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Abstract. In this paper, we studied the problem of trade-off between including
theoretically required elements against excluding irrelevant levels of complex-
ity, one difficult dilemma that ABSS practitioners must cope with because
today social scientists still finds hard to code even the most simple artificial so-
cieties while they need to consider all kind of social complexity. We argued that
there exists heterogeneity between ABSS communities, and we characterise in
general terms the ordered set of preferences of the two main variants. There-
fore, with a commitment to the academic variant, we make some remarks about
the acceptability of a social simulation among the social sciences scholars. Fi-
nally, we present a methodology to check the relevance of different levels of
complexity, as candidates to be included into any ABSS, or as the core of a
generic simulation builder. This is made by means of an example that considers
Fiske's theory about elementary forms of sociality in a quasi-experimental way.

1. ABSS as a crosspoint between MAS and Social Modeling:
Growing Interest and a Dilemma.

As states Robert Axelrod [1], “agent-based modeling is not only a valuable technique
for exploring models that are not mathematically tractable; it is also a wonderful way
to study problems that bridge disciplinary boundaries”. Some earlier developments
of multi-agent systems as an emerging software paradigm in the domain of artificial
intelligence are closely related with Marvin Minsky ideas about the “mind as
society” [2], so that it is easy to find a kind of social bias in any MAS. Conversely,
earlier developments of social theory or social philosophy try to make some kind of
formalization or modeling, not just empirically descriptive but “building ideal societ-
ies” in order to explore its consequences or to make experimental “control comparis-
ons” with the real ones. Part of the works of Plato, Moro, Campanella, Bacon, Fourri-
er and other classic utopian social thinkers could loosely illustrate it, but the socio-
economic developments around the formalization tradition and the analytical soci-

1 This is an extended version of the paper to be published as “Acceptability and Complexity: Social Sci-
entist Dilemma, and a ABSS Methodology case example”, in INTELIGENCIA ARTIFICIAL (2009),
Sforthcoming.



ology can better illustrate this idea [3] [4]. There are multi-agent systems, with a so-
cial flavor, and there are social theory, with a formalization flavor. Then, agent-based
social simulation (ABSS) can be seen as a clear connector or bridge between at least
two disciplinary boundaries: those corresponding to some of the social scientists'
community and some of the computer engineering's community.

The list of social processes and phenomena subject to research by mean of formal-
ized methods, modeling and experimental computer simulating is large and is increas-
ing -as the JASSS index can show [5]-. Some recent books about general sociological
theory incorporate results of ABSS research [6]. But, in spite of the “clear bridge” and
the growing interest, actually it can be said that the ABSS -or other kind of simula-
tion- approaches are far from belong to the mainstream of social sciences research.

Our argument is that we cope with a “Social Scientist Dilemma”: without a strong
programming competence the social scientist finds hard to build even the most simple
artificial society, but the social scientist is forced to necessarily consider the high
complexity of any social system. To solve this dilemma, for each research project, an
ABSS researcher have to balance the amount of complexity that she/he wants to im-
plement into the model against the programming learning-curve effort needed for that
level of complexity.

2. Theoretical Vs. Empirical Quality and the two Communities.

Research is not an individual issue, but an institutional social practice, so the “Satisfa-
cing Trade-off” criteria for the evaluation of a social simulation model are a matter of
social scientists community. Although there exist some efforts to establish quality
standards for ABSS research and results dissemination [7] [8] there are still no clear,
distinct and common guidelines available. This is a relevant issue, because the sci-
entific acceptability of an ABSS research depends on the mentioned dilemma.

The question about the meaning of satisficing trade-off for social scientists leads to
the problem of setting common criteria to evaluate the quality of research. A satisfa-
cing simulation research in any domain can 1) provide excellent quality in the simu-
lated output data, fitting with actual empirical information (“empirical quality” EQ),
and can 2) be highly coherent with the set of theoretical most accepted and updated
knowledge for the specific domain -both in the “fine grain” description of the model,
in the rules governing the system evolution throughout the time and in the initial ad-
justments of the simulation- (“theoretical quality” TQ). These two cross dimensions
provide four ideal types as show Table 1.

