
A Reputation-based Routing Mechanism
to Increase Personal Norm Compliance

Adrian Perreau de Pinninck, Stephen Cranefield, and Carles Sierra

IIIA – Artificial Intelligence Research Institute
CSIC – Spanish National Research Council
Bellaterra (Barcelona), Catalonia, Spain

adrianp,sierra@iiia.csic.es

.
Department of Information Sciende

University of Otago
Dunedin, New Zealand

scarenfield@infoscience.otago.ac.nz

Abstract. Current reputation based approaches to avoid unwanted in-
teractions assume that agents decide by themselves whether an interac-
tion with another should happen. Therefore, the main issue is how to
assess an agent’s reputation as quickly and accurately as possible. We
propose a system in which requests for interaction are routed through a
web of trust, and feedback on the interactions is sent by the interacting
agents. Then we show that when agents use a reputation based approach
to decide how to route the requests, the proportion of interactions that
satisfies the agent’s personal norms increases.

1 Introduction

An agent joins a multiagent system (MAS) in order to interact with other agents.
From these interactions agents expect to get some satisfaction, where the defini-
tion of a satisfactory interaction varies from agent to agent depending on their
personal norms. Agents have to rely on their prior experience when choosing
with whom to interact, since they cannot know in advance whether the inter-
action will be satisfactory. A new agent in the system does not have such prior
experience. Therefore, it will have to rely on the experience of others to make
that decision.

We assume that all interactions in a MAS follow a basic protocol. Firstly,
an agent willing to start an interaction (the initiator agent) will send a request
to the agent with which it wants to interact (the target agent).1 Secondly, the
target agent would either accept or reject the request. If the target agent accepts
the request an interaction would start between the two, otherwise no interaction
would start. This basic protocol allows agents to interact with others as long as

1 Although multi-partner interactions will not be discussed in this work, they could
be included into this basic protocol by having requests sent to a group of agents.



they both accept and it allows agents to build up personal experience enabling
them to model other agent’s reputation in a fully distributed way. The main
problem with such a simple protocol is that it takes a long time to build up
enough experience to model agents’ reputations. In the meantime agents will
have to deal with many undesirable interactions.

A simple addition to the basic interaction protocol is a third stage in which
information about past interactions can be gathered. This can happen either
in parallel to the interaction process, or embedded in it. In some centralized
approaches all interaction results are sent to the agent in charge of storing them
and then queries can be made to it. In a distributed approach, gossip is sent to
other agents in the MAS. This way, each agent is able to calculate the other’s
reputation without having extensive personal experience. Centralized approaches
have a single point of failure and do not scale. Distributed approaches have to
deal with false feedback, collusion by malicious agents, white-washing (changing
identity to avoid detection) and other attacks.

The purpose of this work is to design a scalable multiagent system which is
robust against malicious agents while increasing agent satisfaction according to
their personal norms. To achieve this we propose to structure the multi-agent
system through a web of trust, which guarantees authentication and privacy
without the need for a centralized PKI (Public Key Infrastructure). In order
to interact, agents in this system must follow an interaction protocol in which
interaction requests are routed through the web of trust. After an interaction,
agents may send feedback to other agents.

The proposed MAS barely decreases the agent autonomy. Thus, malicious
activity is possible. We also propose a specific architecture template for agents.
Agents developed following such an architecture will route requests through those
agents that have signed their certificates in the web of trust (contacts). Further-
more, they will discard all requests that do not come through those agents, and
they will only take into account feedback of interactions resulting from requests
they routed. Finally, they will route requests based on their local knowledge of
past interactions. This architecture template is called reputation based routing
(from now on RepRoute). These behavior restrictions lower the impact of false
feedback and white-washing. Furthermore, we claim that by using RepRoute,
the rate of unsatisfactory interactions is lowered (this will be shown through
experiments), even in the face of collusion. The downside of RepRoute is the
small overhead from routing requests through the web of trust.

Experiments have been run to test whether the proposed RepRoute increases
the rate of interactions that satisfy the agent’s personal norms. These experi-
ments tested two scenarios: i) Interacting agents select partners randomly and
always accept requests. Thus, they delegate the task of avoiding unsatisfactory
interactions entirely to routing agents. ii) Interacting agents use their experience
from prior interactions to select partners, and interaction requests are accepted
based on the target’s past experience. Thus, they partially delegate the task of
avoiding unwanted interactions to routing agents.



The rest of the paper is organized as follows: Section 2 defines the multiagent
system and the interaction protocol. Section 3 describes the agent architecture
in such a model. Section 4 defines the RepRoute mechanism. Section 5 describes
the experimental scenarios and their results. Section 6 describes related work.
Finally, Section 7 gives some conclusions and suggestions for future work.

2 Interaction Protocol

The network is formed by a set of agents. These agents are connected to the in-
ternet, through which they can potentially connect directly with any other agent
in the network. In order to assess identity, a web of trust is being used which
can be achieved through the OpenPGP standard, thus avoiding the need for a
centralized PKI. In a web of trust [19], everyone creates their own certificate
which is in turn signed by others to validate them, instead of having a certifi-
cation authority that is assumed to be trustworthy. In this way, cryptographic
privacy and authentication are provided. However, a web of trust is not enough
to guarantee good behaviour from the agents.

