below evaluates: 

 

Retrieve important people known to Bob who 

attended a meeting in or near Berkeley, CA in 
November, 2008. 

 
 (select (?p) 

(and 

(ego-group bob knows ?group 2) 

(actor-centrality-members 

?group knows ?p ?importance) 

(participant ?event ?p) 

(instance ?event Meeting) 

(interval-during ?event “2008-11-01” 

“2008-11-05”) 

(contains (geo-box-around 

(location Berkeley) 5 miles) 

(location ?event)))) 

 

Here the ‘ego-group’ predicate is a distance-2 

Kevin Bacon computation (note how much simpler it is 

than the previous query). 

 

Another comment on the “Kevin Bacon” query:  

When the relationship predicate is the same on all 

layers, then a built-in version of the computation can 

be expected to execute significantly faster than the 

same computation phrased in logic.  However, the 

original query referenced a different predicate at the 
first level than the second, and referenced four 

different predicates at that second level, so a built-in 

operator was not available.  The moral being that built-

ins are not a universal panacea for expressiveness. 

 

This section has surveyed a sample of Common 

Logic language constructs to suggest that users benefit 

both by (i) the ability to program a larger portion of 

their applications within the logic, rather than resorting 

to procedural manifestations, and (ii) that use of more 

expressive constructs can reduce the complexity of the 

resulting rules and queries, making the language more 
usable by humans. 

 
IX.  SUMMARY 

 

Adding a Common Logic interface and interpreter 

to an RDF store would provide a spectrum of possible 

benefits.  At one end, a careful exploitation of CL 

features would provide “heightened” versions of semi-

conventional query processing, over a dynamic, 

scalable platform.  At the high-end, one can 

contemplate experimenting with combinations of 

powerful reasoners operating over relatively small sets 

of data interacting with the large-scale query engine. 
 

The implementation community for Common 

Logic needs to produce a target specification that is 

both “doable” and useful to a significant class of 

applications.  There is a chicken-and-egg component, 

since one needs to have an expressive language 

available to appreciate why and how one can use it. 
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Abstract - This paper is about a new type of event 

database that enables efficient reasoning about things, people, 

companies, relationships between people and companies, and 

about places and events. The event database is built on top of a 

scalable distributed RDF triple store that can handle literally 

billions of events. Like objects, events have at least one actor, 

but usually more, a start-time and possibly an end-time, a 

place where the event happened, and the type of the event. An 

event can have many additional properties and annotations. 

On top of this event database we implemented libraries for 

RDFS++ logic reasoning, for geospatial and temporal 

capabilities, and an extensive social network analysis package. 

This paper focuses on a query framework that makes it easy to 

combine all of the aforementioned capabilities in a user 

friendly query language. 

 

Index Terms – Geotemporal logic, geospatial reasoning, 

RDF database, graph database, RDFS, OWL, SPARQL, social 

network analytics, business intelligence, event-based systems, 

event-driven architectures, metadata, semantic technologies. 

 

 

I. INTRODUCTION 
 

This paper describes the design and use of a unifying query 

framework for geospatial reasoning, temporal logic, social 

network analytics, RDFS and OWL in Event-based systems [1]. 

In this introduction we will first go into why we need such a 

framework and the requirements for such a framework. 

 

The reason for such a framework can be answered by 

looking at the vision of the semantic web and understanding how 

companies use semantic technologies. Tim Berners-Lee, James 

Hendler and Ora Lassila’s Scientific American article (May, 

2000) [2] provides a compelling vision of the Semantic Web. It 

contains some interesting use cases for what the Semantic Web 

will bring. These use cases assume that software agents know 

how to roam the web and reason over things, people, companies, 

relationships between people and companies and about places 

and events. Clearly these agents need a query capability that 

supports a combination of description logic, geospatial reasoning, 

temporal reasoning, and knowledge about the social relationships 

between people. 

The commercial vendors of Semantic Technologies also see 

a number of use cases that all center around events and require 

the aforementioned query capabilities. We currently see 

companies using large data warehouses with very disparate RDF 

based triple stores describing various types of events where each 

event has at least two actors, usually a begin and end time, and 

very often a geospatial component. These events are literally 

everywhere: in Health Care applications we see hospital visits, 

drugstore visits, and medical procedures. In the Communications 

Industry we see telephone call detail records, including location. 

An email and calendar database of a large company is nothing 

more than a social network database filled with events in time 

and, in many cases, space. In the Financial Industry every 

transaction is essentially an event. In the Insurance Industry 

claims are important events and they desperately need more 

activity recognition. In the Intelligence community basically 

everything revolves around events and actors. The REWERSE 

program from the 6th Framework Programme of the EU 

Commission [3] is one of the few systematic efforts to combine 

RDFS/OWL with geotemporal reasoning, although the social 

aspect hasn't been addressed yet. The recent book “The 

Geospatial Web” [4] currently provides the state of the art 

overview on how to work with people and events on a web scale 

and what kind of applications we might expect in the near future. 

 

II. FRAMEWORK REQUIREMENTS 
 

The Semantic Web community has made great strides in the 

area of ontologies and description logic, and some initial work in 

the areas of geospatial reasoning [5], temporal reasoning [6], 

social network analysis [7], and event ontologies [8]. All of this 

is based on RDF as the data representation.  Based on this W3C 

standard the combination of all these different reasoning 

capabilities in one unified framework will propel further industry 

adoption of Semantic Technology. Given that we have seen a 

direct need for query capabilities that handle 

geospatial/temporal/social/rdfs/owl, we have designed a 

framework. The main requirements we identified were: 
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1. User and programmer friendly: We wanted the 

framework to be an extension of SPARQL, with 

SPARQL as the foundation. Certainly the framework 

should not be anymore complex than SPARQL. 

SPARQL is relatively user friendly, and as languages go, 

the adoption rate is such that one could make the 

argument that it is sufficient to address most use cases. 

 

2. Implementer friendly: We need many people to 

experiment with this proposed framework such that the 

Semantic Web community can converge on a standard. 

 

3. Efficient: Given that we work with very large databases 

with millions of events where the response time has to 

be on the sub second level, the implementation of the 

query language and query engine needs to be very fast 

 

4. We want the query language to work on distributed 

databases. Currently we’ve designed the query engine to 

work on federations of triple stores. Once we develop 

efficient caching techniques for distributed RDF 

knowledge stores residing all over the web, it will also 

be efficient for agents that need to roam the web.  

 

5. Practical & Easily Extendible: We want the API to be 

such that it can be easily modified to allow for ongoing 

experimentation. 

 

6. Works well with RDFS and OWL reasoning.  

 

 

III. DISCUSSION 
 

In the remainder of the paper we show how we can combine 

geospatial reasoning, temporal logic, social network analytics, 

and RDFS reasoning all in one query language. 

One question that people ask who are familiar with triple 

stores is: how can this work efficiently on very large data sets 

containing billions of triples? Most first generation triple stores 

store the URIs and literals that constitute the parts of a triple as 

strings in a dictionary. So, when doing range queries over 

numeric values, for example, "select * from person where age > 

50”, the triple store engine has to go through each value for the 

predicate ‘age’. One way around this is to add btrees for every 

numeric type but that in general is a very inefficient solution in 

triple stores. The triple store that we use is AllegroGraph which 

is actually a hybrid between a relational database and triple 

store, the internal representation of the triples is such that is 

allows for very efficient range queries. 

A. Temporal Reasoning 

 

Our temporal reasoning is based on James Allen’s Interval 

Logic [9]. This logic looks at all the 13 ways two temporal 

intervals can relate to each other. We provide predicates for each 

of Allen’s 13 interval predicates. Note that we do purely 

quantitative temporal reasoning. So if you provide a number of 

events with a start time and an end time or a duration then we 

can perform queries like the following. This example will return 

all intervals ?i2 that happened in interval ?i1.  

(select ?x (interval-during ?i1 ?i2)) 

Temporal reasoning uses the range query capabilities to the 

fullest extent. If you want to find all the events that happened 

between Jan. 1, 2008 and Jan. 2, 2008, the triple store performs a 

straight triple query with only one cursor scan. It is still possible 

to blow up the query time spectacularly by doing things like 

 (select (?x ?y) (point-before ?x ?y)) 

as that will generate every before/after pair. However, we do 

consider that to be the responsibility of the user. In many cases a 

query optimizer can warn for that or rearrange the clauses to bind 

?x or ?y. 