Table 1. Empirical Quality Vs. Theoretical Quality.

High TQ Low TQ
High EQ Excellence (ex) Black Box (bb)
Low EQ Validation needed (vn) Insufficiency (in)

2 Axelrod illustrate his own difficulties to publish ([1] #6 “ABM can be hard sell”).



A plausible conjecture about the order or preferences among ABM practitioners is
that there is a significant degree of heterogeneity between different communities. So,
at least two variants could exist: an academic/research variant (ex>vn>bb>in) and an
engineering/professional variant (ex>bb>vn>in). For instance, in regard to computa-
tional economy, Ldépez has enunciated this distinction as follows: “From an engin-
eering approach it is pursued to generate ideal entities that could act in actual mar-
kets. From a social sciences approach it is intended to replicate the most realistic
agents attainable taking part in artificial markets, in order to understand how the
transactions among actual individuals get organized”. [9]

There is no systematic research developed until now to confirm the general hypo-
thesis about the heterogeneity in the arrangement of preferences, as well as to estab-
lish the specific characterization, for different communities of ABM practitioners.
With no need to formalizing here this argument -by means of Game Theory- it can be
said that the actual existence of the aforementioned heterogeneity between communit-
ies can be one of the motives for some problems that have an effect on multidisciplin-
ary collaborations in the domain of applied simulation, that is to say, between aca-
demic specialists in social sciences and engineering specialists in computer simula-
tion. It is necessary to choose a variant in order to face the problem of social systems
complexity. From an understanding perspective, so that the analysis of social pro-
cesses and systems attempt to produce an organized and coherent set of theoretical as-
sumptions about the mechanisms that generate the observational data outputs:, is
preferable to assure high levels of theoretical quality (ex, vn).

The choose of this variant imply that any option lowering the theoretical quality in
order to assure empirical data fitting must be rejected as a mere second-best, for in-
stance, any knowledge approaching by means of automatic building of neural net-
works. In other words, it can not be considered satisficing those models and simula-
tions that generate datasets with a high adjustment with empirical observations but
lacking of “fine grain descriptions” about the system elements and relationships as for
the actual state of theoretical corpus of social knowledge.

Of course in any model a “fine grain description” is a formal representation of the
object system, and therefore, more or less, a simplification. But, simplification does
not necessarily means “black boxes”. Moss & Edmonds point up to a pair of AMSS
properties that should attract the interest of sociologists [10]: 1) they capture features
of actual social order producing data with empirical relevance, but also 2) they natur-
ally draw upon and cohere with “detailed” core strands of sociological literature. The
same idea can be traced in Epstein's research programme on generative social science
and other well-know epistemological proposals. [6] [12]

3 This is a widespread psycho-social perspective, illustrated by the weberian claim for ver-
stehen, that have been recognized as close to the ABSS methodology [10] [11].



3. Levels of Social Complexity: Necessary in an ABSS?

So, (what will be the best approaching to complexity in the social domain by means
of ABSS? In accordance with the preceding arguments the answer must be: including
into the simulation model all the relevant elements in line with the most updated the-
oretical knowledge, even 1) if it must be shaped as plain simplifications and 2) if it
will not produce accurate datasets fitting with empirical observation. This second is-
sue is a main research field in ABSS and there is relevant work about the validation
problems [11]. As for the first issue, if social scientists community considers “com-
plexity” as a key issue then the first step is to inquire into the sources or complexity
that relates with ABSS. It is not just the heterogeneity of the human behavior con-
sidered as result, but especially the heterogeneity of 1) the basic elements that gener-
ate such results, and 2) the diversity of levels in which such basic elements interact.

At least five levels of complexity: can be recognized in any ABSS of a complex so-
cial system s

+ 1-level: The basic complexity of the cognitive “subsystem” of each social agent,
which implies a -more or less- complex cognitive model of environment perception
and (re)action.

+ 2-level: The added complexity of social agents with operating and evolving “social
images/maps” about other's behavior expectations (i.e., trust, social norms, institu-
tional order...).

+ 3-level: The added complexity that becomes from the heterogeneity of multi-agent
interaction contexts, both considering some kind of typical situations such as Game
Theory formalizations [4] [12], or some kind of sociability contexts such as Rela-
tional Models [13].