In the proposed system there is an interaction protocol that should be fol-
lowed by all agents (see Figure 1).When agent ai wants to interact with agent at,
it creates a request which is routed through the MAS. Upon receiving a request,
an agent first verifies if it is the recipient. If the agent is not the recipient, it must
decide whether to route the request and how. The decision is totally up to the
agent, but there are only four possible outcomes: forward the request, reroute
the request, block the request, or discard the request. Forwarding a request im-
plies that the router agent supports the potential interaction and helps route it
to its target. Rerouting the request implies that the router agent supports the
potential interaction but it is not capable of helping it get routed to its target.
Blocking implies that the agent does not support the interaction, but does not
mind if it takes place. Finally, discarding implies that the agent does not want
the interaction to take place. When the request reaches at, it can accept the
interaction request by sending an acknowledgement to ai and optionally to any
other agents. Then a direct communication channel is established between ai

and at through which the interaction can happen. The system places no restric-
tions to interactions. Finally, if any of the agents involved in the interaction are
unhappy with the results, they can send a complaint to any of the agents in the
MAS.

In order to stop requests from traveling indefinitely through the network,
routing information is added to them.

Definition 1. Given a set of agents A, a request path is a tuple 〈〈a1, a2, ..., an〉,
Ar, Ab〉 where: 〈a1, a2, ..., an〉 is a sequence of agents without duplicates, a1 be-
ing the request initiator. The sequence represents an acyclic path. Ar ⊆ A is
the set of agents that have received the request, i.e., the router agents. Finally,
Ab ⊆ Ar is the set of router agents which have blocked the request, i.e., the
blocking agents. Let P be the set of all request paths. We define p′ � p as a



Fig. 1. Interaction protocol

relation indicating that p′ is a predecessor to p, i.e., 〈〈a1, a2, ..., aj〉, Ar, Ab〉 �
〈〈a1, a2, ..., aj , ..., an〉, A′r, A′b〉 ↔ Ar ⊆ A′r ∧Ab ⊆ A′b.

Definition 2. Given a set of agents A, a set of request paths P, and a set of
identifiers I, an interaction request is a tuple 〈i, a, p〉 where i ∈ I is an identifier,
a ∈ A is the target agent, and p ∈ P is the route the request has travelled. Let
R = I × A × P be the set of all interaction requests formed through the request
algebra defined below. A request where the target agent is part of the route is said
to have reached its target.

The initial request is created by the initiator agent, which will mint the re-
quest’s unique identifier and select the target. The creation operation receives an
identifier, an initiator, and a target agent returning a request: ⊕ : I×A×A → R,
such that ⊕(i, ai, at) = 〈i, at, 〈〈ai〉, {ai}, ∅〉〉. Forwarding, rerouting, and blocking
operations modify the request in the following way: The forwarding operation
receives a request and an agent not in the request path and returns another
request: ⊗ : R × A → R, such that ⊗(〈i, at, 〈〈a1, a2, ..., an〉, Ar, Ab〉〉, ar) =
〈i, at, 〈〈a1, a2, ..., an, ar〉, Ar ∪ {ar}, Ab〉〉, when ar, at /∈ Ar, otherwise it is not
defined. The rerouting operation receives a request and returns another: � : R →
R, such that �(〈i, at, 〈〈a1, a2, ..., an−1, an〉, Ar, Ab〉〉) = 〈i, at, 〈〈a1, a2, ..., an−1〉,
Ar, Ab〉〉). The blocking operation receives a request and returns another: 	 :



R → R, such that 	(〈i, at, 〈〈a1, a2, ..., an−1, an〉, Ar, Ab〉〉) = 〈i, at, 〈〈a1, a2, ...,
an−1〉, Ar, Ab ∪ {an}〉〉. When discarding a request, no modification takes place
since the request is not sent again. By using a multi-signature scheme we can
ensure that requests cannot be falsified, i.e., any agent can verify whether the
identifier, route, and target have been modified.

An agent that receives a request for which it is the target decides whether it
wants to accept the request and interact with the initiator agent or not. If it does
not accept, it discards the message. Otherwise, it sends an acknowledgement to
the initiator and optionally any other agents. The purpose of the acknowledge-
ment is to let agents know the full route taken by the interaction request and
the fact that the interaction will start.

Definition 3. Given a set of agents A, a set of request paths P, a set of identi-
fiers I, and a request 〈i, a, p〉 that has reached its target, an acknowledgement is
a tuple 〈i, p〉, where i ∈ I is the request identifier and p ∈ P is the request path
the request took to reach the target. Let K ⊂ I ×P be the set of all acknowledge-
ments.

If the request target sends an acknowledgement to the initiator, a direct
communication channel is established between them. Through this channel they
can interact in whichever form they choose. Each interacting agent knows the
interaction outcome when it finishes. The set O represents all the possible inter-
action outcomes. If either the initiator or the target agent is unhappy with the
outcome of the interaction they may inform other agents through a complaint.
Furthermore, the complaint gives the agent the request path taken by the re-
quest that started the interaction. This way, even if the request target did not
send an acknowledgement to the router agents, when receiving a complaint they
will have the full route information.

