
Consensus dynamis in a dolphin soial networkAbdelmalik Moujahid1, Blana Cases1 and Franiso JavierOlasagasti11 Computational Intelligene Group. Dept. of ComputationalSiene and Arti�tial Intelligene, University of Basque Country.Abstrat. In this work we investigate the onsensus betweenindividuals in a soial network of bottlenose dolphins by simulat-ing the OCR (Opinion Changing Rate) model reently proposed byPluhini et al. in ref [1℄. This model is a soial adaptation of theKuramoto one in whih the onept of opinion hanging rate, i.e, thenatural tendeny to hange opinion, transforms the usual problemof opinion onsensus into a lass of synhronization. We study theemergene of synhronized groups of individuals both in terms ofnatural frequeny rates and entral positions in the network.Key words: Soial networks, Synhronization, Community stru-tures1 IntrodutionThe study of omplex network has attrated a lot of attention inthe sienti� ommunity in reent years [2-5℄. Indeed, many natural,tehnologial, biohemial and soial systems an be onvenientlymodeled as networks made of a large number of highly interonne-ted units. In general terms a network an be represented formallyas a graph: a set of generially alled nodes (verties) onneted bylinks representing some relationship. Reent studies have revealedthat suh systems are all haraterized by a number of distintivetopologial properties: relatively small harateristi distanes bet-ween any two nodes, high lustering properties, power-law degreedistribution and presene of ommunity struture.In soial networks, the nodes are people, and ties between themare friendship, politial alliane or professional ollaboration. Thestruture of interation network desribing who is interating withwhom, how frequently and with whih intensity, re�ets the import-ane of topology in soial dynamis. On the other hand, onsensus is



a key aspet of soial group dynamis. Everyday life presents manysituations in whih it is neessary for a group to reah shared deisi-ons. Consensus makes a position stronger, and ampli�es its impaton soiety. So the analysis of this soial network under a partiulartopology from numerial simulation of opinion dynamis models isan important issue to understand the soial group dynamis.In this work, we deal with the problem of onsensus formation inanimal soial network with known ommunity struture simulatingthe OCR (Opinion Changing Rate) model proposed in ref [1℄. Thenetwork we study was onstruted from observation of a ommunityof 62 bottlenose dolphins living in Doubtful Sound, New Zealand [9.Ties between dolphin pairs were established by observation of sta-tistially signi�ant frequent assoiation. The paper is organized asfollow. First, we review the main features of the Kuramoto and OCRmodels. Then we desribe a dolphin soial network in terms of theirnatural divisions using betweenness-based algorithm of Newman andGirvan [7℄. In the seond part, we disuss the results of numerialsimulations of the OCR model on the network. Also, we investigatethe in�uene of partiular individuals in maintaining the ohesion ofommunities.2 From Kuramoto model to the OCR modelOriginally, the Kuramoto model was motivated by the study ofolletive synhronization, a phenomenon in whih a large number ofoupled osillators spontaneously loks to a ommon frequeny, de-spite the di�erenes in their natural frequenies [6,8℄. The dynamisof the Kuramoto model is given by:
θ̇i(t) = ωi +

1

N

N
∑

j=1

Kijsin(θj − θi), (1)where θi(t) denotes the phase of the osillator i at instant t and ωiits natural frequeny. The frequenies ωi are distributed aordingto some probability density g(ω). Kij represents the oupling forebetween units. The original model studied by Kuramoto assumed



mean-�eld interations Kij = K, ∀i, j. The dynamis of this mo-del depends only on two fators: the oupling fore K whose e�ettends to synhronize the osillators, and the frequeny distributionthat drive them to stay away eah from other by running at di�erentnatural frqueny. When the oupling is su�iently weak, the osilla-tors run inoherently, whereas beyond a ertain threshold olletivesynhronization emerges spontaneously. The existene of suh a ri-tial threshold for synhronization is very similar to the onsensusthreshold found in the majority of the opinion formation models.Based on this onept, Pluhini et al.[1℄ de�ne the OCR model as aset of oupled ordinary di�erential equations governing the rate ofhange of agents' opinions. The dynamis of a system of N agents isgiven by:
ẋi(t) = ωi +

K

di

N
∑

j=1

Aijαsin(xj − xi)e
−α|xj−xi|, (2)where xi(t) ∈]−∞+∞[ is a real number that represents the opinionof the ith agent at time t. The ωi's orresponding to the naturalfrequenies of the osillators in the Kuramoto model represent herethe so-alled natural opinion hanging rates (or), i.e., the intrinsiinlinations of the agents to hange their opinions. The values ωi's aredistributed in a uniform random way with an average ω0. Aordingto this, we an simulate onservative individuals with values of ωi <

ω0, �exible ones with ωi ≃ ω0 and more �exible ones with ωi > ω0.
K ≥ 0 is the oupling fore, di is the degree of eah agent and