 

B. Geospatial Primitives 

 

Our original intention of adding Geospatial capabilities was 

not so much to compete with existing spatial databases but 

instead make it very easy for RDF users to be able to deal with 

locations of objects very efficiently. In order to make this fast we 

implemented a variation of an R-Tree to encode two-dimensional 

data very efficiently directly in the triple indices [10]. A detailed 

description of how this geospatial representation works can be 

found in the geospatial tutorial included with the AllegroGraph 

documentation [11].  Currently we support a number of 

predicates that can be used in the query language.  Some 

examples of the predicates: 

 

 (geo-distance ?x ?y ?dist)  -> given, x and y, return distance 

 (geo-within-radius ?x ?y 10.0) -> find  y within 10 miles from x 

 (geo-inside-polygon ?polygon ?place ?lon ?lat) 

 

For our benchmarking we use the open source GeoNames 

database that can be freely downloaded from GeoNames.org [12]. 

The database contains nearly 7 million points of interest on 

earth. From interesting points in nature, to populated areas, to 

schools and churches, etc. Each point has 12 features such as 

asciiname, the local name, elevation level, longitude, latitude, 

population, etc. Actually, it is not a database but a csv file that 

programmers can modify as necessary. For our purposes we 

obviously transform it into RDF triples. We can retrieve all 459 

geo-points around Berkeley less than 4 miles away in less than 5 

milliseconds. We would argue that the basic retrieval speed is 

comparable to or better than current commercial spatial 

databases.  Here are some typical example queries that you can 

do on the GeoNames database: 

 

Find the distance between Oakland and the one and only 

Berkeley in California. 

(select (?dist) 
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        (q ?x geo:name “Oakland”) 

        (q ?y geo:name "Berkeley") 

        (q ?y geo:admin1_code "CA") 

        (geo-distance ?x ?y ?dist)) 

 

Put in a Google map all the places within 10 miles from Oakland  

(google-map  (select (?name ?lat ?lon) 

                          (q ?x geo:asciiname “Oakland”) 

                          (geo-within-radius ?x ?y 10) 

                          (q ?y geo:asciiname ?name) 

                          (q ?y geo:isAt5 ?pos) 

                          (pos->lon/lat ?pos ?lon ?lat))) 

 

C. Social Network Analysis (SNA) 

 

Many RDF resources are about people and relationships 

between people, or between people and companies, or between 

companies and other companies. We added Social Network 

Analysis methods to make it easier to reason about relationships 

and groups. The functions that we provide address the five basic 

questions from Social Network Analysis. (1) How far is person A 

from person B, (2) if there is a link between A and B then how 

strong is this relationship, (3) given a particular actor A, in what 

group does this actor ‘live’, (4) given an actor in a group, how 

important is this actor in the group and finally, (5) given a group, 

how dense are the relationships in  the group and does this group 

have a leader or a set of leaders.  The SNA library encompasses a 

set of well know SNA algorithms. We provide a set of general 

functions and have developed the concept of a generator. A 

generator is basically a function that takes as an input one node 

and then creates a set of output nodes. The search functions and 

SNA functions that we provide take these generators as first class 

arguments. For example: say we have a database with 

relationships between people, the generator ‘knows’ will take as 

an input a person and return a set of person(s) by following 

fr:went-to-dinner-with and fr:went-to-movies in both directions. 

 

(defgenerator knows () 

    (bidirectional fr:went-to-dinner fr:went-to-movies)) 

 

We can use this generator to find, for example, the shortest 

path between two people.  In this case the query will return a list 

of persons. 

 

(select ?x  

     (shortest-path knows fr:Person1 fr:Person2 ?x)) 

 

Or we can use the generator to first create a group of friends 

and friends of friends in the ego-group predicate, and then we 

find the importance of each member using the actor-centrality 

measure. This predicate will start with the most important one 

first.  

  

(select ?x  

(ego-group fr:Person1 knows 2 ?group) 

    (actor-centrality-members ?group knows ?x)) 

 

AllegroGraph is a native, general graph database, written 

specifically to make graph search faster. However, the bottleneck 

is still getting triples from disk as fast as possible and having the 

smartest algorithms and best caching available. For example, 

many of the centrality measures that are used to compute the 

importance of an actor in a known group need to compute the 

shortest path between every actor in the group. We have created 

special constructors to cache these groups in a transparent way so 

that most computations can be done without minimal IO.  

 

IV. AN OVERVIEW EXAMPLE 
 

In order to give the reader an impression of the breadth and 

depth of the query language, we provide a typical example that 

combines geospatial, temporal,  SNA and RDFS reasoning.  

(select (?x) 

   (ego-group person:jans knows ?group 2)              

   (actor-centrality-members ?group knows ?x ?num) 

   (q ?event fr:actor ?x)                              

   (qs ?event!rdf:type fr:Meeting) 

  (interval-during ?event “2008-12-01” “2008-12-05”)   

   (geo-box-around geoname:Berkeley ?event 5 miles)       

   !) 

In English this translates into:  

Find the group of friends and friends of friends around the 

person “Jans”. Find within this group the most important 

person first. Find if this person was part of an event that 

was of type Meeting and happened in a particular time 

interval within 5 miles of Berkeley.   

Note that we seamlessly mix Social Network Analysis in the first 

two clauses, a simple database look up in the third, an RDFS 

inference about the type of event, and then a temporal and a 

geospatial constraint. This current example and the examples 

shown above utilize Prolog. We expect in early 2009 to have a 

SPARQL engine that will perform this identical query. 

The syntax of the SPARQL query will be slightly more 

contrived due to the fact that SPARQL normally only allows 

patterns that map directly on triples (see example below).  Note 

that we introduced the non-standard ‘=’ or assignment construct. 

We are planning to discuss this topic with the SPARQL 

committees. 

select ?x where { 

   ?group =  ego-group(person:jans knows 2) .              

   ?x = actor-centrality-members(?group knows ?x) . 
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   ?event fr:actor ?x ; 

              rdf:type fr:Meeting . 

   FILTER (interval-during ?event '2007-12-01' '2007-12-31')   

 FILTER (geo-box-around geoname:Berkeley ?event 5miles)       

} 

V. SUMMARY AND FUTURE RESEARCH 
 

In this paper we have discussed how RDF can serve as a 

basis for an event database where events are defined as ‘things’ 

that (1) require RDFS++ reasoning because events have types, 

(2) require geospatial reasoning because events happen 

somewhere, (3) require temporal reasoning because events nearly 

always have a start and duration and (4) require some form of 

social analysis because most interesting events have one or more 

actors.  

We demonstrated how all of these capabilities can be used 

in one query language, in this case Prolog. And we expect that in 

the near future these capabilities will be available in SPARQL as 

well.  

The primary research effort for the current version of the 

query framework is to enhance query-optimization. Notice that in 

the example shown above, most clauses are not direct matches 

against the database but functors that do computations. Some of 

these functors can act both as generators and as filters (as is 

common in Prolog). In case a functor acts as generator we need to 

research better statistical predictions for how many solutions can 

be expected so that we can do better re-ordering of clauses. 
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Abstract - The COSMO foundation ontology is being developed 
to test the hypothesis that there are a relatively small number 
(under 10,000) of primitive ontology elements that are sufficient 
to  serve  as  the  building  blocks  for  any  number  of  more 
specialized ontology elements representing concepts and terms 
used in any computer application.   Finding evidence for this 
hypothesis  would  suggest  that  a  promising  tactic  to  achieve 
Semantic  Interoperability among  computer  applications  is  to 
focus  effort  on  the  common  foundation  ontology  to  that 
ontology  that  contains  those  primitive  elements.   This  will 
constrain  the  size  of  the  ontology  on  which  agreement  is 
required, to the minimum that will support accurately relating 
domain and application ontologies to each other.  The rationale, 
methodology and current status of this project is reported here.

Index  Terms –  Foundation  ontology,  conceptual  primitives, 
COSMO, semantic interoperability, common ontology, ontology 
mapping, Longman, defining vocabulary.