* 4-level: The added complexity of multiple individual actions aggregation, which
dynamically generate patterns of macro-social outcomes, commonly know as “first
order emergence”.

+ 5-level: The added complexity of loopback systems, with effect processes from the
macro-social into the most basic levels by means of “cognitive reconfiguration”
and “experience learning”, or “second-level emergence” [11].

Each of these levels affects the “upper” one, except for the last loopback, specially
linked to 1-level and 2-level . The 0-level does not apply to actual social systems, but
to any computed simulated society. In the 1-level the complexity is shared with any
other ecological system; the 2-level and 3-level can be considered human -or DAI-

4 This hierarchy of levels refers to a simulated or artificial society, and does not intend to
match with other “level of social systems complexity” outlines, like the proposal of Fliedner
[14].

5 It can be considered, according with the personal dimension of the “Social Scientist Di-
lemma” but out of the proposed incrementalist schema, an additional 0-level that becomes
from the technique complexity of computer simulation itself, and from computational limita-
tions.

6 The difference between second-order emergence in Nigel Gilbert's view and immergence or
sociocognitive emergence in Rosaria Conte's view is related to this loopback link.



specific. The 4-level and 5-level complexity is shared with any material multi-
particles system. Although most of the complexity levels can be found in non-social
systems, some of the mechanisms that rule the evolution of social systems over time
are human specific, for instance, the social labeling learning.

4. An Example of Complexity Level Checking Methodology: The 4
basic social bounds (3-level)

While social simulations are just simplified models of object social systems -or parts
of social systems-, is not necessary to include every complexity level the implementa-
tion. Rather, the specification in detail of every level of social systems complexity
into a ABSS could result in a computational trap (0-level). Of course, every simula-
tion is build on the basis of a particular research problem, and that is the reason why it
is not needed to include every level. But, if the case is about establishing the minim-
um complexity level for a generic simulation builder or generator, then the criteria
should be to include all relevant levels of complexity that assure the wide community
acceptance on the basis of the most updated theoretical foundations into the social do-
main.

Regardless of this general theoretical-including criterion, there are a number of
theoretical models that have been not yet included into any computer simulation, so
that they are not validated. A simple methodology to validate or dismiss hypothesis
about the relevance of a certain complexity n-level -or about some element or mech-
anism- is to check the outcomes from a simulation that includes it against an identical
simulation except for the lack of it. Then, if data analysis supports the null hypothesis
of no significance differences between outcomes we can conclude that the n-level (or
element or mechanism) is irrelevant. In ABSS, due to the 0-level complexity, it is no
acceptable to include any irrelevant element, because of the risk of decreasing compu-
tational performance. Following this methodology, after the implementation of an ad-
ditional feature into a base simulation model, the further the variant simulation out-
comes deviate from the base simulation outcomes, the greater the doubt cast upon its
validity as a relevant element.

As a plain example of this methodology, hereafter are presented some guidelines
for checking a theoretical model “located” into the 3-level of complexity, that is, the
social complexity that becomes from the fact that social agents interacts with each
other in a different way. For instance, in terms of coordinate an action a group “can
seek a consensus of the group as a whole, the chief can decide (and delegate minor
aspects of the decision), people can vote, or they can use a market mechanism based
on utility or prices” (Fiske, 2005). There are many ways to solve each interaction
context, but the Relational Models Theory (RMT) posits that “human relationships
and social systems are culture-specific implementations of just four elementary rela-



tional models in various combinations” [17][18][19]. Concerning interchange of
goods, services or information, this four RM can be characterized as follows:

o Communal Sharing (CS): An equivalence relation, so that agents in each group are
the same in respect to resources, so they share each other but not with outsiders.

o Authority Ranking (AR): A linear hierarchy in which agents are asymmetrically
differentiated, so that the “upper” agent can take resources from the “lower” one,
but not the opposite way.

» Equality Matching (EM): The agents keep track of the additive differences regard-
ing the interaction partner resources, with an even balance as the reference point.