Definition 4. Given a set of agents A, a set of request paths P, a set of iden-
tifiers I, and a request 〈i, a, 〈〈a1, a2, ..., a〉, A′, A′′〉〉 that reached its target, a
complaint is a tuple 〈i, a′, 〈〈a1, a2, ..., a〉, A′, A′′〉〉 where a′ ∈ A is the agent be-
ing complained about. This must be either the request initiator or target, i.e.,
a′ = a1 or a′ = a. Let C ⊂ I ×A× P be the set of all complaints.

3 Agent architecture

Agents executing the protocol in Section 2 are assumed to implement a specific
architecture. This architecture consists of a local state and specific functionality.
The state must contain all information received by the agent which is considered
valid according to the protocol.

Definition 5. Given the set of agents A, the set of requests R, the set of ac-
knowledgements K, and the set of complaints C, an agent state associated to
agent a ∈ A is a tuple s = 〈A,R,K,C〉 where A ⊂ A is the agent’s set of con-
tacts (the agents whose identity a has certified in the web of trust), R ⊂ R is a



set of requests the agent has received or sent (whether it was the initiator, router,
or target), K ⊂ K is a set of acknowledgments, and C ⊂ C a set of complaints.
The following restrictions apply to agent states:

– The requests stored in the agent state are those the agent received or sent,
i.e., ∀〈i, a′, p〉 ∈ R (a ∈ p).

– There is at most one acknowledgement per request id, i.e., ∀〈i, p〉, 〈i′, p′〉 ∈
R (〈i, p〉 6= 〈i′, p′〉 → i 6= i′).

– The acknowledgments stored in the agent state are associated with a request
in the local state, i.e., ∀〈i, p〉 ∈ K (∃〈i, a′, p′〉 ∈ R (p′ � p ∧ a′ ∈ p))).

– The complaints stored in the agent state are associated with a request in the
agent state, i.e., ∀〈i, a, p〉 ∈ C (∃〈i, a′, p′〉 ∈ R (p′ � p ∧ a′ ∈ p))) .

– Only the initiator and target agents may be complained about, i.e., ∀〈i, a′, 〈〈a1,
a2, ..., an〉, Ar, Ab〉〉 ∈ C (a′ = a1 ∨ a′ = an)).

– There is at most one complaint per request id and interacting agent, i.e.,
∀〈i, a, p〉, 〈i, a′, p′〉 ∈ Cj (〈i, a, p〉 6= 〈i, a′, p′〉 → a 6= a′).

Let S be the set of all agent states.

The reason why agents ignore all information about interactions whose re-
quests they did not route is to stop false feedback, since the route taken by the
interaction request can only be verified as truthful (through the multisignature
scheme) by those agents which routed the request.

On the other hand, agents must implement the following functions:

– α : R×S → 2A is the acceptance function. Given a request r ∈ R and a state
s ∈ S, α(r, s) returns the set of agents (if any) to which an acknowledgement
is to be sent.

– κ : P ×O × S → 2A is the complaint function. Given a request path p ∈ P,
an interaction outcome o ∈ O, and a state s ∈ S, κ(p, o, s) returns the set of
agents (if any) to which a complaint is to be sent.

– δ : R × S → {forward, reroute, block, discard} is the decision function.
Given a request r ∈ R and a state s ∈ S, δ(r, s) returns the action the agent
will choose when routing r.

– ρ : R× S → A is the router selection function. Given a request r ∈ R to be
forwarded and a state s ∈ S, ρ(r, s) returns the agent to which the request
will be forwarded.

4 Reputation Based Routing

In this section we introduce a class of agents implementing the proposed archi-
tecture, which we call reputation based routing agents. This technique uses the
past experience in order to decide what to do with a request and, in the case
that it is to be forwarded, to which agent to route it. The purpose of RepRoute
is mainly to reduce the rate of unsatisfactory interactions in which the agent’s
personal norms are not fulfilled and also to achieve robustness against other
malicious activity.



An implementation of the architecture functionality for a RepRoute type of
agent must follow some restrictions. Firstly, all requests received by a RepRoute
agent that where sent by an agent not in their contact list are ignored, i.e., given a
RepRoute agent a’s state 〈A,R,K,C〉, for all requests 〈i, at, 〈〈a1, a2, ..., aj , a〉, Ar,
Ab〉〉 ∈ R, aj must be an element of A. This restriction also implies that only
requests received from a contact may be acknowledged, forwarded, rerouted, or
blocked. The rest will be discarded. Given agent a’s state 〈A,R,K,C〉, if aj /∈ A
then α(〈i, at, 〈〈a1, a2, ..., aj , a〉, Ar, Ab〉〉, 〈A,R,K,C〉) = ∅ and δ(〈i, at, 〈〈a1, a2, ...,
aj , a〉, Ar, Ab〉〉, 〈A,R,K,C〉) = discard. In order to get their requests routed
properly, a RepRoute agent a will route requests through its own contacts, i.e.,
ρ(〈i, at, 〈〈a1, a2, ..., a〉, Ar, Ab〉〉, 〈A,R,K,C〉) ∈ A.

