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Abstract — The advent of commercial tools that 

support reasoning and management of RDF data stores 

provides a robust base for the growth of Semantic Web 

applications.  There is as yet no analogous set of tools and 

products to support advanced logic-based applications.  

This article examines issues that arise when seeking to 

combine the expressive power of Common Logic with the 

scalability of an RDF store. 

 

Index Terms — Common Logic, RDF, Semantic Web, 

higher order logic. 

 
I.  INTRODUCTION 

 

Franz Inc is researching the possibility of 

implementing a Common Logic [1] parser and query 

processor for our RDF [2] store, AllegroGraph.  There 

is a very wide scope for how large a subset of the 

language is implemented, and more significantly, what 
kinds of reasoning are supported.  Here we discuss 

several of the issues and possibilities. 

 

A primary goal for marrying Common Logic (CL) 

to AllegroGraph is to achieve scalable logical 

inference over a dynamic fact base.  We believe the 

AllegroGraph infrastructure is well suited for crafting a 

scalable reasoner, however, expressive logics are 

inherently non-scalable, and there are severe trade-offs 

that must be made to achieve reasoning over billions of 

statements. 
 

As part of the presentation we will discuss our 

proposal for implementation and requirements for the 

intelligence community.   We will discuss a number of 

the tradeoff as described below. 

 

 
II.  COMMON LOGIC IMPLEMENTATION 

 

A full-fledged implementation would include the 

following features: 

 

(i) A user-friendly query language, based on CL, 

that supports arbitrary boolean expressions in the 
“where” clause (here, we are imagining 

augmenting a SQL-like select-from-where syntax). 

 

(ii) Optional support for logic operators that make 

the closed-world assumption and unique id 

assumptions.  We include these because classical 

negation and universal quantification operators are 

inherently non-scalable. 

 

(iii) A CL-based rule language. 

 

(iv)  CL definitions. 

 

(v)  Extensible operators. 
 

Just having a CL-based query language would be a 

big improvement on the current state of RDF-based 

tools.  Unlike SPARQL (introduced below), it would 

have a “real” (model-theoretic) semantics, it would 

have clean syntax that assumes a calculus-like rather 

than an algebraic formulation of clauses, it would be 

expressive, and it wouldn’t break your fingers when 

you type it. 

 

The inclusion of a definition language that 
subsumes OWL (easy) would allow for a calculus that 

spans the range of RDF-based languages with a single 

syntax. 

 

There are several “sweet spots” that could be 

supported; a sweet spot being a language subset that 

supports sound and complete reasoning while being at 

least moderately scalable.  We will note these as we 

examine various trade-offs. 

 

 
III.  A BASELINE SYSTEM 

 

The baseline is a simple query language with 
atomic ground assertions.  Here, we explicitly exclude 

the possibility of rules or definitions.  Such a language 

would allow arbitrary CL expressions to be evaluated 

against the fact base.  However, both universal 

quantifiers and classical negation operators will always 

evaluate to false (or unknown) in this scheme; the 

former due to the absence of any kind of “closure” 

operator, and the latter due (notionally) to the absence 

of statements that can logically contradict one another. 

 



The simplest way to “achieve closure” is to admit 

operators that define local closed world assumptions.  

For example, a negation-as-failure operation assumes 

that the facts within the scope of a single query are 

situationally-complete.  A closed-world universal 

quantifier makes a similar assumption.  Both of these 
operators are completely scalable.  In other words, we 

can add them without reducing our expectations on 

how scalable our language is.  The strategy of 

embedding the closure within a language operator, 

rather than, say, within a predicate, minimizes the 

scope of the closures, and allows both open and closed-

world reasoning to be applied to the same model. 

 

Alternatively, one could permit assertion of OWL-

like operators (e.g., max-cardinality and all-values-

from) to achieve closure.  Introducing these operators 

immediately eliminates the possibility of scalable 
reasoning, or complete reasoning, or both.  Here, we 

are discounting databases where large numbers of 

asserted and derived have been laboriously loaded and 

then compiled, yielding a base that melts on the first 

update; a “dynamic” scalable application will support 

real-time updates as a matter of course. 

 

Our baseline would not be complete without a 

transitivity operator.  Transitive closure is the most 

important of all the classes of inference.  Simplest 

would be to include the equivalent of an 
‘owl:TransitiveProperty’ declaration, but practical 

experience has shown that the addition of a transitive 

closure operator to the query language syntax has 

important benefits.  Specifically, it is useful to be able 

to define transitive closures over compound binary 

expressions; something that OWL can’t do.  