I. INTRODUCTION

Information  communicated  and  analyzed  by  the 
intelligence  community  is  highly  diverse,  including 
technical,  social  and  psychological  concepts.   The 
challenge of using automatic techniques for integrating 
such information will require adoption of an ontology 
that is capable of unambiguously representing the full 
range of knowledge that people communicate.  There is 
as yet no consensus on how to structure that ontology. 
This  paper  describes  one  approach  to  overcome the 
lack  of  agreement  caused  by multiple  fundamentally 
different  approaches  to  foundation  ontology 
development.    The  proposed  approach  depends  on 
three factors: (1) to develop a foundation ontology that 
is  effective  as  a  standard  of  meaning  for 
communication  among  many  applications,  it  is  not 
necessary  to  achieve  universal  agreement  among 
ontology  developers  about  the  structure  of  the 
foundation  ontology;  it  is  only necessary  to  build  a 
sufficiently large user  group that  third-party vendors 
will  have  incentive  to  develop  utilities  making  the 
ontology  easier  to  use,  and  applications  that 
demonstrate the usefulness of the ontology for practical 
purposes. (2) by allowing multiple logically compatible 
views for representing the same entities, and providing 
translation  utilities  between  them,  many  of  the 
differing  preferences  for  representing  entities  can  be 
accommodated in the same ontology. (3) the number of 

different ontology groups that will accept the ontology 
can be maximized by keeping the foundation ontology 
as small as possible without compromising its ability to 
support logical representation of terms and concepts in 
any application domain. In the COSMO approach , that 
could  be  achieved  by  discovering  the  smallest 
inventory  of  fundamental  ontology  elements, 
representing the minimal  essential  primitive concepts 
that  are needed to build  representations of  any more 
complex concept.

II. BACKGROUND TO THE COSMO APPROACH

A.  The Notion of Conceptual Primitives

The approach proposed here relies on the observation 
that  communication  among  agents  (human  or 
automated)  depends  on  the  agents  sharing  some 
common set of internally understood concepts, labeled 
by an agreed set of symbols such as words in human 
languages, or element names in databases.  Wherever a 
particular community uses concepts not already among 
the known concepts of other communities, information 
sharing requires the first community to use a common 
set of defining concepts  to construct definitions of the 
unknown  concepts  understandable  to  the  other 
communities.   In  this  manner  communicating  agents 
can accurately transfer information on topics familiar 
or  initially  unfamiliar  to  other  agents.   Information 
transfer  using  human  languages  is  facilitated  by the 
existence  of  a  relatively  small  vocabulary  of  basic 
words,  representing  those  commonly  understood 
concepts,  that  can  be  used  to  create  linguistic 
definitions of  any specialized concept.   Research in 
Linguistics  has explored by experimental  techniques 
the  number  and  identity  of  the  common  primitive 
concepts  that  are  used  in  linguistic  communication 
among people speaking different languages.  Some of 
that work, summarized by Goddard[1], has suggested 
that as few as 60 semantic primitives are adequate to 
construct  definitions  of  a  very  large  number  of 
concepts.   A less systematic but more comprehensive 
demonstration  of  the  power  of  primitive concepts  to 
suffice for construction of definitions of many words is 
found in  some English-language dictionaries  such as 
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the Longman [2]  that use a Defining Vocabulary of 
basic words with which to define all of the entries in 
the  dictionary.   The  Longman  Defining  Vocabulary 
(hereafter  LDV)  contains  2148  words,  but  an 
investigation [3],  [4],  [5]  has shown that  even fewer 
words  are  needed  to  define  (recursively)  all  of  the 
Longman  entries.   For  cases  where  a  proposed 
definition of a new word uses words not already in the 
defining  vocabulary,  the  Defining  Vocabulary  tactic 
requires that the unrecognized word itself  be defined 
by use of the basic Defining Vocabulary.  The answer 
appears to be that, for the Longman, words recursively 
defined in such a manner “ground out” using a basic 
vocabulary  of  1433  words  representing  3200  word 
senses.

The success of  the linguistic  defining vocabulary for 
dictionaries  suggests  that  a  similar  tactic  could  be 
effective  for  automated  information  transfer  among 
computer  systems.    For  automated  systems,  the 
“Defining  Vocabulary”  would  take  the  form  of  a 
foundation  ontology having  an  inventory  of  basic 
concept  representations  that  is  sufficient  to  create 
representations of any new concept,  by combinations 
of  the  basic  elements.   Communities  using  such  a 
“Conceptual  Defining  Vocabulary  (CDV)”    (i.e.  a 
common foundation ontology) would be able to pursue 
their  own  interests  using  any  local  terminology  or 
ontology  that  suits  their  purposes,  and  still 
communicate  their  information  accurately  in  a  form 
suitable for automated inferencing, by translating the 
local information into the terminology of the common 
foundation  ontology.    Limiting the  core  foundation 
ontology  to  the  elements  needed  for  a  CDV  will 
minimize  the  effort  required  to  perform  the 
translations,  while  ensuring that  accurate  translations 
are  possible.   The  question  remains  whether  the 
linguistic  Defining  Vocabulary  examples  can  be 
adapted  to  the  more  precise  requirements  of 
representing  terms and  concepts  in  a  logical  format, 
suitable for automated reasoning.

The essential  principle  of  such a  tactic  for  Semantic 
Interoperability is that, when the separately developed 
ontologies of two different systems both use the same 
CDV  to  specify  the  structures  of  their  ontology 
elements,  then  accurate  information  sharing  can  be 
achieved,  even  if  the  two  systems  each  have  some 
separately-defined ontology elements not in the other, 
by sharing the specifications of the ontology elements 
of each that are not in the other.  Since the ontology 
elements  of  each  system  are  built  from  the  same 
primitive elements of the CDV, they will be properly 

and  accurately  interpretable  in  both  systems.   The 
combination of  the  ontologies  of  the  two systems in 
effect  creates  a  single  merged  ontology common  to 
both systems.   In that situation, the same input data in 
both  systems  will  produce  the  same  inferences. 
Different  data  in  the  two  systems  will  create  some 
different  inferences,  but  those  will  not  be  logically 
inconsistent  if  the  data  is  not  inconsistent.     For  a 
proper automated merger of the two ontologies, it will 
be  necessary to  have  utilities  that  can  automatically 
recognize  identical  elements  created  in  the  two 
separate local ontologies, and to detect inconsistencies 
if they exist.  But this tactic for interoperability avoids 
the  impossible  task  of  automatically  interpreting 
information in  an external  ontology that  is  based on 
fundamentally  different  (usually  undocumented) 
assumptions about how to represent the same intended 
meanings of terms and concepts.

B. The Current Absence of a Conceptual Standard

To function as a conceptual standard that will enable 
semantic  interoperability,  i.e.  permit  computers  to 
reason  accurately  and  automatically  with  transferred 
information,  the  syntactic  format  for  a  common 
standard must have at  least  the expressivity of First-
Order Logic (FOL), so as to permit logical inference 
using  rules  expressing  domain  knowledge.   Several 
foundation ontologies, such as OpenCyc[6], SUMO[7], 
DOLCE[8],  and  BFO[9],  have  been  developed  that 
have  this  technical  capability.    Other  knowledge 
classifications  such as  NIEM[10] and the DoD Core 
Taxonomy[11]  have  less  expressiveness.   None  of 
these projects has adopted the tactic of creating a CDV, 
and  none has been recognized as a default standard for 
application builders concerned with specific topics and 
indifferent  to  the  nuances  of  representation  at  the 
abstract levels.   The reasons for lack of wide adoption 
vary.   The  complexity  of  each  of  the  existing 
foundation ontologies presents a steep learning curve 
which requires a strong motivation to impel potential 
users to spend the required time.  In the case of Cyc, 
much of the content (such as the over 1000 specialized 
reasoning modules) is  still  proprietary and cannot  be 
part  of  an  open-source  project  that  could  include 
desired  components  from many non-Cycorp  sources. 
Development  of  an  effective  open-source  natural-
language interface to the ontology is also desirable, to 
make  learning  and  use  convenient.    None  of  the 
existing  foundation ontologies  has  such an interface. 
Without  publicly  available  examples  showing  the 
benefits  of  using  a  complex  ontology,  a  specialized 
application  developer  without  a  need  to  interoperate 
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outside  the  local  community  is  strongly  tempted  to 
develop a specialized ontology that is not linked to a 
foundation  ontology.   As  a  result,  specialized 
ontologies  with  no  linkages  to  any  of  the  major 
foundation ontologies have proliferated.
The  above  considerations  suggest  the  following 
desiderata  for  a  foundation  ontology  that  can  be 
adopted  and  used  by  a  large  enough  community  to 
serve as a de facto standard of meaning:

• the core set  of concept representations required 
to use the ontology effectively should be as small 
as possible, but sufficient to support specification 
of any specialized concept meaning

• the  ontology  should  be  fully  public  and 
developed by an open procedure, so as to permit 
alternative logically compatible views of entities; 
it should be maintained by an open process and 
allow  additions  as  needed  to  represent  new 
topics;

• there  should  be  a  powerful  intuitive  natural 
language  interface,  capable  of  determining 
whether (1) representations of specific concepts 
are  already  present  in  the  core  foundation 
ontology or in some public extension,  or (2) if 
not, to list the elements in the ontology closest in 
meaning

• the  ontology  format  should  have  the 
expressiveness of at least FOL

• there should be several  open-source substantive 
applications demonstrating the usefulness of the 
ontology

• extensions to the core, with logical specifications 
of  concepts  based on combinations  of  the  core 
concept  representations,  should  be  maintained 
and  freely  available,  in  the  manner  of  Java 
library  packages,  to  minimize  the  need  for 
creating new definitions.

