
Common Logic for an RDF Store

Robert MacGregor, Ph.D.
Franz Inc.

Oakland, CA

bob.macgregor@gmail.com

Abstract — The advent of commercial tools that

support reasoning and management of RDF data stores

provides a robust base for the growth of Semantic Web

applications. There is as yet no analogous set of tools and

products to support advanced logic-based applications.

This article examines issues that arise when seeking to

combine the expressive power of Common Logic with the

scalability of an RDF store.

Index Terms — Common Logic, RDF, Semantic Web,

higher order logic.

I. INTRODUCTION

Franz Inc is researching the possibility of

implementing a Common Logic [1] parser and query

processor for our RDF [2] store, AllegroGraph. There

is a very wide scope for how large a subset of the

language is implemented, and more significantly, what
kinds of reasoning are supported. Here we discuss

several of the issues and possibilities.

A primary goal for marrying Common Logic (CL)

to AllegroGraph is to achieve scalable logical

inference over a dynamic fact base. We believe the

AllegroGraph infrastructure is well suited for crafting a

scalable reasoner, however, expressive logics are

inherently non-scalable, and there are severe trade-offs

that must be made to achieve reasoning over billions of

statements.

As part of the presentation we will discuss our

proposal for implementation and requirements for the

intelligence community. We will discuss a number of

the tradeoff as described below.

II. COMMON LOGIC IMPLEMENTATION

A full-fledged implementation would include the

following features:

(i) A user-friendly query language, based on CL,

that supports arbitrary boolean expressions in the
“where” clause (here, we are imagining

augmenting a SQL-like select-from-where syntax).

(ii) Optional support for logic operators that make

the closed-world assumption and unique id

assumptions. We include these because classical

negation and universal quantification operators are

inherently non-scalable.

(iii) A CL-based rule language.

(iv) CL definitions.

(v) Extensible operators.

Just having a CL-based query language would be a

big improvement on the current state of RDF-based

tools. Unlike SPARQL (introduced below), it would

have a “real” (model-theoretic) semantics, it would

have clean syntax that assumes a calculus-like rather

than an algebraic formulation of clauses, it would be

expressive, and it wouldn’t break your fingers when

you type it.

The inclusion of a definition language that
subsumes OWL (easy) would allow for a calculus that

spans the range of RDF-based languages with a single

syntax.

There are several “sweet spots” that could be

supported; a sweet spot being a language subset that

supports sound and complete reasoning while being at

least moderately scalable. We will note these as we

examine various trade-offs.

III. A BASELINE SYSTEM

The baseline is a simple query language with
atomic ground assertions. Here, we explicitly exclude

the possibility of rules or definitions. Such a language

would allow arbitrary CL expressions to be evaluated

against the fact base. However, both universal

quantifiers and classical negation operators will always

evaluate to false (or unknown) in this scheme; the

former due to the absence of any kind of “closure”

operator, and the latter due (notionally) to the absence

of statements that can logically contradict one another.

The simplest way to “achieve closure” is to admit

operators that define local closed world assumptions.

For example, a negation-as-failure operation assumes

that the facts within the scope of a single query are

situationally-complete. A closed-world universal

quantifier makes a similar assumption. Both of these
operators are completely scalable. In other words, we

can add them without reducing our expectations on

how scalable our language is. The strategy of

embedding the closure within a language operator,

rather than, say, within a predicate, minimizes the

scope of the closures, and allows both open and closed-

world reasoning to be applied to the same model.

Alternatively, one could permit assertion of OWL-

like operators (e.g., max-cardinality and all-values-

from) to achieve closure. Introducing these operators

immediately eliminates the possibility of scalable
reasoning, or complete reasoning, or both. Here, we

are discounting databases where large numbers of

asserted and derived have been laboriously loaded and

then compiled, yielding a base that melts on the first

update; a “dynamic” scalable application will support

real-time updates as a matter of course.

Our baseline would not be complete without a

transitivity operator. Transitive closure is the most

important of all the classes of inference. Simplest

would be to include the equivalent of an
‘owl:TransitiveProperty’ declaration, but practical

experience has shown that the addition of a transitive

closure operator to the query language syntax has

important benefits. Specifically, it is useful to be able

to define transitive closures over compound binary

expressions; something that OWL can’t do.

AllegroGraph includes specialized accelerators for

computing transitive closures.

