
 1

Experimenting with Explorator: a Direct Manipulation
Generic RDF Browser and Querying Tool

Samur F. C. de Araújo Daniel Schwabe Simone D.J. Barbosa
Informatics Department, PUC-Rio
Rua Marques de Sao Vicente, 225

{saraujo, dschwabe, simone}@inf.puc-rio.br
+ 55 21 3527-1510

ABSTRACT
In this paper we present a preliminary study with
Explorator, a tool for exploring RDF data by direct
manipulation. Explorator’s visual user interface allows
users to explore a semi-structured RDF database to both
gain knowledge and answer specific questions about a
domain, through browsing, search, and exploration
mechanisms.

Author Keywords
Exploratory search, semantic browsing, user interface for
semantic data exploration, semantic web.

ACM Classification Keywords

H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
As the volume of information on the Web increases
considerably, we need better tools to help us discover and
make sense of the available information, as well as to seek
answers to specific questions we may have.

This paper presents a preliminary study with
Explorator [5], a direct manipulation tool we have
developed to support the exploration of semi-structured
RDF databases. Our goal is to support the users in
discovering and understanding a domain, as well as in
answering specific questions about the domain through
browsing, search, and exploration. The work reported here
extends the results described in [1] by describing additional
experiments and corresponding lessons learned. In
particular, comparisons between Explorator and its model

with other RDF browsers is presented in that reference.

 In the next section, we argue for the importance of
supporting exploratory search. The third section describes
Explorator’s processing model. In the fourth section, we
describe Explorator’s direct manipulation user interface,
following the interaction paradigm we deemed more
adequate for the kinds of manipulation we support. The
fifth section describes the user testing studies we
conducted, and the final section concludes the paper with a
summary of the findings and directions for future work.

EXPLORATORY SEARCH
In the hypertext field, search, navigation and browsing are
terms that describe distinct processes of information
retrieval. Carmel et al. [2] did an extensive study about the
cognitive process of browsing and searching, and based on
it we will draw the following distinctions.

 Search is the process of seeking a specific known piece of
information.

 Browsing is the process of investigating a vast collection
of information items in a superficial and not oriented
way.

 Navigation is the oriented process to access, view or
select a number of information items.

We call information exploration the process of seeking,
learning about, and investigating a (potentially large)
collection of information items through search, browsing or
navigation, but not excluding other forms, in order to
discover something new.

The research area called exploratory search [9] has
tried to develop solutions that support information
exploration. Exploratory search is applicable in situations
where the user’s task and the search environment have
complex elements that require constant user interpretation
during the exploration process. For example, how to
support the user’s search task when she is not familiar with
the search domain, or she does not have sufficient
knowledge about domain to make a query; how to support
the navigation in vast information spaces, or when the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
VISSW 2009, February 8–, 2009, Sanibel Island, FL, USA.
Copyright 2009 held by the authors

navigation, searching and browsing are not enough.
Marchionini [9] made a distinction between exploratory
search, lookup and search retrieval. According to him,
exploratory search is based not only on lookup but also in
investigation and learning. He argues that investigative
search and learning search require more human iteration
than a simple lookup, because these are exploratory
processes that support tasks that require the cognitive and
interpretative ability of user. These kinds of tasks are
commonly found in the exploration of RDF databases,
where the users need to identify classes and properties from
the schema, in order to understand concepts, acquire
knowledge and learn about the domain. In order to provide
the user with an exploratory search tool that supports
learning and investigative search on the semantic web, we
focused on three inter-related aspects:

 Information search (how semantic data is found),

 Information manipulation (how semantic data is used),

 Information visualization (how semantic data is
presented).

Understanding Semantic Data

The typical challenge when accessing an RDF repository is
how do users make sense of the available data? At what
level of abstraction do they think of that information?
Research in Cognitive Science has shown that people’s
bodily experience and the way we use imaginative
mechanisms are central to how we construct categories to
make sense of experience [7]. Eleanor Rosch (apud Lakoff
[7]) proposed that thought, in general, is organized in terms
of prototypes and basic-level categories.