* Market Price (MP): A relation based on a socially meaningful proportionality, so
that the interchange will be ruled by a consensus ratio (monetary unit, utility, effi-
ciency, effort, merit, or anything else).

This idea of a small and clearly specified set of relational models -or “schemata”
[20]- is a good candidate to be considered one of the essential pieces of social theoret-
ical development to be included in an ABSS builder. But, this simple idea will make
simulation more difficult with regard to the O-level. This is a “Satisficing trade-off
Dilemma” situation, as it has been described previously, and a validation or dismiss
checking will be of maximum interest.

An existing simulation model can be chose to check against it the “addition” of this
level of complexity -as control model-. The requirement for the basic model is that
the agents should have some cognitive capabilities to percept the environment, some
social mapping capabilities, can perform actions that affect the environment and other
agents, and can reconfigure (learning) his own cognitive model as a loopback effect
of the system macro-states. That is to say, the basic model performs in such a way
that considers the 1, 2, 4 and 5 complexity levels. An additional requirement is that
exist some kind of performance indicator to be tested against alternative simulation
models.

5. Shopping Agents Revisited: Preliminary approach using Netlogo.

A slightly modified version of the very well-know “Shopping Agents” Netlogo mod-
el from Gilbert & Troitzsch [21] should be useful as a base model. In this model there
are 10 shopping agents and 12 shop-objects scattered over a torus-topology artificial
world. Each shop has and endless stock of one product and each shopper have a shop-
ping-list of 10 different products to buy. The shoppers have to go to all the shops that
sell the product in the shopping-list until this list becomes empty. Each time turn

7 The RM theory apply to a wider domain of issues that interchange, for instance, the organiz-
ation of joint tasks, the framework of moral judgments, the social meaning of any institution,
even the production of cognitive mental states (social believes) and the production of motiva-
tional elements (emotions, desires).

8 Original code at <http://cress.soc.surrey.ac.uk/s4ss/code/NetLogo/shopping-agents.nlogo>.

[TENRL]

Remove the ““ ; ” to run the full version model.



(tick) the entire set of shopping agents move around the world, and can buy product if
they reach a patch where a shop is located. Shopping agents can build its own data-
base of shop locations (“memory”) in two ways: they can remember the location of
shops where they have been, and they can interchange this information with other
shoppers when meet another agent in the same patch. The movement of each shopper
are a function of their “state of mind”, that is, the shopping-list (as motivational goals)
and the memory (as an environmental knowledge database), so that shoppers move
towards the location of shops whose product are part of the shopping-list or move at
random if can not reach any goal from the current memory. The simulation stops
when there is no shopper with non-empty shopping-list. The performance indicator of
the simulated system is the number of ticks until reaching the stop condition, in Gil-
bert & Troitzsch words, “how long it takes them to complete their shopping trips”
([21]: 182).

In the interaction complexity 3-level, the agents of this basic model acts using the
Communal Sharing (CS) model, or schema, as there was just one group. In case of a
concurrence of a pair of shoppers in a same location, each one always shares all the
shops information to each other by means of an unconditional full information sharing
procedure. In the interaction complexity 2-level, the agents of the basic model have
no record about the other agents, even after a sharing information interaction with a
partner so, even if they have an environmental memory of shop locations, they lack of
any kind of social mapping or image.

Some modifications must be done in order to introduce the 2-level and 3-level of
social complexity by means of Fiske's relational models of sociality. First, the proper
operation of RM implies a number of new agent attributes to be modeled. First, per-
ception and recognition of other agent’s relevant attributes stands on individual ex-
ternal observable features. So there is a requirement to give each agent a new attrib-
ute, different from the Netlogo identification built-in variable “who”, that can be per-
ceived by other agents and used to apply the respective relational model. A chain of
digits can be assigned to each shopping agent as external observable features. This
could be understood as the agents “chromosome” [22][21], and in a later extended
version of the model can be used in the offspring recombination process to study
some evolutionary properties. In a straightforward approach, a random number in the
1-10000 range will be sufficient.