IV. ADDING RULES

The addition of Horn-like rules significantly

increases the utility of the language. Here we face a
choice. If our rules are recursive, then syntactic

constraints must be placed upon both the heads and

bodies of our rules if we are to retain completeness.

This results in a Prolog-like semantics, with a CL

syntax. The accompanying reasoning can be made

moderately scalable.

Alternatively, we can degree that our rules are

non-recursive. Here, we restrict our rules to having

atomic heads, but we can permit arbitrarily expressive

tails. This scheme is both scalable and complete. We
know this because these rules do not actually increase

the expressive power of the query language. Instead

they are a convenience (a major convenience). There

are relatively few examples of systems built using non-

recursive rules; however, limited practical experience

has revealed that most recursive Horn rules can be

reformulated into equivalent non-recursive rules

combined with an (expressive) transitive closure
operator. The most serious drawback to this scheme

(non-recursive rules) is that it is theoretically

uninteresting. There is nothing semantically to write

about, so there are no papers on the subject.

Finally, one could design a system that combines

recursive and non-recursive rules. This is a quite

viable option. The only caveat is that only highly-

disciplined users are likely to reformulate as many

rules as possible into non-recursive equivalents. The

benefits of doing so would be orders of magnitude

increases in query performance, but your average user
might not master the technique.

V. DEFINITIONS

We face another choice when we add definitions

into the mix. If we interpret our definitions as if-and-

only-if rules, then we have abandoned hope of scalable

inference. Alternatively, we can apply an asymmetric

(if but not only-if) interpretation to Horn-like

definitions to achieve an expressivity equivalent to

Horn rules These are superior to one-directional rules,

because the only-if portion can be reserved for
constraint-checking/data validation. A single syntax

should suffice for either interpretation of a definition

(asymmetric or bi-directional); one can envision using

a single set of definitions for both scalable inference

and small-scale but rich inference.

VI. INFERENCE

Tableaux-based reasoners appear to be inherently

non-scalable over dynamic databases. Instead, we

focus chiefly on rule-based reasoners. There are three

basic classes of rules: (1) backward-chaining rules, (2)

forward-chaining rules, and (3) rewrite rules.

Backward-chaining rules are the best-behaved. They

are relatively insensitive to database updates (cache-

busting will occur, but it is manageable) and they are
moderately scalable.

Forward-chaining rules are more powerful (from a

completeness standpoint) than backward rules.

However, some form of truth maintenance is required

to manage derived facts, and bitter experience has

shown that truth maintenance does not scale. Hence,

this option is not viable for large scale applications.

Rewrite rules (also called “triggers”) are

essentially forward rules that don’t bother to clean up

after themselves when updates are made. Instead, they

are interpreted as having a sematics external to the

system. This makes them highly useful, but it is
“buyer beware” when it comes to semantics. Rewrite

systems have difficulty managing the trigger portion of

very expressive rules. For the handling of expressive

rewrite rules, we recommend the introduction of

“trigger” clauses into the syntax. The assumption is

that such rules will fire only when updates to the fact

base are detectible by the trigger portion(s) of the rule;

other (presumably more expensive) clauses in the rule

will not be monitored. Most uses of rewrite rules (e.g.,

Jess rules) are applied only to modest sized databases.

The extensible operator feature allows arbitrarily
complex operators to be added to the language. This

allows for exotic operators like “cut” or modals to be

added. This is possible because the specialist

mechanism includes hooks into the internals of the

query executor. High-end inference can be achieved

by adding additional operators to the rule engine that

include their own logic interpreters.

AllegroGraph’s implementation of CL will use the

extension mechanism to provide access via CL to its

built-in geospatial, temporal and social network
analysis features.

VII. COMMON LOGIC AND RDF

Scalable logic-based applications will most likely

be built on top of an RDF triple store. It makes sense

to ask what contribution Common Logic can make in

this context. In fact, a query language based on

Common Logic would have a number of advantages.

This is due in part to the fact that SPARQL, the defacto

standard in the RDF world, has a number of serious

deficiencies that discourage its use for higher-level

logic applications.

SPARQL [3] is a W3C-recommended query

language for RDF data. It has been designed to enable

expressions of common, everyday queries in a style

that mimics a syntax used elsewhere to express atomic

ground assertions. The majority of developers of RDF

stores provide implementations of SPARQL; this has

significantly spurred the growth of RDF-based tools

and technology.