In order have a de facto standard of meaning, it is not 
necessary to have universal agreement to use only one 
foundation  ontology;  it  is  only  necessary  that  some 
foundation  ontology  have  a  user  community  large 
enough  for  third-party  vendors  to  have  incentive  to 
develop utilities that make the standard easier to use, 
and to develop applications that demonstrate its utility. 
It should also have a sufficiently wide community of 
users that research groups will have an incentive to use 
it as the standard of meaning through which they can 
transfer information from diverse separate applications, 
each  using  different  forms  of  intelligent  information 
processing.

III. THE COSMO PROJECT

A. Origin

The  COSMO  ontology  [12]  is  currently  being 
developed  to  serve  as  a  fully  public  foundation 
ontology  that  contains  representations  of  all  of  the 
2100 words in the LDV, with the intention of serving 
as  a  broadly  acceptable  CDV.   COSMO  (COmmon 
Semantic  MOdel)  was  initiated  in  2005  [13]  as  a 
project  of  the  Ontology and Taxonomy Coordinating 
Working Group [14], a working group of the Federal 
Semantic  Interoperability  Community  of  Practice. 
The origin of COSMO is discussed in more detail in 
[15].  In early 2008 the project adopted the current goal 
of representing the LDV.  Developing the ontology as a 
CDV promises to  furnish a foundation ontology that 
has  all  of  the  elements  (types,  relations)  needed  to 
build representations of any concept of interest in any 
application, yet be small enough to be usable without 
an extended learning period.  The goal in effect is to 
identify  the  smallest foundation  ontology  that  is 
sufficient  to  serve  as  the  basis  for  broad  semantic 
interoperability.   Such  a  foundation  ontology  will 
contain  representations  of  the  essential  units  of 
meaning  that  can  be  combined  to  represent  any 
specialized term or concept of interest in applications.

B. Project phasing

COSMO is  proceeding  in  several  phases.   The  first 
phase, expected to be complete within 3 months,  is to 
create a representation of all of the words in the LDV, 
in an OWL format [16].  The expressiveness of at least 
pseudo-second-order logic (a FOL in which variables 
can  represent  relations  or  assertions)  is  required  for 
some  applications  such  as  Natural  Language 
understanding.   The plan is therefore to maintain an 
OWL  version,  but  convert  it  automatically  to  a 
Common-Logic (CL) compliant language such as KIF 
or IKL.  This will require representing rules, functions, 
and higher-arity relations in the OWL format.

When the COSMO ontology has the full set of LDV 
words represented,  it  will  be  tested  for  its  ability to 
serve as a CDV, by creating representations of several 
sets of specialized concepts and discovering how many 
new fundamental  concept  representations  need  to  be 
added to the foundation ontology.   It is estimated that 
this first  version will  contain over 7500 types (OWL 
classes),  over 700 relations, and over 1000 restrictions 
that constrain the meanings of the elements.
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The  COSMO  itself  is  not  expected  to  be  adopted 
without  change  as  a  common  foundation  ontology. 
The main purpose of this project is to demonstrate the 
feasibility  a  Conceptual  Defining  Vocabulary  as  an 
effective basis for semantic  interoperability.   A CDV 
that is widely accepted is likely to arise only from a 
collaborative effort by a broad consortium of ontology 
builders  and  users,  as  well  as  developers  of  other 
knowledge  representation  constructs  such  as  the 
NIEM.  More than one CDV may eventually find wide 
use, but the number of such ontologies is likely to be 
smaller than the number of operating systems, because 
the greater  number  and complexity of  primitive  data 
structures  required  for  a  CDV  is  larger  than  those 
manipulated by operating systems.

C. Criterion for Success

The criterion for determining whether the COSMO can 
serve as a starting CDV will be based on the number of 
new primitive ontology elements that must be added to 
the COSMO in order to represent groups of new terms 
or  concepts  from additional  specialized  topics.   It  is 
expected  that  some additional  primitive  elements 
(types,  relations)  will  be  need  to  be  added  to  the 
COSMO as knowledge in diverse fields is represented. 
To function as an effective CDV, what is  required is 
that the number of such new primitives added to the 
ontology  will  decrease  asymptotically  as  each 
successive  block  (e.g.  of  500)  of   new  terms  is 
represented  using  the  foundation  ontology.   Such 
statistical  evidence  that  there  is  some limit  to  the 
number  of  new terms  that  must  be  added  will  help 
answer the two questions, of whether there is any limit 
to the number of basic elements required for the CDV, 
and if so, approximately what is that number.

D. Allowance for Multiple Viewpoints

Essential  to  its  role  in  enabling  semantic 
interoperability is that COSMO must be inclusive of all 
logically compatible views, so as to permit translations 
among all of the representations used in applications. 
This means that wherever different ontologists  prefer 
different  means  of  representing  a  concept,  both 
alternatives are included, with a translation rule (e.g. 
“bridging  axioms”)  that  automatically  converts  from 
one  view  to  the  other.   An  example  would  be  the 

concept  of  “mother”  which  is  represented  in  some 
ontologies only as a relation (‘isTheMotherOf’), and in 
others  as  the  type  (class)  ‘Mother’.   The  COSMO 
OWL version can include both representations, but the 
automatic  conversion  of  such  alternative  views  will 
often require that rules be used, and will  be possible 
only in the more expressive common-logic format.
Using an ontology representing multiple views could 
lead to inference that is less efficient than with a more 
restrictive representation.  However, it is expected that 
multiple alternative representations will be needed only 
for interoperability among applications, and individual 
local  applications  will  not  use  the  full  ontology,  but 
will  select  out  only those  elements  required  for  the 
local  application.   In  this  way,  full  semantic 
interoperability can  be  achieved  among  applications, 
without sacrifice of efficiency.
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Abstract – As Net-Centric enterprises grow, the desire 
to rapidly define and build reusable services and create 
new business processes through the combination of 
services and workflow will grow.  Semantic Web Services 
is one approach to facilitate automated mediation between 
services based on semantic understanding of the services.  
Lockheed Martin is investigating the use of a wiki with an 
underlying RDF data model to provide a collaborative 
framework to define services, document services, manage 
ontology models, and quickly build composite services. 

I. Net-Centricity, SOA, and Web Services 
Net-Centric:  Participating as a part of a 
continuously-evolving, complex community of 
people, devices, information and services 
interconnected by a communications network to 
achieve optimal benefit of resources and better 
synchronization of events and their 
consequences.i 

A. Net-Centricity 

The following two principles are what makes Net-
Centric different from how we usually build systems: 

• Openness.  Information systems can communicate 
across traditional system and enterprise boundaries 
in an open-ended ways. 

• Dynamic Interaction.  The capability to 
dynamically change the interaction and 
organizational scope at run-time versus at system 
development time.ii 

Service-oriented architectures (SOAs) implemented 
with web services provides an open, standards-based 
approach to implementing capabilities that can be 
dynamically linked together to implement a business 
process.  The movement towards SOA and web services 
allows service providers to provide high-value capabilities 
and services without necessarily knowing the service 
consumer.  To optimize the value of these services, service 
providers need to design and build services that are 
reusable (as agnostic as possible to a specific 
implementation) and as stateless as possible (scalable and 
more independent). 

B. Composite Web Services 

As the enterprise inventory of reusable web services 
grows, the desire to build Composite Web Services that 
leverage these services to quickly support new business 

processes and user-desired functionality grows.  
Composite Services logically chain multiple web services 
together, ideally using an execution language like WS-
BPEL or Google Mashup that can execute the service 
without requiring software compilation by software 
developers.   