In all cases, RepRoute agents must have the functionality to, given a request
and their agent state, calculate the probability with which it will result in a
complaint. This complaint probability function is added to those in Section 2,
and it is defined as π : R × S → [0, 1]. Furthermore, two other functions are
added which receive the complaint probability as input: The acknowledgement
probability function, defined as φ : [0, 1] → [0, 1], and the blocking probability
function, defined as ψ : [0, 1] → [0, 1]. These functions are executed from within
the implementation of the initial four functions.

Consider a request r = 〈i, at, 〈〈a1, a2, ..., aj , a〉, Ar, Ab〉〉, r ∈ R sent through
a path of contacts, and an agent state s = 〈A,R,K,C〉, s ∈ S. The RepRoute
acceptance function will return all agents in the request path with probability
φ(π(r, s)), otherwise it returns the empty set. The RepRoute decision function
will return block with probability ψ(π(r, s)). It will return forward with prob-
ability 1 − ψ(π(r, s)), unless all the agent’s contacts are already in the request
path (i.e., A ⊆ Ar), in which case it will return reroute. Finally, the RepRoute
complaint function will either return an empty set or the set of all the request
routers, i.e., κ(r, s) = ∅ or κ(r, s) = Ar.

5 Experiments

In order to verify whether the presented approach increases the rate of inter-
actions which satisfy the agent’s personal norms, some experiments have been
performed. The experiments consist of MAS simulations in which the society is
made up of a certain number of agents that are organized as a network. Each
simulation run lasts a number of rounds. In each round every agent is selected
as an initiator once and a random agent is selected as its target. The initia-
tor agent then starts the interaction protocol. To simplify the experiments, we
have defined an interaction as a game in which agents can either cooperate or
cheat. An interaction outcome o ∈ O is a tuple o = 〈xi, xt〉 where xi is the
action taken by the initiator, and xt the action taken by the target. Actions
are either cooperate or cheat. Each agent has an attribute that defines their
probability of cheating in an interaction. All agents have a personal norm indi-
cating that they dislike to be cheated. When an agent is cheated it will com-
plain to all agents in the request path, e.g., if the current agent is the initiator,



κ(〈〈a1, a2, ..., at〉, Ar, Ab〉, 〈x, cheat〉, s) = Ar. Different distributions are used in
the simulations for the cheating likelihood attribute (see Figure 2). The first is
the uniform distribution over [0,1], the second one is an exponential distribu-
tion, where the uniform distribution is raised to a cubic power to get a higher
probability of having lower cheating rates than higher.

Fig. 2. Cumulative proportion of the population with likelihood of cheating

The simulated network topologies have characteristics that are found in real
world contact networks, namely, the small-world property and a scale-free dis-
tribution. A graph with the small-world property has a similar diameter to a
random graph with the same order and size, but a clustering coefficient orders
of magnitude higher. These graphs have been generated following the Watts-
Strogatz model [17] with a rewiring probability of 0.15. A scale free graph has
a degree distribution following a power law. These graphs have been generated
using the Albert-Babarasi model [3] of preferential attachment. Both types of
networks are simulated to have either 100 or 1000 agents, and the mean number
of contacts per agent is five. The two society sizes correspond to either small so-
cieties which will have more chances for interactions (simulations of 100 agents
with 1000 rounds) and large societies where agents interact less frequently (sim-
ulations of 1000 agents with 50 rounds).

In those simulations where agents use RepRoute, two different functions have
been tested for the blocking probability function ψ (see Figure 3): The first is



Fig. 3. Blocking probability functions

just a lineal function, the second is a threshold: routers filter all requests where
the probability of complaint is higher than 0.1. RepRoute agents calculate the
complaint probability π of a request r = 〈i, at, 〈〈a1, a2, ..., an〉, Ar, Ab〉〉 as the
probability that either the initiator or target will be complained about. The
probability that an agent will be complained about is calculated as the ratio
of all complaints about it over all interactions it has participated in. This is
calculated using the information in the agent state. If the agent state contains
no information about prior interactions of an agent, then if it is the initiator,
the probability of complaint is calculated as the proportion of interactions, that
started via requests r′ = 〈i′, a′t, 〈〈a′1, a′2, ..., a′n〉, A′r, A′b〉〉 rerouted or forwarded
by any of the non-blocking routers of r (i.e., ∃ar ∈ Ar \ Ab (ar ∈ A′r \ A′b)),
that resulted in a complaint. Otherwise the complaint probability of the target
agent is assumed to be 0 if there is no prior information. Finally, in order to
lower simulation time, the router selection function is implemented through a
pure shortest path algorithm. This does not affect results since all simulations
where requests are routed use the same routing mechanism.

Our first conjecture was that the RepRoute approach would improve the
peers’ rate of satisfactory interactions. In the experiments to test this conjecture,
a simulation was run where all agents use an implementation of RepRoute where
the acknowledgment probability function φ always returns 1 (all requests are
acknowledged). The baseline for comparing the results consists of a simulation



with the same exact set of agents, where the initiator and target agents chosen in
each round are exactly the same. The only difference being that requests are sent
directly to the target by the initiator without routing them through the network.
In the baseline simulations, agents accept requests that do not come from their
contacts. Therefore, all possible interactions occur. Experiments in this scenario
have been run for different values for the following attributes: number of agents,
network topology, blocking probability function, cheating likelihood distribution,
and number of rounds.

