
 

  
Abstract— Intelligence analysts rely on reports that are subject 

to many varieties of uncertainty, such as noise in sensors; 
deception or error by human sources; or cultural 
misunderstanding. To be effective, intelligence analysts must 
understand the relationship between reports, the events or 
situations reported upon, and the hypotheses of interest to which 
those events or situations are evidential. Computerized support 
for intelligence analysts must provide assistance for managing 
evidential reasoning. For this purpose, computational 
representations are needed for categories and relationships 
related to evidential reasoning, such as hypotheses, evidence, 
arguments, sources, and credibility. This paper describes some of 
the entities and relationships that belong in an ontology of 
evidence, and makes the case for the fundamental importance of 
a carefully engineered ontology of evidence to the enterprise of 
intelligence analysis. 
 

Index Terms— Evidence, probabilistic ontologies, intelligence 
analysis, inferential reasoning, source credibility 

I. INTRODUCTION 
vidential reasoning is fundamental to the practice of 
intelligence analysis. Much of an intelligence analyst’s 

time is spent constructing complex chains of argument from 
evidence to conclusion, weighing the force of each argument 
and the credibility of its component sources, and arriving at 
overall judgments that, while falling short of certainty, provide 
useful inputs to decision makers. Reports that give rise to 
intelligence assessments are characterized by many varieties 
of uncertainty: noise in sensors; deception or error by human 
sources; poor understanding of situation or context. To be 
effective, intelligence analysts must understand the 
relationship between reports, the events or situations reported 
upon, and the hypotheses of interest to which those events or 
situations are evidential. 

It follows that effective computerized support for 
intelligence analysts must support processes of evidential 
reasoning.  For this purpose, computational representations are 
needed for categories and relationships related to evidential 
reasoning, such as hypotheses, evidence, sources, credibility, 
and the like.  

Some have argued that computational representations of 
evidential categories and relationships, while necessary to 
intelligence analysis, do not belong in an ontology. Ontology, 
the argument goes, is the systematic study of existence: the 
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categories of things that can exist and the relationships they 
can bear to one another. In the field of information systems, 
the term has come to mean the engineering discipline of 
constructing computational representations of various domains 
of application. By contrast, epistemology is the study of 
knowledge: how agents come to know about things that exist. 
The ontologies we construct, the argument goes, should be 
about what is, not what might or might not be, or what agents 
can reasonably infer from available evidence. 

Computational support for intelligence analysts requires the 
ability to represent, store, and manipulate evidence, 
hypotheses, and arguments relating evidence to hypotheses. 
Such representations must be stored in a computational 
structure, which, for want of a better term, we might call an 
epistemological repository.  Let us consider what such an 
epistemological repository might contain.  It would represent 
concepts such as hypothesis, evidence, source, and report. It 
would contain relationships such as relevance of evidence to 
hypothesis, or the source-of relationship connecting a source 
with a report produced by the source. It would be quite natural 
to construct the representation using the languages and tools 
commonly applied in the discipline of ontological engineering.  
In other words, this epistemological repository would look 
rather like a domain ontology, where the domain being 
represented is epistemology – the field devoted to how we use 
evidence obtained from the world around us to arrive at 
knowledge about the world. The natural person to build this 
repository would be someone schooled in constructing such 
representations – that is, an ontological engineer. To call such 
a repository an ontology of evidence would hardly seem 
unreasonable.   

In this paper, we argue for the fundamental importance of a 
carefully engineered ontology of evidence to the enterprise of 
intelligence analysis for the need for an ontology of evidence, 
and describe some of the entities and relationships that such an 
ontology would represent. 

II. EVIDENCE AND ARGUMENT 
Schum [1] has written a systematic treatise on evidence and 

its role in constructing arguments. All evidence, according to 
Schum, has three major credentials: relevance, credibility, and 
inferential force or weight. Relevance concerns the degree to 
which the evidence bears upon the hypothesis under 
consideration. Credibility means the degree to which the 
evidence is believable; whether or not the evidence is 
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trustworthy. Inferential force concerns the strength of the 
relationship between evidence and hypothesis – the degree to 
which the evidence sways our belief in the hypothesis. 

Evidence can come from diverse types of sources (e.g. 
physical sensors, human reports, direct tangible evidence such 
as objects or documents), each with different degrees of 
relevance, levels of credibility, and force.  