One serious drawback of SPARQL is that it takes

the “kitchen sink” approach to syntax. SPARQL has
two “and” operators, two “or operators, and an

awkward division between predicates evaluated against

the store versus predicates evaluated by other means

(e.g., equality, inequality, etc.). Rather than treating

the context/graph dimension as simply one additional

argument (to a triple), it adds orthogonal syntactic

constructs that interleave with the already cumbersome

triples and filters. While simple SPARQL queries are
fairly readable, when complexities such as disjunctions

are utilized, SPARQL queries become very difficult to

compose and interpret.

In the logic world, a primary weapon to counter

syntactic complexity is to base the semantics of a logic

on a small number of primitive operators, and to define

the remaining operators as compositions of the

primitives. In this case, the bulk of language syntax

may be regarded as syntactic sugar; this makes the job

of implementing the language much more manageable.

This is how, for example, KIF [4] and Common Logic
have been defined. SPARQL has taken the opposite

approach; it has a large number of different semantic

operators, and is defined in terms of a procedural

semantics rather than a declarative semantics. That

means that the traditional compositional semantics

approach cannot be applied to SPARQL.

The combination of bloated syntax and an

essentially non-existent semantics means that

SPARQL cannot readily server as a foundation for the

addition of rules, modal operators, and other higher
level constructs. This leaves the field open to

competing languages such as Common Logic.

VIII. EXPRESSIVE POWER EXAMPLES

In this section, we look at some simple examples

where the expressive power of Common Logic can be

applied to treat representational problems that are

difficult or impossible to solve using a SPARQL-like

language. We will use a KIF-like syntax to express our

rules.

A common claim made by many RDF advocates is

that “the Semantic Web is open world”. Practical
experience indicates that this statement is a complete

falsehood; in fact, not only are there “pockets” of

assertions in most semantic networks best treated using

close-world semantics, but these “pockets” tend to be

the locus of the highest-valued information. Therefore,

a practical Semantic Web language will include

constructs to treat close-world models.

Consider the predicate “single”, as in “not married”.

It is conventional to treat the definition of the “single”

predicate as the closed-world negation of the predicate
“married”, e.g.,

 (<= (married ?p)

(exists (?s) (spouse ?p ?s)))

 (<= (single ?p)

(not (married ?p)))

In other words, if you don’t know that a person is

married, assume s/he is single. This isn’t guaranteed to

be true; but its the way that personnel data is utilized a
great deal of the time.

The semantics of closed-world negation can either

be assumed to attach to the underlying domain model,

or to be attributed to a logic operator. In the latter

case, since ‘not’ denotes classical negation, we would

replace ‘not’ by a specific negation-as-failure operator

(variously called ‘thnot’, ‘unsaid’, etc.) to achieve the

desired semantics, e.g.,

 (<= (single ?p)

(unsaid (married ?p)))

Next, consider universal quantification. The rule

below states that you are “off the hook” if all of your

children have graduated from college:

 (<= (off-the-hook ?p)

(forall (?c)

(implies (child ?p ?c)

(graduated-from-college ?c)

The trick to evaluating this predicate in a practical

domain lies chiefly in determining if the set of children
known for an individual Fred constitutes the complete

set of Fred’s children. This kind of information is

typically hard to locate. Instead of looking for a

guaranteed answer, it is more typical to query for all of

Fred’s children, and ask if each of those retrieved has

graduated. This answer can be trusted as far, and only

as far, as the closed-world assumption holds.

The ability to make closed-world assumptions

about sets of entities is critical to many real-world

applications. Having a universal quantifier in the
language enables this reasoning to be computed

endogenously, rather than relegating it to the

procedurally-evaluated portion of an application.

One would also like aggregate entities to be

treatable within a logic. Here is a (somewhat

simplistic) definition of the term “family”:

 (<= (family ?p ?fam)

?fam = (setof (?r) (or (spouse ?p ?r)

(child ?p ?r))))

Query languages such as SQL and SPARQL do

not allow for explicit universal quantifiers in their

syntax. This has two consequences: (i) it limits the

kinds of universal quantification expressible in these

languages (SQL has various aggregate operators;

SPARQL makes no provisions for universal

quantification); (ii) it requires that scope rules for

variables be implicit rather than explicit, which works

well most of the time, but not always. Here is an
example representing a simplification of an application

that this author encountered, where the lack of an

explicit existential quantifier (and accompanying

scoping) made composing the query difficult. The

(simplified) problem is to query for two degrees of

distance from Kevin Bacon, based on a ‘knows’

relationship. Here is the query expressed without

reference to existential quantification:

 (select ?x (where

 (or (?x = Kevin)

(and (knows Kevin ?x1)

(or (?x = ?x1)

(and (knows ?x1 ?x2)

(?x = ?x2))))))

The query succeeds only if the variable ?x1 is the

same throughout the query. In many quantifier-free

languages (e.g., SPARQL) variables in parallel

disjuncts can have the same name but not be

considered the same variable. This is done for a very

good reason; however, it means that we can’t be sure

how the above query will be evaluated without a

detailed inspection. The actual query found in the
application was more complex than this, because the

entities were related by more than one predicate. If

you replace

(knows ?x1 ?x2) above by
(or (knows ?x1 ?x2) (likes ?x1 ?x2)

then you will have a better approximation of the

complexity of the query in the application. Doing so

makes the scoping that much more tenuous. In fact,

the query language used in the application turned out
to have scoping rules that assumed that the variable

?x1 was not unique across the query. This made it

necessary to rewrite the query, approximately doubling

its size. On the other hand, if we have an explicit

existential quantifier, none of this “guessing” is

necessary:

 (select ?x (where

(or (?x = Kevin)

(exists (?x1)

 (and (knows Kevin ?x1)

(or (?x = ?x1)

 (and (knows ?x1 ?x2)

(?x = ?x2)))))))

Lastly, a host of logic-based applications find it

useful (and in a cognitive-sense, “necessary”) that the

language support n-ary predicates and n-ary functions.

The Franz product features a suite of geospatial,

temporal, and semantic network reasoners that are best

exploited using queries that employ n-ary predicates.

The query below evaluates:

Retrieve important people known to Bob who

attended a meeting in or near Berkeley, CA in
November, 2008.

 (select (?p)

(and

(ego-group bob knows ?group 2)

(actor-centrality-members

?group knows ?p ?importance)

(participant ?event ?p)

(instance ?event Meeting)

(interval-during ?event “2008-11-01”

“2008-11-05”)

(contains (geo-box-around

(location Berkeley) 5 miles)

(location ?event))))

Here the ‘ego-group’ predicate is a distance-2

Kevin Bacon computation (note how much simpler it is

than the previous query).

Another comment on the “Kevin Bacon” query:

When the relationship predicate is the same on all

layers, then a built-in version of the computation can

be expected to execute significantly faster than the

same computation phrased in logic. However, the

original query referenced a different predicate at the
first level than the second, and referenced four

different predicates at that second level, so a built-in

operator was not available. The moral being that built-

ins are not a universal panacea for expressiveness.

This section has surveyed a sample of Common

Logic language constructs to suggest that users benefit

both by (i) the ability to program a larger portion of

their applications within the logic, rather than resorting

to procedural manifestations, and (ii) that use of more

expressive constructs can reduce the complexity of the

resulting rules and queries, making the language more
usable by humans.

IX. SUMMARY

Adding a Common Logic interface and interpreter

to an RDF store would provide a spectrum of possible

benefits. At one end, a careful exploitation of CL

features would provide “heightened” versions of semi-

conventional query processing, over a dynamic,

scalable platform. At the high-end, one can

contemplate experimenting with combinations of

powerful reasoners operating over relatively small sets

of data interacting with the large-scale query engine.

The implementation community for Common

Logic needs to produce a target specification that is

both “doable” and useful to a significant class of

applications. There is a chicken-and-egg component,

since one needs to have an expressive language

available to appreciate why and how one can use it.

REFERENCES

[1] International Standard ISO/IEC 24707 Information technology

— Common Logic (CL): a framework for a family of logic based

languages. URL:

http://standards.iso.org/ittf/PubliclyAvailableStandards/c039175_IS

O_IEC_24707_2007(E).zip.

[2] RDF/XML Syntax Specification (Revised) W3C

Recommendation 10 February 2004. URL:

http://www.w3.org/TR/rdf-syntax-grammar/.

[3] SPARQL Query Language for RDF W3C Recommendation 15

January 2008. URL: http://www.w3.org/TR/rdf-sparql-query/.

[4] Knowledge Interchange Format draft proposed American

National Standard (dpANS) NCITS.T2/98-004.

http://logic.stanford.edu/kif/dpans.html.