Second, the proper operation of RM implies a number of new procedures to be
coded. At least a social recognition procedure must be included, so that agents can
build, along any simulation running, a list of other agents that they previously meet.
Similar to the previous visited shops list, this social memory keeps track of the inter-
action record and could be used in a later extended version of the model into a more
complex “social labeling” procedure that helps agents to make decisions about co-
operation with partners. So a new attribute must be included in the shopper’s creation
procedure to complete the basic shop-memory with the added social-memory.

Next, there are tree kinds of knowledge necessary for the agents to be able to oper-
ate RM with social competency. These are the cultural features that children, immig-



rants and sociologists/anthropologists must learn to “enter” into any social com-
munity:

» Competence to recognize the relevant individual attributes, as group pertinence
(Communal Sharing), social rank (Authority Ranking), balance criteria (Equality
Matching) and proportionality interchange unit (Market Price).

« Competence to recognize where each RM operate, into a variety of cultural mean-
ingful interaction contexts, as for instance the workplace, the family at home, the
family with outsiders, a queue, an emergency situation, or a casual meeting.

» Competence to correctly operate each RM, as rules or criteria to make a decision
about the exact amount of cooperation to give.

To proceed step by step, version 2.1 will implement the necessary requirements to
deal with Communal Sharing model of interaction and then validation checks will be
done about different setup conditions of CS model against the basic model. Next ver-
sions will add other relational models with the same methodology. The final version
include agents that can perform any four RM and a set of meta-rules to decide which
one to apply in each specific dyadic interaction. This meta-rules are strongly environ-
mental or context-dependent and can be considered as a model of “cultural traits”.

The requirements for the CS model to be checked are: 1) the possibility of set-up
the model with a different number of groups, and with a different proportion of agents
of each group, 2) the shopping model characterizes a certain social context, so there is
no need to open the model to other social contexts, and 3) the basic shopping model
does already include the rule of information interchange for CS model, so there is no
need to add new procedures but just to establish a kind of group filter that should trig-
ger or refrain the “full information sharing” procedure as a function of the interaction
partner recognition. The recognition procedure can use a narrow version of
“labeling”, where simple procedural rules affect the agent action at every partner meet
without memory, or a complex version of two phase “labeling” procedure that rules
the updating of a social mapping or memory: a) “substantive labeling” at first meet
based on preos rules (following Fiske [13]: 281), and “procedural labeling” after ex-
perience based on interaction outcomes evaluation [23][24].

The general requirements for the AR model are the same than for CS model, but
there it is needed to modify the information interchange procedures to establish a uni-
directional transference from the lower-rank agent to the upper-rank one. The trigger-
ing of this new cooperation procedure is a function of the interaction partner recogni-
tion of relative social rank. The use of a social rank recognition procedure can give
rise to relevant ontology matching problems [25] [26], that could be solved in a two-
fold manner: 1) to assume a centralized hierarchy ranking, with no error possibility -
may be coded into the agents observable “chromosome” like chevrons-, and 2) to
build new procedures for ontology alignment, or even let the agents interact under
discordance consideration of the partner's relative rank -what could be a source of
conflict-.

Finally, the requirements for the EM and MP models are not yet completely estab-
lished up to the present, but preliminary analysis give some clues and the suitable



models are under active development. The following sections will show some early
results, after a brief description of the quasi-experimental setups.’

6. Some quasi-experimental results about checking Fiske RM.~

Experiment #1: “Leave the market Vs. Keep chatting’ - Global performance.

The proposed methodology prescribe to experiment with model features that can
generate relevant differences between outputs, so that it can be checked, for instance,
the relevance of “leave” the market once the agents complete their shopping against
the base model, where agents wait in shops and continue providing their location
knowledge to other agents.

Figure 1 shows the distribution of outcomes for the “leave market” variant, and
Figure 2 shows the basic model outcomes (for 1000 runs each model). With a t-value
of -1.4082 for a parametric two means test, and a p(t) = 0.1592 (>0.05) it can not be
said, with a 95% of confidence, that there exists significant differences between the
outcomes. So the variant seems to be irrelevant in this context of Communal Sharing
relational interaction .

Experiment #2: “Leave the market Vs. Keep chatting” - Interaction patterns.