However, based on the heterogeneous nature of web 
services, linking web services together where data formats, 
names, units, and message formats are different requires an 
integrator knowledgeable about the specifics of each 
service; which is usually a software developer.   

II. Semantic Web Services 
The vision of Semantic Web services is to 
describe and annotate the various aspects of a 
Web service using explicit, machine-
understandable semantics, enabling the 
automatic location, combination, and use of Web 
services.iii 

A. Semantic Web Service Overview 

The goal of our research on the IntegrationWare IRAD 
project is to make service orchestration more in the spirit 
of the net-centric and Web 2.0 paradigm by allowing 
Composite Services to be built quickly and easily by end-
users in a familiar environment in an intuitive, drag-and-
drop user interface.  Semantic Web Services provide the 
foundation to performing automated data-level mediation 
(matching dissimilar data names, formats, units) between 
services.   

This is done by requiring the web service providers to 
perform a one-time mapping of their web service to a set 
of ontology models, as well as documenting additional 
information regarding the functionality of their services.  
The ontology models either pre-exist (developed 
specifically for a particular domain), or are modified as 
needed to support the web services.  Once the web service-
to-ontology model mappings are complete, the mapping is 
converted into a machine-readable format that will be used 
to facilitate the discovery of services and automated data 
mediation between the services. 

B. Ontology Models 

In order to create semantic web services, several 
different ontology models need to be created: at least one 
domain model, a units model, a transformation model, and 
a schema model. 
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The domain model(s) documents the entities, their 
relationships, and their properties that are relevant to a 
particular domain.  For example, for the intelligence 
community domain model, some entities could include 
ISR assets, sensors, products, reports, tasking, geospatial 
locations, collection plans, observations,…  Ideally, the 
domain model is built prior to performing the web service 
mapping to help identify the desired set of web services to 
be built or obtained.  However, as new web services are 
used that don’t map to existing entities and properties, then 
the domain ontology model will grow. 

The units model documents units for values such as 
distance, area, volume, mass, temperature,… and how to 
transform between them.   

The transformation model documents known “generic” 
transformations between different data types that aren’t 
units of measurement and aren’t associated with a 
particular entity.  For example, a transformation service 
that can transform from lat/long coordinates to MGRS 
coordinates would show a relationship between lat/long 
and MGRS.   

The schema model documents the message syntaxes to 
support message transformations between services. 

C. Web Service Mapping to Ontology Models 

Our primary short-term goal in developing Semantic 
Web Services is to support data-level mediation between 
web services.  Because web services can be developed by a 
wide range of producers that don’t build their services with 
a common data interface model in mind, many services 
that reference the same data can have different data 
formats (strings, ints, doubles,…), different data names 
(asset_id versus AssetId), different data units (meters 
versus feet, MGRS versus lat/long), and different data 
structures or groupings of data.   

The mapping of web service interface elements (data 
inputs and outputs) to ontology model object properties 
unambiguously “defines” that data element in terms of 
“what” it is (domain model), the data format (schema 
model), and data unit (unit model) in a machine readable 
format (see Figure 1).  This facilitates automated data 
transformations to address all these data matching issues.   

Once the mapping has been completed, the mapped 
relationships are converted into a machine-readable 
format. 

D. Design-Time Service Composition 

When multiple web service data interface elements are 
mapped to the same ontology model object property, they 
are declared to be semantically “equivalent”; meaning a 
mapped web service output element can be mapped to an 
equivalent web service input element regardless of data 
type, name, unit, or data structure if the appropriate 

mapping services are supported (ex: we know how to 
transform meters to feet). 

For example, suppose a user wanted to create a 
composite service that computes how far an ISR asset is 
off plan from it’s current position.  This might require the 
composition of two specific web services like 
GetAssetInfo (to get position of identified asset in 
lat/long/elev) and GetISR_AssetPositionOffset (to take the 
position of the identified asset (in MGRS coordinates and 
elev) and a plan ID) to compute the offset (see Figure 2).   

If both services are mapped to a domain model (which 
identifies AssetElev and ISRAssetElev as equivalent), a 
units model (which knows how to convert feet to meters), 
and a transformation model (which knows how to convert 
lat/long to MGRS), then the user can simply drag each 
service to the canvas and connect them together.  The 
underlying system will use the ontology model mappings 
to determine what outputs from the first service map to 

 
Figure 1.  Web Service to Domain Ontology Mapping 

Example 

 

 

Figure 2.  Example Composite Service Generation 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inputs to second service (equivalance).  If data 
transformations are required, then the appropriate 
transformation services are automatically identified and 
inserted between the user linked services. 

III. ICD Wiki 
A. Service Design, Discovery & Composition 

Framework 

We provide a framework to build semantic web 
services that is intuitive for users by using the Wiki 
paradigm.  The ICD wiki framework allows users to 
import web services, perform the service-to-ontology 
model mappings, and generate/convert/modify services for 
export.  It also allows users to “define” desired web 
services and to provide feedback regarding the usability of 
existing web services. 

See Figure 3 for a functional diagram of the ICD wiki 
framework vision.  The yellow shaded boxes show where 
we have done development so far.  The following sections 
provide more detail regarding the implemention of the ICD 
Wiki. 

B. Service Import Process 

Importing existing service definitions is a key 
component of increasing the usefulness and adoption of 
the ICD Wiki system.  The wiki provides a user interface 
designed to compliment existing common user interfaces 
on the Web.  Through this interface, a user is able to select 
a Web Service Description Language (WSDL) file to be 
imported into the ICD Wiki Semantic Store.  This WSDL 

file can be either located locally on the user’s workstation 
or any network reachable URL.   

The import process places copies of all WSDL and 
related schema files onto a “Resource Bus”, making all 
files available via a standard URL reference.  Co-locating 
each of the required files simplifies the task of inspecting 
the interface files and validating references.   

 

 
Figure 4.  ICD Wiki / Resource Bus Interaction 

After replicating the necessary files to the Resource 
Bus, the primary file is inspected to determine the format 
and version.  WSDL v1.1 files are converted to WSDL 
v2.0 in order to facilitate the transformation and mapping 
stages.  Conversion of the WSDL takes place via an 
Extensible Stylesheet Language Transformation (XSLT).  
The XSL file utilized to perform this transformation was 
acquired from the W3Civ.  WSDL v2.0 specifications 
require no additional conversion before being transformed 
into semantic representations. 

C. Semantic Service Transformations 

Figure 3.  ICD Wiki Functional Diagram 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There are multiple aspects to converting a service 
specification into a semantic representation suitable for 
storage in the ICD Wiki Semantic Store.  The OWL-S 
definition allows for a service specification to be 
represented semantically, but it does include the ability to 
represent the underlying syntactic structure of the 
messages passed into and out of the service’s respective 
operations.  Semantic representation of the syntactic 
structure is required in order to accurately determine how 
service interfaces can be mapped to one-another.  In order 
to support this level of detail we developed a small model 
to represent XML Schemas.   

This model represents each of the most commonly used 
XSD elements as semantic entities.  We are then able to 
create individuals of those class elements which represent 
the imported schema.  Once the full schema for the service 
has been re-represented semantically, that semantic data is 
inserted into our semantic data store.  In addition to 
automatically transforming the syntactic schema into a 
semantic one, the system, at this stage, provides the user 
with the ability to assign “units” to entities in the semantic 
representation of the service schema.  Early in our design 
process, it was determined that support for unit conversion 
among service operations would be an integral part of 
enabling service composition.  A simple model was built 
to represent the abstract concept of units and unit 
transformations, both simple and complex.  If a user 
chooses to include unit designations for various elements 
in the schema representation, those units will be taken into 
consideration during any future composition sessions and 
used to facilitate additional transformations where 
appropriate. 

At this stage, additional user input is required in order 
to fully understand the relationship between the imported 
schema and the known domain-specific models in the ICD 
Wiki thus far.  Automated determination of this 
relationship is not available at this time in the prototype, so 
we present the user with an interface to allow point-and-
click mapping of the imported elements to one or more 
domain models.  A single entity can be mapped to multiple 
entities across multiple domain models, further enhancing 
the intrinsic knowledge within the semantic data store.   

Mapping from complex objects in the syntactic schema 
to entities and entity –types with in the domain models 
facilitates the systems ability at later stages to determine 
“assignability” between two service interfaces.   