The results of the experiments are shown in Table 1. In all cases the agents
had fewer unsatisfactory interactions when the RepRoute was used as opposed to
no routing being used. Each row represents an experiment. The network column
(Net) indicates the network structure (SF = Scale Free, SW = Small World),
the size/length column (S/L) indicates the number of agents and rounds respec-
tively, the blocking column (Blk) indicates the blocking probability function used
by agents (P = linear probability, T = threshold), the cheating column (Cht)
defines the cheating likelihood distribution (U = uniform, E = Exponential).
The baseline (Base) and RepRoute (RepR) columns show the mean proportion
of interactions with complaints. Finally, the significance column (Sign) indicates
the statistical significance of the test verifying that the RepRoute algorithm has
a lower proportion of complaints than the baseline. Statistical significance was
tested by comparing the proportion of interactions each agent complained about
in the RepRoute and the baseline scenarios. In all cases the significance was over
99%. Thus one can say that it is better to use the RepRoute technique than
not doing anything at all, when no reputation technique is being used by the
initiator to select the target and the target to accept request.

Net S/L Blk Cht Base RepR Sign

SF 100/1000 P U 0.5158 0.4219 > 99%
SF 100/1000 P E 0.2641 0.2071 > 99%
SF 100/1000 T U 0.5158 0.4359 > 99%
SF 100/1000 T E 0.2641 0.1621 > 99%
SW 100/1000 P U 0.5158 0.4267 > 99%
SW 100/1000 P E 0.2641 0.1937 > 99%
SW 100/1000 T U 0.5158 0.4635 > 99%
SW 100/1000 T E 0.2641 0.1831 > 99%
SF 1000/50 P U 0.4880 0.3756 > 99%
SF 1000/50 P E 0.2425 0.1747 > 99%
SF 1000/50 T U 0.4880 0.4144 > 99%
SF 1000/50 T E 0.2425 0.1674 > 99%
SW 1000/50 P U 0.4880 0.4408 > 99%
SW 1000/50 P E 0.2425 0.1644 > 99%
SW 1000/50 T U 0.4880 0.4519 > 99%
SW 1000/50 T E 0.2425 0.2020 > 99%

Table 1. Experiment Results for RepRoute against no routing



The second conjecture was that RepRoute is beneficial even when another
reputation mechanism is used by peers in selecting their partners. In the exper-
iments to test this conjecture, initiator agents selected a target randomly but,
instead of using a uniform distribution, they selected the target agent with a
probability inverse to the probability of complaining about the target, calcu-
lated using π. Therefore, agents with higher complaint rates were chosen less
often. Furthermore, the acknowledgement probability function φ(x) was 1 − x,
i.e., the probability of acknowledging a requests was the inverse of the probabil-
ity of complaining about the initiator. The baseline for these experiments was
to run the same network but changing the decision function to always forward,
i.e., for all request r coming from a contact and agent state s, δ(r, s) = forward.
The request order cannot be guaranteed to be the same in the baseline, since
agents will have different information about each other and their choice of part-
ner depends on this information.

Net S/L Blk Cht Base RepR Sign

SF 100/1000 P U 0.3130 0.2698 N/A
SF 100/1000 P E 0.1350 0.1190 N/A
SF 100/1000 T U 0.3130 0.2601 N/A
SF 100/1000 T E 0.1350 0.0817 N/A
SW 100/1000 P U 0.3154 0.2759 N/A
SW 100/1000 P E 0.1395 0.1159 N/A
SW 100/1000 T U 0.3161 0.3039 N/A
SW 100/1000 T E 0.1372 0.0894 N/A
SF 1000/50 P U 0.4819 0.3694 > 99%
SF 1000/50 P E 0.2378 0.1702 > 99%
SF 1000/50 T U 0.4819 0.4079 > 99%
SF 1000/50 T E 0.2378 0.1595 > 99%
SW 1000/50 P U 0.4771 0.4314 > 99%
SW 1000/50 P E 0.2315 0.1596 > 99%
SW 1000/50 T U 0.4788 0.4461 > 99%
SW 1000/50 T E 0.2328 0.2004 > 99%

Table 2. Experiment Results for RepRoute against shortest path routing when repu-
tation is used to select interaction partners

The experiment results are shown in Table 2. The layout of the columns is
the same as in Table 1. In all cases the average rate of non-compliant interactions
was smaller for RepRoute than for the baseline. Nonetheless, the experiments
with 1000 rounds showed a data distribution which was not normal, therefore
t-tests for statistical significance could not be run. In the experiments with 50
rounds the data had a normal distribution and the tests showed significance
over 99%. Figure 5 shows what happens in one of these experiments from an
incremental point of view. The graph shows the mean complaint proportion
in the simulations of the first row of Table 2. The graph has four lines: two
for the baseline and two for the RepRoute approach. Each point in the graph



defines the mean complaint proportion at a certain number of rounds. In the
‘cumulative’ lines the mean is calculated over all prior rounds, in the ‘period’
lines it is calculated over the last 100 rounds. It can be seen that the RepRoute
simulation always has a lower mean complaint proportion. In both simulations
it improves after a certain number of rounds.

