
 1

Model Driven Ontology:

A New Methodology for Ontology Development

Mohamed Keshk

Sally Chambless
Raytheon Company

Largo, Florida

Mohamed.Keshk@raytheon.com

Sally.Chambless@raytheon.com

Abstract

Semantic technology is becoming a preferable alternative

for enterprise-wide applications intertwined with

interoperable information sharing, due to the distributed

nature of this technology. Ontology is the cornerstone of

semantic technology; therefore, a major challenge for the

project team is to build a complete and consistent

ontology data model that represents the correct business

domain. Effective collaboration among customer and team

members is essential for the creation of the correct

ontology model. Equally necessary is a mechanism to

automatically transform this model into ontology script.

Within today’s leading organizations using semantic

technology, a significant factor in business success rests

solely in the hands of the ontologists. It is they alone who

are responsible for building the correct ontology data

model. Having no other members on the project team

capable of verifying and validating the created ontologies

may put the entire business at risk.

This paper describes a new methodology, “Model Driven

Ontology,” in which using a standard modeling activity as

a key process for building ontology would effectively and

efficiently enhance collaborations between different

parties of the project team. This would lead to a consistent

ontology model validated and approved by all members of

the project team (business experts, intel analysts, DB

admins, architects, ontologists, etc.).

Model Driven Ontology uses a UML object model artifact

as a starting point to build an ontology data model. This

model as a common ground for all team members is then

systematically transformed to a formal ontology,

facilitating the development of enterprise-wide

information exchange and sharing, which can be

uniformly developed, centrally maintained, and efficiently

reused [6]. This would lead to more efficient and

inexpensive information sharing between different

information systems, cost effective development and

deployment of information systems, and better quality

decision making as a result of more timely, accurate, and

complete information.

Introduction

The development of large-scale enterprise applications has

become increasingly complex due to the massive growth

of enterprise data and the constant changing of

requirements. Semantic technology has been seen as a

crucial alternative for managing this complexity by

providing a solid and flexible infrastructure for

information exchange, retrieval, sharing, and discovery.

As ontologies play a central role in facilitating semantic

technology solutions, it is essential for business to

standardize the ways ontologies are developed. The phases

of ontology development include analysis, design, coding,

validation, execution, and maintenance. Moreover, it is

vital for businesses to keep all key players (business

 2

experts, intel analysts, architects, DB admins, ontologists,

etc.) closely involved in the development phases.

Organizations using semantic technology, including those

in both governmental and private sectors, frequently hand

ontology development tasks solely to the ontologists. In

most cases, the consequence is a dilemma, since no other

team member is capable of validating the ontology script

created by the ontologists, and the business might be at

great risk if the script does not reflect the correct business

model. Therefore, a methodology to standardize the way

ontology is developed is badly needed.

This paper sheds light on the value of modeling in the

context of ontology development for enterprise

applications. It shows how modeling can be an effective

way to manage the complexity of ontology development

[5], as it fosters better communication by overlooking

implementation details that are not relevant to the overall

system, and delivers robust design and assessment of

requirements and architectures. Despite these virtues,

mainstream ontologists have yet to take advantage of

modeling in everyday practice [8].

Our approach uses a Unified Modeling Language (UML)

object model as the common means for expressing

ontology models. As an industry standard, UML graphic

models provide a common ground for team members to

better understand the business data models and elevate the

level of collaboration. The result is a consistent data

model, validated and approved by all team members,

which leads to a more accurate ontology script.

In general, there is no one correct methodology for

developing ontologies, since there is no one correct way to

model a domain [2]. Ontology itself is a data model based

on formal logic and greatly overlaps with a UML object

model, as both share many basic concepts. While a UML

object model has the concepts of classes, properties,

associations, constraints, and instances, ontology has the

same concepts named classes, datatype properties, object

properties, restrictions, and individuals, respectively.

Providing a single data model for all parties of project

team will increasingly eliminate design ambiguity, reduce

the complexity of the enterprise data model, and speed up

the overall development.

Therefore, a UML object model can be seen as a common

model for ontologists and software architects, as it

enhances communication between both camps and brings

other parties to the table. It also aligns the effort of

building a consistent data model that is accessible and

usable not only by ontologists, but also by other team

members.