Aij is the adjaeny matrix . The exponential fator in the ouplingterm ensures that, for opinion di�erene higher than a ertain thres-hold, ontrolled by the parameter α (we typially adopted α = 3),opinions will no more in�uene eah other. This is perhaps the mainontribution of the OCR model with respet to the Kuramoto model.Thus, to study the opinion dynamis of the OCR model we solvenumerially the system given by equation (2) for a given distributionof the ω's and for a given oupling fore K. As reported in [1℄, inorder to measure the degree of opinions oherene, we use an orderparameter related to the standard deviation of the opinion hanging



rates de�ned as R(t) = 1−
√

1

N

∑

i(ẋi(t) − Ẋ(t))2. Here Ẋ(t) is theaverage over all agents of ẋi(t). Values of R approahing unity wouldimply a high degree of opinions oherene, while low values indiatea inoherently regime.3 Dolphin soial networkBottlenose dolphins ommunities have been desribed as a �ssion-fusion soieties and therefore individuals (or agents) an make dei-sions to join or leave a group. Two soial groups (or lusters) wereidenti�ed in this population. The ommunity struture of this net-work, obtained using betweenness-based algorithm of Newman andGirvan [7℄, is shown in Fig. 1, and the distribution of agents in eahgroup is reported in Table1.Table 1. List of agents in eah �nal group as resulting from usingthe Newman and Girvan algorithm [7℄ for a partition in two lusters.Cluster Agents in eah luster1 (21) 2,6,7,8,10,14,18,20,23,26,27,28,32,33,40,42,49,55,57,58,612 (41) 1,3,4,5,9,11,12,13,15,16,17,19,21,22,24,25,29,30,31,34,35,36,37,38,39,41,43,44,45,46,47,48,50,51,52,53,54,56,59,60,62In order to measure the quality of a partiular division of a net-work into ommunities, we have used the measure known as Modula-rity Q introdued in ref [7℄. Given a partiular partition of a networkinto n groups (or lusters), it is possible to de�ne a n × n size sym-metri matrix e whose element eij is the fration of all edges in thenetwork that link verties in group i to verties in group j. Aordingto this, the trae of this matrix Tre =
∑

i eii gives the fration ofedges in the network that onnet verties in the same group, andtherefore a good division into groups should have a high value ofthis trae. On the other hand, the sum of any row (or olumn) of thematrix e, namely ai =
∑

j eij, give the fration of edges onneted



Fig. 1. Community struture in the bottlenose dolphins of DoubtfulSound, extrated using the Newman and Girvan algorithm [7℄. Thesquare and irles denote the primary split of the network into twogroups.to group i. So, the expeted number of intra-group edges is just aiai.Finally, the modularity Q is given by:Q =
∑

i(eii − a2

i ).Values of Q approahing unity,whih is the maximum, would im-ply a strong ommunity struture. If we take the whole network as asingle group, or if the network is a random one, Q = 0. For the parti-tion into two groups reported in Table 1., the modularity Q = 0, 38.This network is made of N = 62 vertex and l = 159 edge; eahvertex represents an individual and eah edge represents assoiationbetween dolphin pairs ourring more often than expeted by hane[19℄.4 Numerial resultsIn this setion, we integrate the system of equation 2 over thebottlenose dolphins network. In the model variable x(t)'s representdeisions of the 62 agents, and the ω's their natural deision hanging



rate dr. For the numerial results we �x the oupling fore K = 2.2and the ω's are randomly hosen from a uniform distribution in therange [−0.5, 0.5] with average ω0 ≃ 0. We set xi(t = 0) = 0, ∀i, i.e,in the initial state all dolphins share the same deision hanging ratevalues. The results are presented in Fig. 2. Panels (a) and (b) showthe deision hanging rate (ẋ(t)) and the order parameter R(t) overs
100 time steps in a logarithmial sale for the absise axe.As it an be appreiated, as soon as we start the simulation, thesystem enters in a short unstable transient regime in whih agentstend to synhronize their ativities due to the oupling fore (seeFig. 2(a)). This regime is haraterized by maximum values of theorder parameter R(t) (see Fig. 2(b)). Immediately after, the sys-tem rapidly lusterizes resulting in two �nal lusters in whih agentsshare ommon dr values. This situation re�et ommunity struturepresent in bottlenose dolphins soiety. The distribution of agents ineah �nal lusters is reported in Table 2.Table 2. Distribution of agents shown in Fig. 2(a) as resultingfrom the simulation of OCR model over the bottlenose dolphins om-munity for K = 2.2. Elements in parentheses represent the numbersof agents in eah �nal lusters.Cluster Agents in eah luster1 (21) 2,6,7,8,10,14,18,20,23,26,27,28,31,32,33,42,49,55,57,58,612 (41) 1,3,4,5,9,11,12,13,15,16,17,19,21,22,24,25,29,30,34,35,36,37,38,39,40,41,43,44,45,46,47,48,50,51,52,53,54,56,59,60,62As it an be veri�ed, the distribution of agents in Table 2. is al-most the same as obtained in Table 1. Only two agents, the verties31(ω = −0.29) and 40(ω = 0.20), have exhange lusters. In thedolphin network this two verties fall in the boundary between theommunities of the network (see Fig 1). Therefore, depending ontheir natural deision hanging rate, an joint or leave a partiulargroup. In this ase, the modularity is Q = 0.3799 for this split into2 lusters.