AllegroGraph includes specialized accelerators for 

computing transitive closures. 

 

 
IV.  ADDING RULES 

 

The addition of Horn-like rules significantly 

increases the utility of the language.  Here we face a 
choice.  If our rules are recursive, then syntactic 

constraints must be placed upon both the heads and 

bodies of our rules if we are to retain completeness.  

This results in a Prolog-like semantics, with a CL 

syntax.  The accompanying reasoning can be made 

moderately scalable. 

 

Alternatively, we can degree that our rules are 

non-recursive.  Here, we restrict our rules to having 

atomic heads, but we can permit arbitrarily expressive 

tails.  This scheme is both scalable and complete.   We 
know this because these rules do not actually increase 

the expressive power of the query language.  Instead 

they are a convenience (a major convenience).  There 

are relatively few examples of systems built using non-

recursive rules;  however, limited practical experience 

has revealed that most recursive Horn rules can be 

reformulated into equivalent non-recursive rules 

combined with an (expressive) transitive closure 
operator.  The most serious drawback to this scheme 

(non-recursive rules) is that it is theoretically 

uninteresting.  There is nothing semantically to write 

about, so there are no papers on the subject. 

 

Finally, one could design a system that combines 

recursive and non-recursive rules.  This is a quite 

viable option.  The only caveat is that only highly-

disciplined users are likely to reformulate as many 

rules as possible into non-recursive equivalents.  The 

benefits of doing so would be orders of magnitude 

increases in query performance, but your average user 
might not master the technique. 

 

 
V.  DEFINITIONS 

 

We face another choice when we add definitions 

into the mix.  If we interpret our definitions as if-and-

only-if rules, then we have abandoned hope of scalable 

inference.   Alternatively, we can apply an asymmetric 

(if but not only-if) interpretation to Horn-like 

definitions to achieve an expressivity equivalent to 

Horn rules  These are superior to one-directional rules, 

because the only-if portion can be reserved for 
constraint-checking/data validation.  A single syntax 

should suffice for either interpretation of a definition 

(asymmetric or bi-directional); one can envision using 

a single set of definitions for both scalable inference 

and small-scale but rich inference. 
 

 
VI.  INFERENCE 

 

Tableaux-based reasoners appear to be inherently 

non-scalable over dynamic databases.   Instead, we 

focus chiefly on rule-based reasoners.  There are three 

basic classes of rules: (1) backward-chaining rules, (2) 

forward-chaining rules, and (3) rewrite rules.  

Backward-chaining rules are the best-behaved.  They 

are relatively insensitive to database updates (cache-

busting will occur, but it is manageable) and they are 
moderately scalable. 

 

Forward-chaining rules are more powerful (from a 

completeness standpoint) than backward rules.  

However, some form of truth maintenance is required 

to manage derived facts, and bitter experience has 

shown that truth maintenance does not scale.  Hence, 

this option is not viable for large scale applications. 



 

Rewrite rules (also called “triggers”) are 

essentially forward rules that don’t bother to clean up 

after themselves when updates are made.  Instead, they 

are interpreted as having a sematics external to the 

system.  This makes them highly useful, but it is 
“buyer beware” when it comes to semantics.  Rewrite 

systems have difficulty managing the trigger portion of 

very expressive rules.  For the handling of expressive 

rewrite rules, we recommend the introduction of 

“trigger” clauses into the syntax.  The assumption is 

that such rules will fire only when updates to the fact 

base are detectible by the trigger portion(s) of the rule; 

other (presumably more expensive) clauses in the rule 

will not be monitored.  Most uses of rewrite rules (e.g., 

Jess rules) are applied only to modest sized databases. 

 

The extensible operator feature allows arbitrarily 
complex operators to be added to the language.  This 

allows for exotic operators like “cut” or modals to be 

added.  This is possible because the specialist 

mechanism includes hooks into the internals of the 

query executor.  High-end inference can be achieved 

by adding additional operators to the rule engine that 

include their own logic interpreters. 

 

AllegroGraph’s implementation of CL will use the 

extension mechanism to provide access  via CL to its 

built-in geospatial, temporal and social network 
analysis features. 

 
VII.  COMMON LOGIC AND RDF 

 

Scalable logic-based applications will most likely 

be built on top of an RDF triple store.  It makes sense 

to ask what contribution Common Logic can make in 

this context.  In fact, a query language based on 

Common Logic would have a number of advantages.  

This is due in part to the fact that SPARQL, the defacto 

standard in the RDF world, has a number of serious 

deficiencies that discourage its use for higher-level 

logic applications. 