As examples of the factors bearing the credibility of a 
source, evidence coming from physical sensors needs to be 
evaluated with respect to environmental conditions, distance 
from observer, and physical characteristics of the respective 
sensor. Human sensors, on the other hand, must be scrutinized 
with respect to opportunity, competence, and veridicality. 
Opportunity concerns whether the person was in a position to 
have observed the event or verified the fact. Competence 
concerns whether the source was capable of making the 
distinction in question. Veridicality concerns whether the 
source is telling the truth. Clearly, there may be complex 
chains of inference involved in ascertaining any of these 
factors influencing credibility. Approaches for dealing with 
the weight or strength of evidence include both qualitative and 
quantitative aspects of the reasoning process adopted to draw 
inferences from it (e.g. probability theory, logical reasoning, 
etc). 

A vital (and too often overlooked) distinction to be made is 
the difference between an event and evidence that the event 
occurred, or between a fact and evidence that the fact obtains. 
Schum uses the notational device of an asterisk to make the 
distinction between event or fact E and evidence E* relating to 
E. It is important to note that E* does not entail E; the 
inference to E depends on the credibility of the source of E*. 

We do not always have the luxury of a direct report E* on 
an event or fact E of interest. We may need to reason 
indirectly from a report R* to an event or proposition R whose 
truth bears on the truth of E, and from there to E itself. 
Collections of interrelated propositions can be chained 
together into complex arguments. We often think of an 
argument as a linear chain from evidence through a collection 
of intermediate conclusions to a final conclusion. However, 
each link in such a chain must be justified. A judgment must 
be made that each antecedent in the chain is relevant to its 
consequent. The evidential force of each link must also be 
established. These judgments often require evidential 
reasoning in their own right. Schum uses the term ancillary 
evidence to refer to evidence about the nature and force of an 
evidential relationship. Intelligence analysts require support 
for keeping account of chains of argument and the ancillary 
evidence on which their force depends. 

III. PROBABILISTIC TREATMENTS OF EVIDENCE 
The past century has brought broad appreciation of the 

statistical regularities underlying the seeming complexity of 
physical, biological, psychological, and societal phenomena 
[2]. Computational advances are enabling automated and 
semi-automated support for many “knowledge tasks” once 
thought to be the exclusive province of human cognition. 
Intelligence analysts increasingly rely upon computerized 

systems that allow them to catalog, organize, and explore the 
implications of large collections of reports and other evidence.  
Quantitative measures of the strength of evidence are useful as 
a way to summarize and communicate the implications of 
large bodies of evidence. A natural candidate for such 
summarization, with a long and respected intellectual tradition 
behind it, is probability. Systematic deviations of intuitive 
human reasoning from the tenets of probability theory (e.g., 
[3]) have been cited as justification for heuristic approaches to 
combining strength of evidence (e.g., [4]). Nevertheless, 
naturalistic human reasoning can usefully be treated as a 
computationally bounded approximation to a probabilistic 
norm (c.f., [5], [6]).   There is a robust literature on the use of 
probability and decision theory to support human inference 
and decision making, and to protect against errors that can 
occur in naïve human reasoning (e.g., [7], [8]). Furthermore, 
heuristic techniques introduced as cognitively natural ways to 
overcome perceived disadvantages of probability theory have 
been shown to admit a probabilistic interpretation (e.g., [9]). 
When the independence conditions justifying the probabilistic 
interpretation are met, such heuristic weighting factors can 
work well, but they can produce disastrous results when 
applied without regard to whether these conditions are met. 
There is no match for probability theory in its generality, 
logical coherence, and well-developed methodological base. 
For this reason, we focus on probability theory as a logically 
justified approach to combining numerical measures of 
evidential force. 

We provide several examples to illustrate how probability 
can be used to represent and reason about credibility, to 
combine reports from different sources, and to handle 
subtleties such as dependence relationships that can stymie 
naïve heuristic weighting schemes.  Our examples are 
deliberately kept simple to illustrate the key points. They are 
not intended to represent the full complexity of the evidential 
reasoning problems faced in real applications. Nevertheless, 
they illustrate the building blocks from which a more 
sophisticated reasoning capability can be constructed. 