The global performance of a single task could not be the best indicator of aggreg-
ate behaviour in a social complex system. ABSS can generate recordings of interac-
tion patterns between agents -e.g., the evolution of “meetings”, “recognitions” and
“information-transfer” against time-. In this context, “meeting” means the simultan-
eous concurrence of a pair of agents over the same patch, “recognition” means a first-
time meeting between a pair of agents so that each one update its own social-map by
recording the distinctive features of the other one, and “information-transfer” (IT)
means the basic “talk” process between agents that brings to transfer information
about the shops location to other agent in a meeting.

Figure 3 displays the typical shape of some interaction evolution indicators in a
“keep chatting” model, while Figure 4 shows the typical pattern in a “leave market”
model 2. Although the global performances are quite similar, there are a salient qual-
itative differences in the interaction patterns along the simulation time. If shoppers re-
main in the market after they complete the shopping, they exponentially increase the
probability of relevant information transference, as shows the high step curve on Fig-

9 A more in-detail description of each experiments can be found in other papers associated
with the SICOSSYS-F project. <http://www.uab.cat/ssasa>

10The following reference Figures and Tables can be found in Annex of this paper.

11This results has to be revised in other variants; in a Market Price context, for instance, it
probably becomes relevant.

12A1l models have spanish legends. Translation: “Encuentros” (grey-middle line) means Meet-
ings, “Reconocimientos” (orange-bottom line) means Recognitions and “Intercambios”
(green-upper line) means Information-transfer.



ure 3. If shoppers leave the market, the probability of social information transfer will
decrease over time, as shows the S-shaped curve on Figure 4.

Even if global performance quantitative indicators can be very useful for testing of
alternative models, careful attention must be focused on the qualitative traits of the
simulation time evolution outcome data because similar global performance can be
achieved by means of a range of different interaction patterns. Experiment 2 proves
how complex social systems (actual or simulated) must be analysed in the “fine
grain” of over-time interaction, and how ABSS can be a suitable tool to do it.

Experiment #3: “Number of groups affects CS Model” - Global performance.

Up to now, the experiments has been performed on a simulation model that imple-
ments a CS Relational Model with one social group: that is to say, all agents should
interchange its own complete set of information, about shops locations, whenever
they meet any other agent. Prior to testing the performance of another behavioural
models (i.e., CS vs. AR), experiment 3 can help to explore the effect of the number of
“socially relevant groups” into a CS system -a sensibility analysis to validate ABSS-.

Group membership is relevant in a CS system because, after a meeting on the same
patch, the recognition of other shopping agent as insider or outsider will trigger (or in-
hibit) the IT procedure -bidirectional information-transfer of shops locations-.

Figure 5 shows four distributions of global performance, using the simulated time
(ticks) until the /ast shopper buy its /ast product. A replication of 1000 runs for each
case provides the presented histograms of frequencies. The upper-left case (g=1) is
the basic or control model; in the other cases there was different number of groups.
The distribution of frequencies for the final time shows how the increase in the num-
ber of groups is related to the increase in time to finish the shopping simulation. That
is because of the decreased probability to meet another agent suitable for “informa-
tion-transfer” in a CS context.

With a F-value of 847 for a parametric ANOVA test, and a p(F) = 0 (<0.05) it can
be said, with a 95% of confidence, that there exists significant differences between
the four models. So the number of groups, in a social system ruled by the CS behavi-
oural schema, seems to be relevant because of the social network topology that will
be implied. But, again, these quantitative global findings must deserve some “fain
grain”, or qualitative, attention.

Experiment #4: “Number of groups affects CS Model” - Group performance.

Figure 6 shows four typical final IT-networks from simulation runs in social sys-
tems ruled by CS behaviour. Agents can be distinguished by its external traits, been
the first number of each agent code (or chromosome) the main source to group alloca-
tion. The distribution of agents into different group follows a random function.

For this particular run, the time each agent spends to complete the shopping ranges
from 852 ticks (shopper 17381) to 3962 ticks (shopper 16774). But if we take into ac-
count the intragroup means of ticks, that is 2161.3 for group-1 (n=4), 3256.5 for
group-2 (n=2), 2526.7 for group-3 (n=3) and 3283 for group-4 (shopper 43719), a
sound hypothesis is that, in a context of CS behaviour and many groups, any perform-



ance depending on social information is a direct function of the number of members
for each group. Large groups performs better than small ones.