Model Driven Ontology Methodology

In this section, we will discuss in detail the Model Driven

Ontology approach with a simple, yet complete, example

[1]. The following diagram (Fig. 1) shows a UML class

diagram of a purchase order example in terms of classes,

attributes, enumerations, and relationships including

inheritance, composition, aggregation and associations

with constraints represented as cardinalities.

 3

Fig-1

Our approach starts with the UML class diagram which

represents the data model of a particular domain. Once

the team comes up with the correct UML data model,

validated and approved by all parties, we generate a UML

version that is encoded in XMI by exporting the model

using a standard UML tool such as RSA. We then apply

transformation rules by parsing the XMI file into ontology

script.

This parsing is done through Eclipse Modeling

Framework (EMF) API provided by UML2 plugin [3],

which is an EMF-based implementation of the UML 2.x

metamodel for the Eclipse platform. The objective of this

plugin is to provide a useable implementation of the UML

metamodel to support the development of model

processing tools, a common XMI schema to facilitate

interchange of semantic models, test cases as a means of

validating the specification, and validation rules as a

means of defining and enforcing levels of compliance [3].

Our transformation platform is EMF which is part of the

Model Driven Architecture (MDA) and is the

implementation of a subset of the MDA in Eclipse

platform [1]. An EMF model is essentially the class

diagram subset of UML. EMF is originally based on MOF

(Meta Object Facility) by OMG (Object Management

Group). EMF uses XMI (XML Metadata Interchange) as

its canonical form of a model definition. EMF has its own

meta-metamodel called Ecore. Ecore is considered the

metamodel for UML in addition to some other

metamodels, such as XSD, WSDL, BPEL, etc. Ecore is

located at the M3 layer of MDA paradigm and defines all

kinds of metamodels located at M2, including UML.

Ecore, itself, is very similar to EMOF (Essential MOF),

but has Eclipse as a runtime environment.

EMF lets you define a data model in one of three formats:

Java interface, XML schema, or UML class diagram, then

 4

allows you to generate the other two formats. The most-

likely scenario is to start with a UML model and generate

the corresponding Java interfaces and XML schema. Our

approach extends this capability by generating RDF/OWL

script from the same UML model.

Building transformation rules is a joint effort between the

architecture team, the ontology team and business domain

experts. The expertise of these teams helps generate the

correct script corresponding to the data model. For the

purpose of illustrating the transformation mechanism, we

have isolated a subset of the diagram (Fig. 2). The

complete generated OWL script is too lengthy to include

in this paper.

 Fig-2

The following is XMI script for “Supplier” class:

 <packagedElement xmi:type="uml:Class" xmi:id="_maCsFE3GEd2Y9cy9X2GvMA" name="Supplier">
 <ownedAttribute xmi:id="_maCsFU3GEd2Y9cy9X2GvMA" name="name" visibility="private">
 <type xmi:type="uml:PrimitiveType" href="pathmap://UML_LIBRARIES/UMLPrimitiveTypes.library.uml#String"/>
 </ownedAttribute>
 <ownedAttribute xmi:id="_maCsFk3GEd2Y9cy9X2GvMA" name="customer" visibility="private" type="_maCsDk3GEd2Y9cy9X2GvMA"
 aggregation="composite" association="_maCsKU3GEd2Y9cy9X2GvMA">
 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="_maCsF03GEd2Y9cy9X2GvMA" value="*"/>
 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="_maCsGE3GEd2Y9cy9X2GvMA"/>
 </ownedAttribute>
 <ownedAttribute xmi:id="_maCsGU3GEd2Y9cy9X2GvMA" name="pendingOrder" visibility="private"

 type="_maCr5U3GEd2Y9cy9X2GvMA" association="_maCsKk3GEd2Y9cy9X2GvMA">
 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="_maCsGk3GEd2Y9cy9X2GvMA" value="*"/>
 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="_maCsG03GEd2Y9cy9X2GvMA"/>
 </ownedAttribute>
 <ownedAttribute xmi:id="_maCsHE3GEd2Y9cy9X2GvMA" name="shippedOrder" visibility="private"
 type="_maCr5U3GEd2Y9cy9X2GvMA" association="_maCsLk3GEd2Y9cy9X2GvMA">
 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="_maCsHU3GEd2Y9cy9X2GvMA" value="*"/>
 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="_maCsHk3GEd2Y9cy9X2GvMA"/>
 </ownedAttribute>
 <ownedAttribute xmi:id="_maCsH03GEd2Y9cy9X2GvMA" name="order" visibility="private" type="_maCr5U3GEd2Y9cy9X2GvMA"
 aggregation="shared" association="_maCsM03GEd2Y9cy9X2GvMA">