Fig. 4. Evolution of norm-violating interactions throughout an experiment using all
reputation techniques

5.1 Collusion

When designing a mechanism to reduce the number of unsatisfactory interac-
tions, threats must be taken into account. Threats may come from a single agent,
or through collusion. Single agent threats include false feedback, identity change,
and free-riding. Collusion threats include void interactions to artificially raise
reputation and allowing identity change. The function that calculates the prob-
ability of complaint for a given agent must take these threats into account. Single
agent false feedback and identity change are already handled by RepRoute, since
agents changing their identity are no longer recognized by their contacts which
will not route their requests. Free-riding, where agents route requests selfishly to
avoid costs, is out of the scope of this work. Nonetheless, there is a lot of research
in this area. Collusion in order to allow identity change is also handled in the
RepRoute implementation used in our experiments by using the information of



the current request routers to approximate the initiator’s complaint rate when
there is no prior information about it. Finally, collusion through void interactions
must be dealt with. We propose another algorithm to calculate the complaint
probability π that handles collusion threats. We also ran experiments to show
whether the new probability function increases personal norm-compliance in a
colluding scenario.

The new approach is based on calculating pairwise interaction complaint
rates (i.e., the probability that a complaint will be filed if two agents interact) as
opposed to single agent reputation (i.e., the probability that a complaint will be
filed against a given agent), in order to avoid the collusion problem. The problem
with this approach is that the router will always have less information about
interactions between the interested agents than themselves. Therefore, it cannot
make a better choice than them. In order to make up for this lack of information
the router agent can estimate the probability of complaint between two agents
ai and aj through the complaint rates in interactions with agents they have
both interacted with. The mean is calculated out of all the approximations from
each common interaction partner. The probability of complaint in an interaction
between agents ai and at when they have a common interaction partner ac, is
calculated as: P [(cri,c XOR crc,t|inti,c∧ intc,t)], where crj,k is a complaint in an
interaction between agents aj and ak, and intj,k is an interaction between agents
aj and ak. The rationales for using an XOR are that: Low complaint rates with
a common partner tend to mean low complaint rates among each other. One
low complaint rate and one high means that the two agents do not share the
same personal norms or that the two with the low complaint rate are colluding.
Therefore, the complaint rate among them would probably be high. Finally, high
complaint rates with a common partner indicate similar personal norms and a
low complaint rate among each other is likely. In the event that no information
is available about partners in common, then the original single agent approach
is used.

Our third conjecture is that the latter RepRoute mechanism to calculate the
complaint probability is more robust to collusion than the former one. The ex-
periments to test this conjecture were run with a certain percentage of the agents
colluding by never complaining when interacting with each other in order to raise
their reputation, but always cheating against the other agents. All non-colluding
agents in the experiment had a cheating likelyhood generated randomly from an
exponential distribution. Simulations were run with different percentages of the
population being colluding cheaters: 10,30,50,70, and 90. For these simulations
all agents selected a target randomly through a uniform distribution and they
always acknowledged requests. This way the experiments focused on the impact
of changes in the routing mechanism. Since colluding agents need to interact
often with one another in order to raise their reputation, the society that suits
them best is a small one with many interactions. Therefore, these experiments
were run in societies of 100 agents and 1000 rounds. In order to reduce the
number of experiments, each experiment with different percentage of colluding
agents was run with different values for the blocking probability function and



network topology parameters. In all cases the probability of complaint was cal-
culated using the pairwise algorithm. The baseline was the same execution but
using the single agent approach to calculate the probability of complaint. Table
3 shows the results of the experiments with colluding agents. The complaint per
interaction rate is calculated by only taking into account non-colluders. In all
cases the average is smaller for the pairwise calculation approach. Nonetheless
in the experiment with 10% colluding agents the result was not significant due
to the small amount of interactions with colluding agents. In the rest of the
experiments the results were statistically significant to a high degree.

Net Coll% Blk Single Pair Sign

SW 10 T 0.1896 0.1479 ×
SW 30 P 0.2747 0.2284 > 99%
SF 50 P 0.5332 0.3635 > 99%
SW 70 P 0.5802 0.3561 > 99%
SF 90 T 0.8872 0.7662 > 99%

Table 3. Collusion Experiment Results for RepRoute with pairwise over single agent
complaint probability function

6 Related Work

How to avoid unsatisfactory interactions has been studied in computer science
in the following fields: normative multiagent systems in which the goal is to
reduce the number of norm violations [12], resource sharing systems [2, 10, 18]
(e.g., computing grids, P2P or MANET) where the goal is to avoid free riding,
and electronic marketplaces whose goal is to maximize the value of interactions
(e.g., eBay and Amazon). In all these fields, incentives are used to promote the
desired conduct of the participant. The incentive being used is mainly the quality
of access to the system’s resources and participants. Two approaches are used
to calculate each participant’s access level: the reputation-based approach uses
an agent’s reputation from previous interactions as an assessment of trust and
the payment-based approach uses electronic currency. Both trust and currency
can be accumulated by acting according to the desired conduct.