A replication of 4000 simulation runs, divided in CS models with 1, 2, 3 and 4
groups of approximately equal membership agents (Table 2), can provide some sup-
port to the previous hypothesis, although further analysis is needed.

Experiment #5: “AR Vs. CS Model, and number of groups” - Global performance.

After developing a new artificial society where agents behaviour is ruled by the
Authority Ranking model (AR), Figure 7 shows four distributions of global perform-
ance. In the upper-left case (g=1) there was only one group: the basic or control mod-
el, where AR rule works like CS rule.

With a conventional ranks hierarchy used commonly by all agents, the AR rule
about transferring information has been implemented as follows: when they meet in
the same patch, agents give all its own shops location information to other agents with
equal or higher rank. Checked versus the corresponding CS models, the global per-
formance of AR models shows significance differences (Table 3). The overall per-
formance or AR is better in each case, and seems to be an opposite function of the
number of groups.

As regards to the effect of the number of groups over the global performance in
AR artificial societies, with a F-value of 295,97 for a parametric ANOVA test, and a
p(F) = 0 (<0.05) it can be said, with a 95% of confidence, that there exists significant
differences between the four models. The distribution of frequencies for the AR final
time (Figure 7) shows how the increase in the number of groups is related to the in-
crease in time to finish the shopping simulation. Like in CS models, is it because of
the decreasing probability to meet another agent suitable for “information-transfer” in
a AR context ?.

Experiment #6: “Number of groups affects AR Model” - Group performance.

Results for experiment 4 could support the hypothesis that, in a multi-group CS
context, large groups performs better than small ones (due to the corresponding high
density network). Figure 8 displays four fypical information-transfer networks, as it
arises from simulation runs in social systems ruled by AR behaviour.

On the contrary of CS context, in AR ruled artificial societies, the increasing of the
number of groups will lead to high density networks (Figure 8: AR g=4 vs. Figure 6:
CS g=4). This emerging topology could help to understand the global better perform-
ance of AR compared with CS, but appropriate understanding of the output data im-
plies to identify the different mechanism effects of “exclusive sharing” (CS) and
“lower-rank exploitation” (AR) over the topology emergence.

Taking into account the intragroup means of ticks, for a single fypical run,
that is 1827 for group-1 (n=3), 2208 for group-2 (n=2), 2122.5 for group-3 (n=2) and
1221.7 for group-4 (n=3), seems to support the hypothesis that group performance is a
direct function of the group size, an effect that overcomes the rank position effect.

Experiment #7: “Number of groups affects AR vs. CS” - Group performance.



A replication of 4000 simulation runs of AR models with 1, 2, 3 and 4 groups of
approximately equal membership agents (Table 4) can provide comparison elements
with CS group performance (Table 2). The corresponding t-test for each pair of group
performance means shows significance differences between every CS and AR groups
(exception g=1). So it can support the hypothesis that AR and CS models are different
in group performance, not just in global performance.

A comparison between Tables 4 and 2 will support the conclusion that the group
performance is a direct function of the rank-position (G1<G2<G3<G4). Although fur-
ther analysis is needed to discard the group size effect, it can be said that in a CS con-
text “cooperation” (less groups, or larger group) performs better, and in a AR context
more “exploitation” (more groups) performs better.

7. Conclusions and further work

In this presentation, we studied the problem of trade-off between including theoretic-
ally required elements against excluding irrelevant levels of complexity, a dilemma
that any ABSS practitioner must cope with. It is been argued that there exists hetero-
geneity between ABSS communities, and this has been characterized, in general
terms, by the ordered set of preferences of the two main variants. Therefore, follow-
ing the academic variant, we make some remarks about the acceptability of a certain
social simulation among the social sciences community. A first result is that ABSS
methodology could not be easily accepted by social science community if it fails to
fulfil two kind of requirements, been the first to include as much social systems com-
plexity and the second one not to increase the “technical” level of complexity for gen-
erate the artificial societies under consideration (0O-level).