Figure 1 shows a Bayesian network that illustrates the 
combination of three independent pieces of evidence regarding 
the whereabouts of Osama bin Laden. Prior to receiving the 
reports, the probability is 3% that he is in Kandahar. After 
receiving the first report, the chance increases to 11%. After a 

 
Figure 1: Three Independent Reports Increase Probability of 

Hypothesis from 3% to 69% 



 

second report, the probability is 35%; the third report brings 
the probability to 69%. The figure shows the situation after the 
third report has been received. The top rectangle represents 
hypotheses about bin Laden’s location and their probabilities 
(Kandahar at 69%; Other at 31%). The three reports are shown 
below the location hypotheses. The gray color indicates that 
they have been specified as evidence, with 100% probability 
assigned to the actual reported location. Figure 2 extends this 
example to explicitly represent report credibility. The figure 
now shows credibility hypotheses (low, moderate and high) 
for the three reports. If we had specified no evidence about the 
credibility values, the results would have been the same as 
Figure 1. But if we specify that the credibility of the third 
report is low, then the probability decreases to 55% that bin 
Laden is in Kandahar. That is, lowering the credibility of a 
report decreases its evidential force, resulting in less change in 
belief when the report is received. 

Our final example illustrates an issue not easily accounted 
for by heuristic methods for assigning and combining 
evidential weights.  Suppose we discover that two of the 
reports, which we had originally treated as independent, may 
have actually come from the same informant. We can treat this 
case by explicitly representing a hypothesis for whether the 
reports came from the same source. In Figure 3a, we indicate 
that the sources of the two reports are different. In this case, 
they can be treated as independent evidence items, and the 
resulting belief in bin Laden’s location is the same as in Figure 
1. However, if we specify that the sources are the same 
(Figure 3b), the probability that bin Laden is in Kandahar is 
reduced to 35%, the same as if we had received only two 
independent reports. The structural assumptions (the 
independence relationships represented in the graphs) together 
with the numerical probability values ensure that subtleties 
such as source credibility and common sources are properly 
accounted for in evidential reasoning. 

Additional treatments of probabilistic representations of 
relevance and credibility in evidential reasoning can be found 
in [10] and [11].  

IV. A PROBABILISTIC ONTOLOGY OF EVIDENCE AND 

INFERENTIAL REASONING 
The above concepts pertain to the use of evidence as an 

informational asset and to the inferential process that 
transforms it into knowledge. This is clearly a multi-

disciplinary subject.  Practitioners from many disciplines can 
profit from a formalization of the discipline of evidential 
reasoning. Due to its heavy dependence on evidence in almost 
every aspect of its operations, the domain of intelligence 
analysis would be a prime beneficiary of an ontology of 
evidence. Benefits of an ontology of evidence include a 
common, shared vocabulary for important features and 
relationships that occur across different applications of 
evidential reasoning, as well as the ability to share information 
among diverse systems. 

Despite considerable diversity and individual variation in 
the conduct of investigation and analysis, there are 
fundamental common structures and processes. Examples 
include assessing the credibility and relevance of individual 
items or of masses of evidence, or constructing reasoning 
chains to connect evidence to hypothesis. A formal 
representation of evidence and evidential relationships 
provides the obvious benefit of allowing analysts to query a 
knowledge base not just for conclusions (e.g., “Where is 
Osama bin Laden?”), but also for the evidence on which the 
conclusions are based (e.g., “What is the evidence that bin 
Laden is in Kandahar?”)  Analysts can reason about the 
relevance of evidence to hypotheses, the credibility of sources, 
errors that may be common to several evidential reasoning 
chains, and other subtleties of evidential reasoning. 

There has been an increasing emphasis in recent years in 
sharing knowledge among intelligence applications. An 
ontology of evidence and inferential reasoning is a first step in 
that direction. Ontologies provide shared representations of 
the entities and relationships characterizing a domain, into 
which vocabularies of different systems can be mapped so to 
provide interoperability among them. Techniques for making 
semantic information explicit and computationally accessible 

 
Figure 2: Low Credibility Reduces Force of Report 

 
a. Sources for Rep1 and Rep2 are Different 

 
b. Sources for Rep1 and Rep2 are the Same 

Figure 3: Common Source Reduces Force of Report 



 

are key to effective exploitation of evidence from diverse 
sources, with distinct grades of credibility and relevance. 
Shared formal semantics enables systems with different 
internal representations to exchange information, and provides 
a means to enforce business rules such as access controls for 
security. 

However, traditional ontologies do not provide a principled 
means to ensure semantic consistency with respect to issues of 
uncertainty related to credibility of sources, relevance of  
evidence, and other aspects of the evidential reasoning 
process. Because uncertainty is a fundamental aspect of 
evidential reasoning, this is a serious deficiency.  