“Assignability” is a determination made by applying 
semantic rules to the ICD Wiki service domain model and 
other domain models to generate an entailment.  This 
entailment is used to ensure that an output message for a 
service’s operation is “assignable” to the input message of 
another service, during service composition.  Entities are 
assignable in many ways, and can be chained together to 

support the integration of services without those services 
supporting the exact same mapping.   

D. Service Composition 

Composition of services into larger, more robust 
services is one of the primary drivers of the ICD Wiki 
concept.  Utilizing an off-the-shelf product called 
mxGraphv, we have a built a canvas-style, drag and drop 
interface for service composition.  The available set of 
services are retrieved from the semantic store for inclusion 
in the new composite service.  The composition tool makes 
use of common Web 2.0 tenets to allow a user to drag a 
service from the available service pool and place it on the 
canvas.  Once on the canvas, a user can draw linkages 
between service inputs and outputs.  During this process, 
the underlying architecture will continually check for 
assignability between the services linked.   

Assignability is the determination “IF” two services 
can be linked together.  During composition, this is enough 
information to allow the user to connect two services 
without being burdened with type and meaning mapping.  
The necessary transformations and conversions are added 
during the composed service generation phase. 

After a user has completed laying out the composed 
service as desired, the canvas will be examined and the 
generation of the necessary work flow will be begin.  The 
current system supports work flow generation as Business 
Process Execution Language files.  Built in to the 
generated workflow code is all of the necessary unit and 
type transformations to combine the services.  The data is 
not transformed into a semantic format during execution of 
the workflow, but rather the semantic data is used to 
determine what values can be assigned to what parameters, 
so a direct assignment is done between parameters inside 
the workflow.  Multiple assignments and transformations 
may be necessary to progress from one service parameter 
to another, but these complexities are completely hidden 
from the user.  These composed services are made 
available within the ICD Wiki for further composition and 
integration as needed by additional users. 

E. Wiki Page Generation 

Generation of pages inside the ICD Wiki takes place 
during the service and model import capabilities.  During 
an import of either a model definition file or a service 
definition file, the necessary wiki pages are automatically 
created to support the human-readable aspect of the ICD 
Wiki concept. 

Every wiki page in the ICD Wiki is capable of 
displaying a side-bar style component which shows all of 
the known semantic relationships between the entity 
represented on the current page and other entities in the 
semantic store.  Using the sidebar, users are able to 
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explorer related entities in a traditional point-and-click, 
web format. 

For imported services, a page is created to represent the 
service document as a whole, as well as pages for each 

operation and input/output for those operations.  The 
created pages contain little textual content, but instead 
there are custom wiki tags injected into the page text in 
order to support dynamic generation of various page 
sections, including the cross-linking of operations and 
types belonging to the service.   

In addition to the semantic side bar outlined above, 
every imported model has a page from which a user can 
start exploring an imported model.  This page provides 
access to the Domain Model Explorer. 

F. Domain Model Explorer 

The Domain Model Explorer is a tool built directly into 
the ICD Wiki system which supports a user in their 
exploration of the available domain models (see Figure 6).  
On each domain model’s starting page, a “web” of 
semantic entities is displayed, allowing the user to find 
relationships amongst the various entities in the model.  
Further, each entity is accessible as a drill down point in 
order to find further relationships with in the model.  

 

Figure 6.  Domain Model Start Page 

IV. Conclusion  
We believe that the ICD wiki framework and semantic 

web services will allow all users to better leverage the 
growing list of available web services, intuitively define 
the services they want built, and provide feedback on the 
usability of all services..   
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Figure 5.  Operation Wiki Page Example 
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Abstract— Intelligence analysis involves gathering data from 

multiple and diverse sources.  The Internet provides a 

monstrously large set of diverse sources.  It is so large and 

diverse, in fact, that the project of manually gathering data from 

all the potentially useful sources is not feasible.  This is where the 

Semantic Web comes into play.  With the Semantic Web, web 

pages are given a machine understandable content such that web 

agents can search the internet and perform tasks autonomously.  

A key property of this machine understandable content is that it 

must provide for semantic interoperability between the various 

web pages. The Semantic Web, as its chief advocate, Sir Tim 

Berners-Lee, admits remains “largely unrealized.”  The thesis 

presented here is that by going back to the foundations of 

semantics, we can generate a new hypothesis as to how the 

Semantic Web can be realized. In particular, centering on 

activities (or services) instead of a trying to build a global upper 

ontology will more effectively cope with semantic interoperability 

issues and thus will help realize the Semantic Web. 

 
Index Terms—intelligence analysis, semantic web, ontology, 

semantics 

 

 

I. INTRODUCTION 

Applied Systems Intelligence, Inc. (ASI) has developed a 

methodology for intelligence analysis which involves 

evaluation of a threat via a parameterized Bayesian belief 

network (BBN).  “Feeding” this BBN to build a threat analysis 

involves actively seeking evidence to confirm or deny 

parameterized hypotheses.  An outstanding data source for this 

analysis would be the Semantic Web.  With it, web pages are 

given a machine understandable content so that web agents can 

search the internet and perform tasks, such as retrieving 

evidence, autonomously.  A key property of this machine 

understandable content must be to provide for semantic 

interoperability between the various web pages. The Semantic 

Web, as its chief advocate, Sir Tim Berners-Lee, admits 

remains this “largely unrealized.”
1
 The thesis presented here is 

that by going back to the foundations of semantics, we can 

generate a new hypothesis as to how the Semantic Web can be 

realized. First, we begin with a brief discussion of semantics. 

 

 

 
 

II. TWO VIEWS ON SEMANTICS 

• Meaning is denotation: words are defined by 

reference to the objects or things which they 

designate in the external world or by the thoughts, 

ideas, or mental representations that one might 

associate with them 

• Meaning is use: words are defined by how they are 

used in effective, ordinary communication.
2
 

If one inquires as to how the denotation gets set up between a 

word and its object, one finds that the answer is that it is by 

virtue of using the word in particular contexts that it receives 

its denotation.  In other words, communication happens within 

the context of some human activity.  It is this activity that 

gives words their meaning. The philosopher Ludwig 

Wittgenstein considers the following simple scenario (the so-

called "builder's language" introduced in section two of the 

Philosophical Investigations): 

“The language is meant to serve for communication between 

a builder A and an assistant B. A is building with building-

stones: there are blocks, pillars, slabs and beams. B has to pass 

the stones, in the order in which A needs them. For this 

purpose they use a language consisting of the words "block", 

"pillar" "slab", "beam". A calls them out; — B brings the stone 

which he has learnt to bring at such-and-such a call.”
3
 

 

 

This is a simple illustration of the basic functioning of 

language.  The words are used as “moves” in a kind of 

“game.”  Wittgenstein coined the term “language game” based 

on this and other examples. In general, the meaning of the 

parts (the words and objects of the activity) is derived from the 

whole (the activity).  Likewise, the activity is defined in terms 

of its parts.  This circle is referred to as the “hermeneutic 

circle.”  Another way of saying this is: 

 

“It (the hermeneutic circle) refers to the idea 

that one's understanding of the text as a 

whole is established by reference to the 

individual parts and one's understanding of 

each individual part by reference to the 

whole.”
4
 

 

Instead of seeing words as the “semantic atoms” out of which 

sentences are built, the semantic unit is a language game (or 

activity).  Much further argumentation can be provided to 

support this view, but providing this support is the topic of 

Intelligence Analysis and the Semantic Web: an 

Alternative Semantic Paradigm 

Brock Stitts 
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another paper.  Instead, we assume it to be accurate, and 

generate a new approach to building the Semantic Web based 

on it.  

 

III. AN ALTERNATIVE SEMANTIC PARADIGM 

 

Underlying the approaches of much symbolic artificial 

intelligence (AI) is the use of set theoretic concepts.  In such 

approaches, the world consists of a set of individuals.  These 

individuals have properties.  For an individual to have a 

property corresponds to its being a member of some set.  With 

such a viewpoint, assertions about individuals are not relative 

to some context. For the approach presented here, individuals 

and their properties are relative.  In particular, they are relative 

to an activity.  The individuals and their properties are 

components of an activity.  While these individuals and 

properties may be used in other activities, there is no guarantee 

of synonymy across them. It is the hypothesis here that the 

assumption of synonymy across language games leads to much 

erroneous reasoning.  In general, the long chains of inference 

found in some traditional AI systems will be problematic 

because they will cut across multiple activities and so will 

contain invalid inferences.  Metaphorically, they will be using 

apples to infer things about oranges. 