It is important to stress that, in this region of the ouplingstrength, agents in eah �nal group, tend to maintain a synhro-nized regime despite their di�erent natural deision hanging rates.This is due to the strong in�uene of the ommunity struture pres-ents in the network whih a�et notably the deision of agents tojoin or leave a group. While a subsequent inreases in the value ofthe oupling strength fore a ompletely synhronized regime.
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Fig. 2.Deision dynamis of lusters synhronization in the OCR modelon the Dolphins Network for k = 2.2 and ω ∈ [−0.5, 0.5].In the other hand, entrality measure (betweenness) [10℄ for eahindividual of the network show that verties 2(ω = −0.5) and 37(ω =
0.17) have high betweenness values. Betweenness is a measure of thein�uene of individuals in a network over the �ow of informationbetween others. So, this two individuals represent a potentially in-formation brokers in this dolphin soiety. In Fig. 2, panel (a), we haverepresented, in bold markers, the dr variables assoiated to this twoindividuals. Aording to their natural deision hanging rate, ver-ties 2 (ω = −0.5) and 37(ω = 0.17) represents more onservativeand �exible individuals respetively.



To test how entral individuals in�uene the other members ofsoiety in the deision-making proess, we have onsidered two si-tuation onerning the vertex 2 (the same analysis an be realizedfor the vertex 37).The �rst one is when this entral agent have natural deisionhanging rate set to zero value (ω(2) ≃ 0) simulating a �exible agent.Results are shown in Fig. 3. As it an be appreiated, two new singlegroups formed by verties 29 and 48 merge. It orrespond to individu-als with high absolute value of ω: ω(29) = 0.41 and ω(48) = −0.47.For this split into 4 lusters, the modularity is Q = 0.3822. Detailsof that Distribution of agents is reported in Table 3.Table 3. Distribution of agents shown in Fig. 3(a) as resultingfrom the simulation of OCR model over the bottlenose dolphins om-munity for K = 2.2 and ω(2) = 0.Cluster Agents in eah luster1 (1) 482 (21) 2,6,7,8,10,14,18,20,23,26,27,28,32,33,40,42,49,55,57,58,613 (39) 1,3,4,5,9,11,12,13,15,16,17,19,21,22,24,25,30,34,35,36,37,38,39,40,41,43,44,45,46,47,50,51,52,53,54,56,59,60,624 (1) 29The seond situation simulates a more �exible individual thattends to antiipate the others members of soiety, i.e, ω(2) = 0.5,whih represents a maximum value of ω. Simulation results are re-presented in Fig. 4 over 200 time steps.Table 4. Distribution of agents shown in Fig. 4(a) as resultingfrom the simulation of OCR model over the bottlenose dolphins om-munity for K = 2.2 and ω(2) = 0.5.



10
−2

10
−1

10
0

10
1

10
2

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

d
e

c
is

io
n

 c
h

a
n

g
in

g
 r

a
te

 (
d

c
r)

(a)

10
−2

10
−1

10
0

10
1

10
2

0.7

0.8

0.9

1

time

O
rd

e
r 

p
a

ra
m

e
te

r

(b)

Fig. 3.Deision dynamis of lusters synhronization in the OCR modelon the Dolphins Network for k = 2.2 and ω(2) = 0. Central individualsare represented in bold marker.Cluster Agents in eah luster1 (1) 482 (5) 7,10,14,33,573 (3) 8,20,314 (6) 18,23,26,27,28,325 (38) 1,3,4,5,9,11,12,13,15,16,17,19,21,22,24,25,30,34,35,36,37,38,39,41,43,44,45,46,47,50,51,52,53,54,56,59,60,626 (1) 297 (7) 2,6,40,42,49,55,588 (1) 61In Fig. 4(a) we an see that the system reahes a transient om-pletely synhronized regime (R(t) = 1 in Fig. 4(b)) in whih allindividuals run a the same dr value, generally the average of all
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Fig. 4.Deision dynamis of lusters synhronization in the OCR modelon the Dolphins Network for k = 2.2 and ω(2) = 0.5. Central individualsare represented in bold marker.the ω. After, we observe that the group ontaining initially the in-dividual 2 (see Tables 2) is divided into several subgroups. As inthe previous situation, individuals with high absolute value of ω runalone in single groups. Details of that distribution are reported inTable 4. Compared with the initial on�guration of Table 2, we seethat the group 2 is quite stable. Apart from vertex 40 that leave thisgroup to join another one (see Table 4). Moreover, the modularity Q(Q = 0.3189) shows a signi�ant derease, indiating that the par-tition obtained, does not orrespond to the natural partition of thenetwork.It is important to stress that hanging the distribution of thenatural deision hanging rate, the evolution of eah individual anhange, but qualitatively the behavior of the system is the same.5 ConlusionsThis work provide evidene that network topology is fundamen-tally important in deision-making dynamis allowing individuals tojoin or to leave partiular groups depending on their positions in the
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