When faced with the challenge of representing uncertainty 
in an ontology, the natural tendency is to introduce a means to 
annotate property values with information regarding their level 
of confidence. This approach addresses only part of the 
information that needs to be represented in a full ontology of 
evidence. To understand why more is needed, consider the 
example from Section II above, in which evidence from 
several sources is combined to draw an inference about the 
current location of Osama bin Laden. We saw that the 
inferential force of each report depended not only on that 
report’s credibility, but also on whether the information from 
which it was derived overlapped with the information on 
which another report was derived. In other words, we need to 
represent not just a single credibility number, but information 
about how that credibility was derived. An assessment from 
source x, in order to be used in conjunction with evidence 
coming from other sources would not only state that (say) 
"with 75% probability, Osama bin Laden is in Kandahar." To 
be part of a comprehensive probabilistic model capable of 
performing sophisticated evidential reasoning, such a 
statement would have to include the supporting evidence and 
how its credibility affects the overall assessment. A simple 
example would be “with 75% probability, given reports that 
his physician was spotted in a local market (evidence E1) and 
that a radio communication regarding his whereabouts was 
intercepted (evidence E2),” accompanied by information 
clarifying how this number changes as the credibility of E1 
and E2 varies. Further, as new evidence accrues, a 
sophisticated evidential reasoning system must be capable of 
capturing the impact of additional evidence on the body of 
evidence being analyzed. As an example, if a source were 
found to be a double agent, the credibilities of all reports from 
that agent would need to be called into question. A system that 
relies on or can represent only numerical weights of individual 
arguments cannot cope with the complexity and dynamic 
aspect of real world multi-source evidential reasoning. 

In short, annotating a standard ontology with numerical 
probabilities is not sufficient, as too much information is lost 
due to the lack of a good representational scheme that captures 
structural constraints and dependencies among probabilities. 
Over the past several decades, semantically rich and 
computationally efficient formalisms have emerged for 
representing and reasoning with probabilistic knowledge (e.g., 
[12]). A true probabilistic ontology must be capable of 
properly representing the nuances these more expressive 

languages were designed to handle. We have argued elsewhere 
(e.g. [5]) that for domains characterized by uncertainty, 
probabilistic ontologies ([13], [14]) provide a principled 
means to represent the structural and numerical aspects of 
evidential reasoning. Indeed, many researchers have pointed 
out the importance of structural information in probabilistic 
models (e.g. [15], [16]), and it is well known that some 
questions about evidence can be answered entirely in 
structural terms ([1], page 271). Shafer ([17], pages 5-9) 
argues that probability is more about structure than it is about 
numbers. Numerical probabilities enable quantitative 
assessment of the force of evidence, which depends on the 
strength of relevance and credibility arguments. Exploring the 
details of probabilistic ontologies is not in the scope of this 
work, but the interested reader is referred to http://www.pr-
owl.org. 

Finally, apart from the advantages of knowledge sharing 
tools to the Intelligence Analysis domain, it is important to 
foresee the institutional and cultural implications of 
systematizing and standardizing vocabulary and semantics of 
evidential reasoning.  The very difficulties an effective 
information-sharing scheme is meant to overcome can become 
obstacles to its widespread adoption. Given the nature of the 
field, with highly personalized approaches to analysis, a 
knowledge tool may encounter resistance if it is perceived as 
threatening deeply ingrained processes. Yet, the increasing 
demands within the Intelligence community for effective 
exchange create an opportunity for developing standardized 
representations and approaches. This is an important and 
difficult issue. A probabilistic ontology of evidence is a 
promising first step to provide a structure for knowledge 
sharing that is sufficiently flexible to address the demands of 
the multiple approaches currently used to handle evidential 
reasoning. 

V. SUMMARY AND CONCLUSIONS 
After identifying some concepts regarding the process of 

transforming masses of evidence into knowledge, we explored 
the need for formal representations of evidential processes as a 
means to provide cross-fertilization among domains that 
depend on processes of evidential reasoning. Among these, 
intelligence analysis is paradigmatic. We proposed a 
probabilistic ontology of evidence as a key enabler of this 
vision. Implementation of this concept must be cognizant of 
institutional and cultural barriers. In conclusion, we argue that 
the benefits of effective evidential reasoning and knowledge 
sharing tools far outpace the difficulties in implementing 
them. 
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