 

A. Application to the Semantic Web 

 

As noted above, semantic interoperability between web 

services (or agents) is a prerequisite of the Semantic Web.  

The general idea on how to do this is to create metadata that 

accompanies web pages.  This metadata would contain the 

semantic contents of the web page.  The representation of the 

metadata would use the web ontology language (OWL).  The 

assumption by Berners-Lee is that the web agents would use an 

inference engine to reason about this semantic content.
5
  The 

approach here reverses the implicit denotational semantics of 

Berners-Lee’s approach; instead, a web agent knows the 

meaning of the name and parameters of a service if it knows 

how to use the service.  The semantics of a language game are 

contained in the game itself.   With the Semantic Web, 

however, different language games must interact. The problem 

of creating the Semantic Web is then essentially a matching 

problem.  A web agent would try to find an appropriate web 

service to accomplish whatever task it needed to perform.  To 

do this, it must match up its service request with a web service 

that can fulfill that request.  This matching problem is difficult 

because any solution must also solve the semantic 

interoperability problem.  This problem comes about in two 

ways.  First, the requester and provider may use different 

symbols that mean the same thing.  The second, and more 

difficult problem, occurs when they use the same symbol but 

mean different things by that symbol.  To make matters worse, 

both problems can occur with a single match. 

 

This matching problem has no easy solution.  What we outline 

here are a proposed set of techniques to solve it. 

 

• Use Google-style page ranking as part of the 

matching algorithm.  This is clearly effective to some 

degree, but one need only attempt using Google to 

perform Berners-Lee’s example of the Semantic Web 

in action
6
 to see why Google only is not sufficient.  

The goal of this step is really just to generate a set of 

candidate agents. 

• Use case based reasoning (CBR) methods.  If one 

thinks of a web service as a “solution” and a web 

agent as having a “problem” it is trying to solve, we 

see that there is a strong analogy between CBR and 

the matching problem.
7
 

• Perform verification. If a web agent has an “answer 

key” for selected “problems,” it can use this key to 

verify that it has used a web service appropriately.  

Likewise, if the web service provides a sample usage 

set, this can also be used for verification.  The 

importance of this step cannot be understated.  This is 

a key part of cognition and scientific reasoning.  In 

cognition, the subject generates expectations based on 

his or her understanding of a situation.  If these 

expectations are met, that understanding is verified.   

• Rather than just providing a service’s name, input 

parameters, and output parameters, provide for 

instructions (in the form of metadata) on how, why, 

when, and who should use the service.  Although 

these “instructions” would be prone to ambiguity just 

as all symbols are, they provide a richer data set to 

use in matching. 

 

Just as the Web gradually grew as content providers built more 

content, the approach here would lead to a gradual growth of 

the Semantic Web.  In fact, every piece of this solution would 

evolve over time.  Clearly much work needs to be done to 

flesh out the details.  ASI is currently at work doing this so as 

to extend its intelligence analysis capabilities.   

 

IV. CONCLUSION 

 

If the thesis approach presented here is correct, much of the 

work in deriving an upper ontology will not be all that 

productive.  With the IEEE suggested upper merged ontology 

(SUMO), for example, there are bound to be numerous cases 

where its logical axioms are ambiguous; they apply in some 

contexts but not others.  Rather than solving the problem of 

how to keep chains of reasoning consistent, the approach here 

is not to perform them.  The Semantic Web has two 

components: the Web and semantics.  Semantics for natural 

languages are captured in dictionaries.  However, dictionaries 

are descriptive.  Neologisms are generated when new 

situations arise that call for them, and are created by a wide 

variety of language users.  Likewise, the web is built “bottom 

up” by its numerous content providers.  Having a committee to 

define language syntax is workable, but this does not hold for 

semantics.  The semantics of a language is the set of uses of 
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that language.  How to use and grow that language is best left 

to the users of the language. 

 
 

                                                           
1 Nigel Shadbolt, Wendy Hall, Tim Berners-Lee (2006). "The Semantic 

Web Revisited". IEEE Intelligent Systems. Retrieved on 2007-04-13. 

 
2
 See http://en.wikipedia.org/wiki/Philosophical_Investigations 

3
 See http://en.wikipedia.org/wiki/Language-game 

4
 See http://en.wikipedia.org/wiki/Hermeneutic_circle 

5
 See http://www.sciam.com/article.cfm?id=the-semantic-

web&print=true 
6
 See http://www.sciam.com/article.cfm?id=the-semantic-

web&print=true 
7
 See http://en.wikipedia.org/wiki/Case-based_reasoning 
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Abstract 

Semantic technology is becoming a preferable alternative 

for enterprise-wide applications intertwined with 

interoperable information sharing, due to the distributed 

nature of this technology. Ontology is the cornerstone of 

semantic technology; therefore, a major challenge for the 

project team is to build a complete and consistent 

ontology data model that represents the correct business 

domain. Effective collaboration among customer and team 

members is essential for the creation of the correct 

ontology model.  Equally necessary is a mechanism to 

automatically transform this model into ontology script. 

 

Within today’s leading organizations using semantic 

technology, a significant factor in business success rests 

solely in the hands of the ontologists.  It is they alone who 

are responsible for building the correct ontology data 

model. Having no other members on the project team 

capable of verifying and validating the created ontologies 

may put the entire business at risk.   

 

This paper describes a new methodology, “Model Driven 

Ontology,” in which using a standard modeling activity as 

a key process for building ontology would effectively and 

efficiently enhance collaborations between different 

parties of the project team. This would lead to a consistent 

ontology model validated and approved by all members of 

the project team (business experts, intel analysts, DB 

admins, architects, ontologists, etc.). 

 

 

Model Driven Ontology uses a UML object model artifact 

as a starting point to build an ontology data model.  This 

model as a common ground for all team members is then 

systematically transformed to a formal ontology, 

facilitating the development of enterprise-wide 

information exchange and sharing, which can be 

uniformly developed, centrally maintained, and efficiently 

reused [6]. This would lead to more efficient and 

inexpensive information sharing between different 

information systems, cost effective development and 

deployment of information systems, and better quality 

decision making as a result of more timely, accurate, and 

complete information. 

 

Introduction 

The development of large-scale enterprise applications has 

become increasingly complex due to the massive growth 

of enterprise data and the constant changing of 

requirements. Semantic technology has been seen as a 

crucial alternative for managing this complexity by 

providing a solid and flexible infrastructure for 

information exchange, retrieval, sharing, and discovery. 

 

As ontologies play a central role in facilitating semantic 

technology solutions, it is essential for business to 

standardize the ways ontologies are developed. The phases 

of ontology development include analysis, design, coding, 

validation, execution,  and maintenance. Moreover, it is 

vital for businesses to keep all key players (business 
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experts, intel analysts, architects, DB admins, ontologists, 

etc.) closely involved in the development phases.  

Organizations using semantic technology, including those 

in both governmental and private sectors, frequently hand 

ontology development tasks solely to the ontologists.  In 

most cases, the consequence is a dilemma, since no other 

team member is capable of validating the ontology script 

created by the ontologists, and the business might be at 

great risk if the script does not reflect the correct business 

model. Therefore, a methodology to standardize the way 

ontology is developed is badly needed. 

 

This paper sheds light on the value of modeling in the 

context of ontology development for enterprise 

applications. It shows how modeling can be an effective 

way to manage the complexity of ontology development 

[5], as it fosters better communication by overlooking 

implementation details that are not relevant to the overall 

system, and delivers robust design and assessment of 

requirements and architectures. Despite these virtues, 

mainstream ontologists have yet to take advantage of 

modeling in everyday practice [8]. 

 

Our approach uses a Unified Modeling Language (UML) 

object model as the common means for expressing 

ontology models. As an industry standard, UML graphic 

models provide a common ground for team members to 

better understand the business data models and elevate the 

level of collaboration.  The result is a consistent data 

model, validated and approved by all team members, 

which leads to a more accurate ontology script.  

 

In general, there is no one correct methodology for 

developing ontologies, since there is no one correct way to 

model a domain [2].  Ontology itself is a data model based 

on formal logic and greatly overlaps with a UML object 

model, as both share many basic concepts. While a UML 

object model has the concepts of classes, properties, 

associations, constraints, and instances, ontology has the 

same concepts named classes, datatype properties, object 

properties, restrictions, and individuals, respectively. 