 
SPARQL [3] is a W3C-recommended query 

language for RDF data.  It has been designed to enable 

expressions of common, everyday queries in a style 

that mimics a syntax used elsewhere to express atomic 

ground assertions.  The majority of developers of RDF 

stores provide implementations of SPARQL; this has 

significantly spurred the growth of RDF-based tools 

and technology. 

 

One serious drawback of SPARQL is that it takes 

the “kitchen sink” approach to syntax.  SPARQL has 
two “and” operators, two “or operators, and an 

awkward division between predicates evaluated against 

the store versus predicates evaluated by other means 

(e.g., equality, inequality, etc.).  Rather than treating 

the context/graph dimension as simply one additional 

argument (to a triple), it adds orthogonal syntactic 

constructs that interleave with the already cumbersome   

triples and filters.  While simple SPARQL queries are 
fairly readable, when complexities such as disjunctions 

are utilized, SPARQL  queries become very difficult to 

compose and interpret. 

 

In the logic world, a primary weapon to counter 

syntactic complexity is to base the semantics of a logic 

on a small number of primitive operators, and to define 

the remaining operators as compositions of the 

primitives.  In this case, the bulk of language syntax 

may be regarded as syntactic sugar; this makes the job 

of implementing the language much more manageable. 

This is how, for example, KIF [4] and Common Logic 
have been defined.   SPARQL has taken the opposite 

approach; it has a large number of different semantic 

operators, and is defined in terms of a procedural 

semantics rather than a declarative semantics.   That 

means that the traditional compositional semantics 

approach cannot be applied to SPARQL. 

 

The combination of bloated syntax and an 

essentially non-existent semantics means that 

SPARQL cannot readily server as a foundation for the 

addition of rules, modal operators, and other higher 
level constructs.  This leaves the field open to 

competing languages such as Common Logic. 

 
VIII.  EXPRESSIVE POWER EXAMPLES 

 

In this section, we look at some simple examples 

where the expressive power of Common Logic can be 

applied to treat representational problems that are 

difficult or impossible to solve using a SPARQL-like 

language. We will use a KIF-like syntax to express our 

rules. 

 

A common claim made by many RDF advocates is 

that “the Semantic Web is open world”.  Practical 
experience indicates that this statement is a complete 

falsehood; in fact, not only are there “pockets” of 

assertions in most semantic networks best treated using 

close-world semantics, but these “pockets” tend to be 

the locus of the highest-valued information.  Therefore, 

a practical Semantic Web language will include 

constructs to treat close-world models. 

 

Consider the predicate “single”, as in “not married”.  

It is conventional to treat the definition of the “single” 

predicate as the closed-world negation of the predicate 
“married”, e.g., 

 



 (<= (married ?p) 

(exists (?s) (spouse ?p ?s))) 

  

 (<= (single ?p) 

(not (married ?p))) 

 

In other words, if you don’t know that a person is 

married, assume s/he is single.  This isn’t guaranteed to 

be true; but its the way that personnel data is utilized a 
great deal of the time. 

 

The semantics of closed-world negation can either 

be assumed to attach to the underlying domain model, 

or to be attributed to a logic operator.  In the latter 

case, since ‘not’ denotes classical negation, we would 

replace ‘not’ by a specific negation-as-failure operator 

(variously called ‘thnot’, ‘unsaid’, etc.) to achieve the 

desired semantics, e.g., 

 
 (<= (single ?p) 

(unsaid (married ?p))) 

 

Next, consider universal quantification.  The rule 

below states that you are “off the hook” if all of your 

children have graduated from college: 

 
 (<= (off-the-hook ?p) 

(forall (?c) 

(implies (child ?p ?c) 

(graduated-from-college ?c) 

 

The trick to evaluating this predicate in a practical 

domain lies chiefly in determining if the set of children 
known for an individual Fred constitutes the complete 

set of Fred’s children.  This kind of information is 

typically hard to locate.  Instead of looking for a 

guaranteed answer, it is more typical to query for all of 

Fred’s children, and ask if each of those retrieved has 

graduated.   This answer can be trusted as far, and only 

as far, as the closed-world assumption holds. 

 

The ability to make closed-world assumptions 

about sets of entities is critical to many real-world 

applications.  Having a universal quantifier in the 
language enables this reasoning to be computed 

endogenously, rather than relegating it to the 

procedurally-evaluated portion of an application. 