Both approaches can be implemented by centralizing the algorithms that cal-
culate reputations (e.g., eBay) or that generate the currency [16]. Centralization
poses two problems: firstly, the system where the calculations are centralized
becomes the bottleneck in large environments and secondly, the centralized sys-
tem must be trustworthy otherwise it can take advantage of everyone else. These
problems are solved by implementing a decentralized approach, which has prob-
lems of its own. Decentralized currency managements systems are based on a
transferrable currency [6], thus they must deal with different types of fraud such
as double spending or fake coins, whereas decentralized reputation calculation



systems [1, 4, 9, 13, 18] must implement distributed information gathering sys-
tems which are robust against false feedback or collusion by a group of agents.

Our approach is a decentralized reputation-based system which uses a simple
information distribution system without a gathering phase where false feedback
is not an issue. Furthermore, the issue of collusion is dealt with in this paper by
approximating the satisfaction probability through common partners. Other rep-
utation mechanisms also deal with these attacks by detecting collusion through
the use of Eigenvectors [9] and differences in average ratings [1, 18]. We believe
that both these approaches can also be used in the model we have proposed.

This work has its origins in the enforcement of norms in normative multi-
agent systems, where the norms are well known to all agents. This is not the
case in our approach, since each agent may have its own rules of conduct which
may not be known to the rest. Since complaints for misbehavior are subjective,
the system should allow agents with similar rules to interact, while inhibiting
interaction among groups with opposing rules, allowing for the emergence of
normative communities. Furthermore, interaction between agents in most multi-
agent systems is non-mediated, much in the same manner as for grid computing
[2] and electronic marketplaces. In both cases there is an infrastructure used
by the agents which does not make decisions on behalf of them. Therefore, all
decisions to interact are done by the interacting agents themselves using either
their local knowledge or knowledge from third-parties. In that respect our ap-
proach comes closer to both P2P and MANETs since we are building a network
of agents which serves as a mediator for interaction. Nonetheless, in some norma-
tive multiagent systems interactions are mediated in order to control conformity
to norms [5, 8]. In such cases norms cannot be broken and reputation is used as
a measure of quality.

Reputation and currency techniques in resource sharing networks (e.g., P2P
and MANETs) are used to avoid some agents using the resources of others while
not contributing themselves (i.e., free-riding). In both P2P and MANETs in-
teraction between nodes is mediated by other nodes. Nonetheless, the main dif-
ference with our approach is that P2P and MANETs are inherently dynamic
networks. Neighbouring relations in both of them are short lived. Although
some research exists on using social networking on P2P [10, 15], their aim is
to make interaction more efficient. In current P2P implementations identity is
easily changed, making sanctioning of bad behaviour difficult. The use of reputa-
tion in routing algorithms has been explored in MANETs as a means to sanction
those agents that do not route messages properly in order to avoid power con-
sumption [7, 11]. Research to avoid free riding in MANETs is centered on the
network as the main resource. Our approach is different in that relations among
agents are longer lasting and we also deal with the semantic level of commu-
nications. Relations are longer lasting since an agent that temporarily leaves
the network will come back to the same spot when rejoining. Furthermore, in
MANETs it is common practice to overhear communications of neighbouring
nodes in order to gather the necessary information to calculate its reputation
[7], whereas this is not possible in P2P or MAS.



7 Conclusions and future work

RepRoute is a mechanism through which agents delegate part of the decision on
whether to interact with other agents by sending interaction requests through
a contact network. When an agent receives an interaction request intended for
another agent, it will route the request according to its local experience of past
interactions. The routing agent may forward the request towards the destination
agent if its local experience indicates that the interaction between the two will
abide their personal norms, or it will block the request otherwise. When the
request is blocked it can still be delivered via a different path. This mechanism to
start interactions is coupled with a post-interaction stage in which the interacting
agents are allowed to complain if they disliked the outcome of the interaction.

This approach has the following benefits: it is totally distributed, relatively
easy to implement, self-policing, discourages identity change, and is robust against
malicious activity. Furthermore, it lowers the rate of unsatisfactory interactions.
To verify this, several experiments have been run. The data from these experi-
ments supports our claims that RepRoute increases the rate of norm-comliant
interactions in different scenarios.

A tradeoff is being made in order to improve agent satisfaction: the over-
head inherent in the reputation based routing approach. The experiments have
shown that there is an overhead in the number of messages being sent. The num-
ber of messages being sent when using the reputation based routing technique
is roughly the number of messages sent without any routing or gossiping tech-
nique multiplied by the average path length of the contact network. Nonetheless,
contact networks tend to have small world properties which makes the multi-
plication factor remain small. On the other hand there is an overhead in CPU
and memory for calculating the probabilities of complaint. Furthermore, using
a multi-signature scheme in order to avoid request falsification is also resource
consuming. All of these issues raising the overhead have to be taken into account.
When agent satisfaction is to be maximized, or when interactions are long and
resource consuming, the overhead coming from the use of RepRoute pays off.