Concerning these two requirements, here we have presented, by means of a case
exemplification, a methodology to check the relevance of any theoretical element that
could be considered as a candidate to be included into an acceptable social simulation.
Our approach tries to test the relevance of any model by analysing the outcomes as if
they come from experimental data. By generating pairs of simulation models that dif-
fers just in the issue under consideration, some theoretical elements could be dismiss
from been a necessary part of any social simulation if the data generated by each
model supports the null hypothesis of irrelevance. This methodology could be mis-
taken for standard ABSS sensitivity analysis, but there is a clear difference: in sensit-
ivity analysis the set-up space been explored corresponds to a single model, but in the
checking methodology the contrast explored refers to a pair of models -the control
and objective-.

Experiments 3 and 5 seems to show that the global performance of the shopper's
social system is a function of the number of groups (g), and some results from experi-
ments 4 and 6 supports the idea that in a context of many groups, the average per-
formance for a group depends on the extension of membership. In the two coordina-
tion models here considered, both CS and AR, as g increases, the global performance



decreases, but some groups will perform better: in a CS model the large groups, and
in the AR model the higher-rank ones.

All this experiments and conclusions aims to exemplify the suitability of the use of
ABSS simulation models to test theoretical claims, as a general methodology in the
social domain theoretical research. Standard statistical quantitative tools can be com-
bined with a quasi-experimental approach (due to the simulated nature of the output
data) to discard non relevant theoretical proposals. The microlevel data generated by a
ABSS adds the opportunity to use some qualitative analysis tools that can bring “fine
grain” understanding of some microfundamental mechanisms operating in the case-
study been considered.

Up to now we have been developing the CS and AR variants of the basic model,
and for further work, it is planned to develop the other two variants of Fiske's theoret-
ical proposal and to continue testing the four model variants of pure relational models
against the basic one. Some further modifications are planned to advance into the in-
tegration of all four relational models, together with an agent decisional algorithm to
choose what model to use into a particular interaction situation, and the corresponding
experiments will also be performed.

We aim to validate and improve this methodology so that the study can be exten-
ded to other theoretical candidates to be a necessary part of any social simulation.
This research programme, in the middle term, could help a wider social community to
face up with the Social Scientists Dilemma, and could promote wider access to ABSS
methodology.
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ANNEX. Figures and Tables
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Fig. 5. Final shopping time distribution,
by number of groups (CS Model).
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Fig. 6. Typical final shopping time IT networks,



by number of groups included in the simulation (CS Model).

Table 2. Means of “ticks to finish shopping”,
in CS models with different number of groups.

Grups Group-1 Group-2 Group-3 Group-4

1 N (1000)
Mean 1050,97
Std. Dev. 266,12

2 N (1000)  (1000)
Mean 1824,39  8486,8
Std. Dev. 753,47 25684

3 N (1000)  (1000)  (1000)
Mean 239045 24413 2513,1
Std. Dev. 1151,24 1480,7 1668,1

4 N (1000)  (1000)  (1000)  (1000)
Mean 2533,14 28493 31667 34035
Std. Dev. 1354,17 20193 23472 25754

Table 3. T-test checking CS vs. AR

CS ticks AR ticks t-value P(t)
2081.9 2072.4 023 0.82
3548.5 29227 10.52 0.00
4473.3 34437 15.05 0.00
5219.8 37212 1991 0.00
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Fig. 7. Final shopping time distribution,
by number of groups (AR Model).
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Fig. 8. Typical final shopping time IT networks,



by number of groups included in the simulation (AR Model).

Table 4. Means of “ticks to finish shopping”,
in AR models with different number of groups.

Grups Group-1 Group-2 Group-3 Group-4
1 N (1000)
Mean 1051,0
Std. Dev. 264.,5
2 N (1000)  (1000)
Mean 1280,2 5316,8
Std. Dev. 16283 23084
3 N (1000)  (1000)  (1000)
Mean 2333,8 14514 1124,1
Std. Dev.  1154,6 895,0 836,1
4 N (1000)  (1000)  (1000)  (1000)
Mean 2523,77 1996,1 16624 1382,0

Std. Dev.  1485,5 1778,8 15324 12381