Providing a single data model for all parties of project 

team will increasingly eliminate design ambiguity, reduce 

the complexity of the enterprise data model, and speed up 

the overall development. 

 

Therefore, a UML object model can be seen as a common 

model for ontologists and software architects, as it 

enhances communication between both camps and brings 

other parties to the table. It also aligns the effort of 

building a consistent data model that is accessible and 

usable not only by ontologists, but also by other team 

members. 

 

Model Driven Ontology Methodology 

In this section, we will discuss in detail the Model Driven 

Ontology approach with a simple, yet complete, example 

[1]. The following diagram (Fig. 1) shows a UML class 

diagram of a purchase order example in terms of classes, 

attributes, enumerations, and relationships including 

inheritance, composition, aggregation and associations 

with constraints represented as cardinalities.
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Fig-1 

 
Our approach starts with the UML class diagram which 

represents the data model of a particular domain.  Once 

the team comes up with the correct UML data model, 

validated and approved by all parties, we generate a UML 

version that is encoded in XMI by exporting the model 

using a standard UML tool such as RSA. We then apply 

transformation rules by parsing the XMI file into ontology 

script.  

 

This parsing is done through Eclipse Modeling 

Framework (EMF) API provided by UML2 plugin [3], 

which is an EMF-based implementation of the UML 2.x 

metamodel for the Eclipse platform. The objective of this 

plugin is to provide a useable implementation of the UML 

metamodel to support the development of model 

processing tools, a common XMI schema to facilitate 

interchange of semantic models, test cases as a means of 

validating the specification, and validation rules as a 

means of defining and enforcing levels of compliance [3]. 

 

Our transformation platform is EMF which is part of the 

Model Driven Architecture (MDA) and is the 

implementation of a subset of the MDA in Eclipse 

platform [1]. An EMF model is essentially the class 

diagram subset of UML. EMF is originally based on MOF 

(Meta Object Facility) by OMG (Object Management 

Group). EMF uses XMI (XML Metadata Interchange) as 

its canonical form of a model definition. EMF has its own 

meta-metamodel called Ecore. Ecore is considered the 

metamodel for UML in addition to some other 

metamodels, such as XSD, WSDL, BPEL, etc. Ecore is 

located at the M3 layer of MDA paradigm and defines all 

kinds of metamodels located at M2, including UML. 

Ecore, itself, is very similar to EMOF (Essential MOF), 

but has Eclipse as a runtime environment. 

 

EMF lets you define a data model in one of three formats: 

Java interface, XML schema, or UML class diagram, then 
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allows you to generate the other two formats. The most-

likely scenario is to start with a UML model and generate 

the corresponding Java interfaces and XML schema. Our 

approach extends this capability by generating RDF/OWL 

script from the same UML model.  

 

Building transformation rules is a joint effort between the 

architecture team, the ontology team and business domain 

experts. The expertise of these teams helps generate the 

correct script corresponding to the data model. For the 

purpose of illustrating the transformation mechanism, we 

have isolated a subset of the diagram (Fig. 2).  The 

complete generated OWL script is too lengthy to include 

in this paper. 

 

 
                                                              Fig-2   
 

 
The following is XMI script for “Supplier” class: 

 
  <packagedElement xmi:type="uml:Class" xmi:id="_maCsFE3GEd2Y9cy9X2GvMA" name="Supplier"> 
    <ownedAttribute xmi:id="_maCsFU3GEd2Y9cy9X2GvMA" name="name" visibility="private"> 
      <type xmi:type="uml:PrimitiveType" href="pathmap://UML_LIBRARIES/UMLPrimitiveTypes.library.uml#String"/> 
    </ownedAttribute> 
    <ownedAttribute xmi:id="_maCsFk3GEd2Y9cy9X2GvMA" name="customer" visibility="private" type="_maCsDk3GEd2Y9cy9X2GvMA" 
         aggregation="composite" association="_maCsKU3GEd2Y9cy9X2GvMA"> 
      <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="_maCsF03GEd2Y9cy9X2GvMA" value="*"/> 
      <lowerValue xmi:type="uml:LiteralInteger" xmi:id="_maCsGE3GEd2Y9cy9X2GvMA"/> 
    </ownedAttribute> 
    <ownedAttribute xmi:id="_maCsGU3GEd2Y9cy9X2GvMA" name="pendingOrder" visibility="private"  

         type="_maCr5U3GEd2Y9cy9X2GvMA" association="_maCsKk3GEd2Y9cy9X2GvMA"> 
      <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="_maCsGk3GEd2Y9cy9X2GvMA" value="*"/> 
      <lowerValue xmi:type="uml:LiteralInteger" xmi:id="_maCsG03GEd2Y9cy9X2GvMA"/> 
    </ownedAttribute> 
    <ownedAttribute xmi:id="_maCsHE3GEd2Y9cy9X2GvMA" name="shippedOrder" visibility="private"  
         type="_maCr5U3GEd2Y9cy9X2GvMA" association="_maCsLk3GEd2Y9cy9X2GvMA"> 
      <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="_maCsHU3GEd2Y9cy9X2GvMA" value="*"/> 
      <lowerValue xmi:type="uml:LiteralInteger" xmi:id="_maCsHk3GEd2Y9cy9X2GvMA"/> 
    </ownedAttribute> 
    <ownedAttribute xmi:id="_maCsH03GEd2Y9cy9X2GvMA" name="order" visibility="private" type="_maCr5U3GEd2Y9cy9X2GvMA"  
         aggregation="shared" association="_maCsM03GEd2Y9cy9X2GvMA"> 
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      <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="_maCsIE3GEd2Y9cy9X2GvMA" value="*"/> 
      <lowerValue xmi:type="uml:LiteralInteger" xmi:id="_maCsIU3GEd2Y9cy9X2GvMA"/> 
    </ownedAttribute> 
  </packagedElement> 

 

 

And its corresponding OWL script is the following: 

 
  <owl:Class rdf:about="&PO;Supplier"> 
    <rdfs:label>Supplier</rdfs:label> 
  </owl:Class> 
 
  <owl:DatatypeProperty rdf:about="&Supplier;name"> 
    <rdfs:domain rdf:resource="&PO;Supplier"/> 
    <rdfs:range rdf:resource="&xsd;string"/> 
    <rdf:type rdf:resource="&owl;FunctionalProperty"/> 

  </owl:DatatypeProperty> 
 
  <owl:ObjectProperty rdf:about="&Supplier;order"> 
    <rdfs:domain rdf:resource="&PO;Supplier"/> 
    <rdfs:range rdf:resource="&PO;PurchaseOrder"/> 
    <owl:inverseOf rdf:resource="&PurchaseOrder;supplier"/> 
  </owl:ObjectProperty> 
 
  <owl:ObjectProperty rdf:about="&Supplier;customer"> 
    <rdfs:domain rdf:resource="&PO;Supplier"/> 
    <rdfs:range rdf:resource="&PO;Customer"/> 
    <owl:inverseOf rdf:resource="&Customer;supplier"/> 
  </owl:ObjectProperty> 
 
  <owl:ObjectProperty rdf:about="&Supplier;shippedOrder"> 
    <rdfs:domain rdf:resource="&PO;Supplier"/> 
    <rdfs:range rdf:resource="&PO;PurchaseOrder"/> 
  </owl:ObjectProperty> 
 
  <owl:ObjectProperty rdf:about="&Supplier;pendingOrder"> 
    <rdfs:domain rdf:resource="&PO;Supplier"/> 
    <rdfs:range rdf:resource="&PO;PurchaseOrder"/> 
  </owl:ObjectProperty> 

 

 

Conclusion 

This paper explains the benefits and values that 

modeling practice can offer for ontology-based 

applications, by treating modeling as a first class artifact, 

rather than documentation. In addition to presenting a 

single common data model that all team members can 

share, a mechanism is presented to generate the ontology 

script directly from the UML model once it is validated 

and proofed. In this case, the model is used not only as a 

diagram or a blueprint, but also as a primary artifact 

from which efficient script is generated by applying 

transformation rules. 

 

We argue that the use of Model Driven Ontology would 

increasingly boost productivity, eliminate mistakes due 

to human misunderstanding, break the monopoly of 

ontologists over ontology development, and save a 

significant amount of development effort. 
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