 5

 <upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="_maCsIE3GEd2Y9cy9X2GvMA" value="*"/>
 <lowerValue xmi:type="uml:LiteralInteger" xmi:id="_maCsIU3GEd2Y9cy9X2GvMA"/>
 </ownedAttribute>
 </packagedElement>

And its corresponding OWL script is the following:

 <owl:Class rdf:about="&PO;Supplier">
 <rdfs:label>Supplier</rdfs:label>
 </owl:Class>

 <owl:DatatypeProperty rdf:about="&Supplier;name">
 <rdfs:domain rdf:resource="&PO;Supplier"/>
 <rdfs:range rdf:resource="&xsd;string"/>
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:about="&Supplier;order">
 <rdfs:domain rdf:resource="&PO;Supplier"/>
 <rdfs:range rdf:resource="&PO;PurchaseOrder"/>
 <owl:inverseOf rdf:resource="&PurchaseOrder;supplier"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&Supplier;customer">
 <rdfs:domain rdf:resource="&PO;Supplier"/>
 <rdfs:range rdf:resource="&PO;Customer"/>
 <owl:inverseOf rdf:resource="&Customer;supplier"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&Supplier;shippedOrder">
 <rdfs:domain rdf:resource="&PO;Supplier"/>
 <rdfs:range rdf:resource="&PO;PurchaseOrder"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&Supplier;pendingOrder">
 <rdfs:domain rdf:resource="&PO;Supplier"/>
 <rdfs:range rdf:resource="&PO;PurchaseOrder"/>
 </owl:ObjectProperty>

Conclusion

This paper explains the benefits and values that

modeling practice can offer for ontology-based

applications, by treating modeling as a first class artifact,

rather than documentation. In addition to presenting a

single common data model that all team members can

share, a mechanism is presented to generate the ontology

script directly from the UML model once it is validated

and proofed. In this case, the model is used not only as a

diagram or a blueprint, but also as a primary artifact

from which efficient script is generated by applying

transformation rules.

We argue that the use of Model Driven Ontology would

increasingly boost productivity, eliminate mistakes due

to human misunderstanding, break the monopoly of

ontologists over ontology development, and save a

significant amount of development effort.

References

[1] Frank Budinsky. Dave Steinberg, Ed Merks, Ray

Ellersick, and Timothy J. Grose, "Eclipse Modeling

Framework", Addison-Wesley Professional, August

2003.

[2] Dragan Gasevic, Dragan Djuric, and Vladan Devedzic,

"Model Driven Architecture and Ontology

Development", Springer, 1st edition, July 2006.

[3] Eclipse UML2 project,

http://www.eclipse.org/modeling/mdt/?project=uml2

[4] D. S. Frankel, Model Driven architecture: Applying

MDA to Enterprise Computing, OMG Press, ISBN:

0471319201, January 2003.

[5] Nešić, S., Jazayeri, M., Jovanović, J., Gašević, D.,

"Ontology-based content model for scalable content

reuse", In Proceedings of the 4th ACM International

Conference on Knowledge Capture, Whistler, BC,

Canada, 2007, pp. 195-196.

[6] "National Information Exchange Model - NIEM",

http://www.niem.gov/

[7] dos Santos, E.S., Ralha, C.G., Carvalho, H.S., Gašević,

D., "MDA-based Ontology Development: A Study

Case," In Proceedings of the 19th International

Conference on Software Engineering and Knowledge

Engineering, Boston, USA, 2007.

[8] Stephen Cranefield, Jin Pan, "Bridging the Gap Between

the Model-Driven Architecture and Ontology

Engineering", The Information Science Discussion Paper

Series, Number 2005/12, December 2005, ISSN 1172-

6024.