 

One would also like aggregate entities to be 

treatable within a logic.  Here is a (somewhat 

simplistic) definition of the term “family”: 

 
 (<= (family ?p ?fam) 

?fam = (setof (?r) (or (spouse ?p ?r) 

(child ?p ?r)))) 

 

Query languages such as SQL and SPARQL do 

not allow for explicit universal quantifiers in their 

syntax.  This has two consequences: (i) it limits the 

kinds of universal quantification expressible in these 

languages (SQL has various aggregate operators; 

SPARQL makes no provisions for universal 

quantification); (ii) it requires that scope rules for 

variables be implicit rather than explicit, which works 

well most of the time, but not always.  Here is an 
example representing a simplification of an application 

that this author encountered, where the lack of an 

explicit existential quantifier (and accompanying 

scoping) made composing the query difficult.  The 

(simplified) problem is to query for two degrees of 

distance from Kevin Bacon, based on a ‘knows’ 

relationship.  Here is the query expressed without 

reference to existential quantification: 

 
 (select ?x (where 

 (or (?x = Kevin) 

(and (knows Kevin ?x1) 

(or (?x = ?x1) 

(and (knows ?x1 ?x2) 

(?x = ?x2)))))) 

 

The query succeeds only if the variable ?x1 is the 

same throughout the query.  In many quantifier-free 

languages (e.g., SPARQL) variables in parallel 

disjuncts can have the same name but not be 

considered the same variable.  This is done for a very 

good reason;  however, it means that we can’t be sure 

how the above query will be evaluated without a 

detailed inspection.  The actual query found in the 
application was more complex than this, because the 

entities were related by more than one predicate.  If 

you replace 

(knows ?x1 ?x2)  above by 
(or (knows ?x1 ?x2) (likes ?x1 ?x2) 

 

then you will have a better approximation of the 

complexity of the query in the application.  Doing so 

makes the scoping that much more tenuous.  In fact, 

the query language used in the application turned out 
to have scoping rules that assumed that the variable 

?x1 was not unique across the query.  This made it 

necessary to rewrite the query, approximately doubling 

its size.  On the other hand, if we have an explicit 

existential quantifier, none of this “guessing” is 

necessary: 

 
 (select ?x (where 

(or (?x = Kevin) 

(exists (?x1) 

 (and (knows Kevin ?x1) 

(or (?x = ?x1) 

 (and (knows ?x1 ?x2) 

(?x = ?x2))))))) 

 

Lastly, a host of logic-based applications find it 

useful (and in a cognitive-sense, “necessary”) that the 

language support n-ary predicates and n-ary functions.  

The Franz product features a suite of geospatial, 



temporal, and semantic network reasoners that are best 

exploited using queries that employ n-ary predicates.  

The query below evaluates: 

 

Retrieve important people known to Bob who 

attended a meeting in or near Berkeley, CA in 
November, 2008. 

 
 (select (?p) 

(and 

(ego-group bob knows ?group 2) 

(actor-centrality-members 

?group knows ?p ?importance) 

(participant ?event ?p) 

(instance ?event Meeting) 

(interval-during ?event “2008-11-01” 

“2008-11-05”) 

(contains (geo-box-around 

(location Berkeley) 5 miles) 

(location ?event)))) 

 

Here the ‘ego-group’ predicate is a distance-2 

Kevin Bacon computation (note how much simpler it is 

than the previous query). 

 

Another comment on the “Kevin Bacon” query:  

When the relationship predicate is the same on all 

layers, then a built-in version of the computation can 

be expected to execute significantly faster than the 

same computation phrased in logic.  However, the 

original query referenced a different predicate at the 
first level than the second, and referenced four 

different predicates at that second level, so a built-in 

operator was not available.  The moral being that built-

ins are not a universal panacea for expressiveness. 

 

This section has surveyed a sample of Common 

Logic language constructs to suggest that users benefit 

both by (i) the ability to program a larger portion of 

their applications within the logic, rather than resorting 

to procedural manifestations, and (ii) that use of more 

expressive constructs can reduce the complexity of the 

resulting rules and queries, making the language more 
usable by humans. 

 
IX.  SUMMARY 

 

Adding a Common Logic interface and interpreter 

to an RDF store would provide a spectrum of possible 

benefits.  At one end, a careful exploitation of CL 

features would provide “heightened” versions of semi-

conventional query processing, over a dynamic, 

scalable platform.  At the high-end, one can 

contemplate experimenting with combinations of 

powerful reasoners operating over relatively small sets 

of data interacting with the large-scale query engine. 
 

The implementation community for Common 

Logic needs to produce a target specification that is 

both “doable” and useful to a significant class of 

applications.  There is a chicken-and-egg component, 

since one needs to have an expressive language 

available to appreciate why and how one can use it. 
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