The scalability of the proposed system may be an issue due to the difficulty
in path finding when the MAS becomes extremely large. Maintaining a routing
table becomes cumbersome in large environments. In order to minimize the im-
pact of routing tables, compact routing schemes [14] can be used. This is possible
because social networks have scale-free and small-world properties. Current ap-
proaches to compact routing assume that a full view of the network is available
to all. Although this can easily be done by setting up a DHT (Distributed Hash
Table) where each agent’s contacts are stored, it could be possible to rely on local
knowledge from past routed interactions in order to improve routing efficiency.
Nonetheless, such compact schemes introduce a small increase in path length.
But this is not a problem, since the main concern in RepRoute is not the effi-
ciency of routing but the improvement of the agent’s personal norms satisfaction.
In this case longer paths may be beneficial.

In future work we plan to test whether RepRoute can be made robust to free
riding. We also want to couple our approach with more sophisticated algorithms



for reputation calculation. We also plan to develop RepRoute middleware for
MAS agents and P2P systems. Furthermore, we plan to test mechanisms for dy-
namically changing the network in which the most reputed router agents become
network hubs, thus making the system more robust.

References

1. K. Aberer and Z. Despotovic. Managing trust in a peer-2-peer information system.
In CIKM ’01: Proceedings of the tenth international conference on Information and
knowledge management, pages 310–317, New York, NY, USA, 2001. ACM Press.

2. B. K. Alunkal, I. Veljkovic, G. V. Laszewski, and K. Amin. Reputation-based grid
resource selection. In In Proceedings of AGridM, 2003.

3. A. L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

4. E. Damiani, D. C. di Vimercati, S. Paraboschi, P. Samarati, and F. Violante. A
reputation-based approach for choosing reliable resources in peer-to-peer networks.
In CCS ’02: Proceedings of the 9th ACM conference on Computer and communi-
cations security, pages 207–216, New York, NY, USA, 2002. ACM.

5. M. Esteva, B. Rosell, J. A. Rodriguez-Aguilar, and J. L. Arcos. Ameli: an agent-
based middleware for electronic institutions. In Proceedings of the Third Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems (AA-
MAS’04), 2004.

6. F. D. Garcia and J.-H. Hoepman. Off-line karma: a decentralized currency for peer-
to-peer and grid applications. Lecture Notes in Computer Science, 3531:364–377,
2005.

7. Q. He, D. Wu, and P. Khosla. Sori: A secure and objective reputation-based incen-
tive scheme for ad hoc networks. In in Proc. of IEEE Wireless Communications
and Networking Conference (WCNC2004, pages 825–830, 2004.

8. J. F. Hübner, J. S. Sichman, and O. Boissier. S-MOISE+: a middleware for de-
veloping organized multi-agent systems. In Proc. International Workshop on Or-
ganizations in Multi-Agent Systems: From Organizations to Organization-Oriented
Programming (OOOP ’05), Utrecht, The Netherlands, July 2005.

9. S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust algorithm
for reputation management in p2p networks. In WWW ’03: Proceedings of the
12th international conference on World Wide Web, pages 640–651, New York, NY,
USA, 2003. ACM Press.

10. S. Marti, P. Ganesan, and H. Garcia-Molina. Sprout: P2p routing with social net-
works. Lecture Notes in Computer Science, Current Trends in Database Technology
- EDBT 2004 Workshops:425–435, 2004.

11. S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating routing misbehavior in
mobile ad hoc networks. In MobiCom ’00: Proceedings of the 6th annual interna-
tional conference on Mobile computing and networking, pages 255–265, New York,
NY, USA, 2000. ACM.

12. A. Perreau de Pinninck, C. Sierra, and M. Schorlemmer. Friends no more: Norm
enforcement in multi-agent systems. In Proceedings of the sixth conference on
Autonomous Agents and Multi-Agent Systems, 2007.

13. J. Sabater and C. Sierra. Regret: reputation in gregarious societies. In AGENTS
’01: Proceedings of the fifth international conference on Autonomous agents, pages
194–195, New York, NY, USA, 2001. ACM.



14. M. Thorup and U. Zwick. Compact routing schemes. In SPAA ’01: Proceedings
of the thirteenth annual ACM symposium on Parallel algorithms and architectures,
pages 1–10, New York, NY, USA, 2001. ACM.

15. Y. Upadrashta. Social Routing. PhD thesis, University of Saskatchewan, 2005.
16. V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. Karma: A secure economic

framework for peer-to-peer resource sharing. In Workshop of the Economics of
Peer-to-Peer Systems, 2003.

17. D. J. Watts and S. H. Strogatz. Collective dynamics of small-world networks.
Nature, 393(6684):440–442, 1998.

18. L. Xiong, L. Liu, and I. C. Society. Peertrust: supporting reputation-based trust
for peer-to-peer electronic communities. IEEE Transactions on Knowledge and
Data Engineering, 16:843–857, 2004.

19. P. Zimmermann. Pretty good privacy: public key encryption for the masses. In
Building in big brother: the cryptographic policy debate, pages 93–107, New York,
NY, USA, 1995. Springer-Verlag New York, Inc.