We follow on their footsteps and hypothesize that
people, when exploring an information space in the
semantic web, focus not on sentences that describe the
properties of the entities in the database, but on the entities
that play the roles of subjects and objects in those
sentences, especially entities that would be considered
members of the basic-level categories implicit in the
database schema. As such, our user interface privileges the
visualization and manipulation of such entities, as will be
seen in the fifth section. In other words, entities would be
equivalent to resources in RDF that denote “things” that
people conceptualize in order to solve tasks.

An important caveat of our work at this point in our
research is that we are first focusing on people who have
some knowledge of the RDF data structure, and
investigating whether they are able to explore the semantic
space by means of the kinds of queries and operations
allowed by the proposed model describe next. With positive
results at this step, we shall then proceed to provide a more
adequate user interface for those unfamiliar to RDF as well.

EXPLORATOR’S PROCESSING MODEL
Our experience in Web application design methods [8, 11]
has shown us that it is useful to characterize the user
information processing as set manipulation operations, in
what has been called “set-based navigation” [8]. This view
is also supported by more recent working tools such as
Parallax1. Basically, the user is processing (browsing)
information items within a set of interest; if necessary, this
set is further manipulated to either remove uninteresting
elements or to add additional elements of interest to the set.

We will show in the following subsections that this
model can encompass classical browsing, set-based
navigation as found in SHDM [8], and faceted browsing
[10], as well as keyword search. The model has been more
extensively described in an accompanying paper [1], and is
only briefly presented here to facilitate the understanding of
the studies we have conducted.

Sets
The model manipulates two kinds of sets: sets of RDF
triples and sets of RDF resources. For sets of RDF
resources, the usual set operations —union, intersection and
difference— are available. Since RDF resources are treated
as URIs, blank nodes will only be included if they are
assigned to URIs, as occurs for some data stores.

When operating on sets of triples, we interpret the set
operations as applying to any of the triple components,
namely, subjects (S), predicates (P) or objects (O). This is
equivalent to projecting a set of triples along one of its three
positions, as illustrated in Figure 1. In the remainder of the
paper, each position will also be called a role in a triple.

Figure 1. Triple (T), sets of resources (S, P, and O), and set of
triples (A).

A triple is denoted by (s,p,o), where s, p, and o are
resources. Let A be a set of triples. The set R of resources
of A can be given as:

1 http://mqlx.com/~david/parallax/index.html

S P O

A

T

 3

R = S ∪ P

∪ O

: ∀s,p,o (s,p,o) ∈ A and s ∈ S and p ∈ P and o

∈ O.

Given the triple set A, we also have the following
functions:

S = R
s
(A) = {x ∈ S | ∃ p,o:(x

,
p

,
o)∈ A and p,o ∈ R}

P = R
p
(A) = {x ∈ P | ∃ s,o:(s

,
x

,
o)∈ A and s,o ∈ R}

O = R
o
(A) = {x ∈ O | ∃ s,p:(s

,
p

,
x)∈ A and s,p ∈ R}

Where S is the set of all subjects, P is the set of all the
predicates and O is the set of all objects in the triples of A.

Semantic Operations

Given a set of triples A, a set of resources R, and subsets S,
P, and O of R (S ⊆ R, P ⊆ R, O ⊆ R), we can define the
SPO function as follows:

 the set of all triples in A:
SPO(∅,∅,∅) = {(s,p,o) ∈ A | s,p,o

∈ R}

 the set of only the triples in A whose subject is in S:
SPO(S,∅,∅) = {(s,p,o) ∈ A | s ∈ S and p,o

∈ R}

 the set of only the triples in A whose predicate is in P:
SPO(∅,P,∅) = {(s,p,o) ∈ A | p ∈ P and s,o

∈ R}

 the set of only the triples in A whose object is in P:
SPO(∅,∅,O) = {(s,p,o) ∈ A | s,p

∈ R and o ∈ O}

 the set of only the triples in A whose subject is in S and
predicate is in P:
SPO(S,P,∅) = {(s,p,o) ∈ A | s ∈ S and p ∈ P and o

∈ R}

 the set of only the triples in A whose subject is in S and
object is in O:
SPO(S,∅,O) = {(s

,
p,o) ∈ A | s ∈ S and p

∈ R and o ∈ O}

 the set of only the triples in A whose predicate is in P and
object is in O:
SPO(∅,P,O) = {(s

,
p,o) ∈ A | s

∈ R and p ∈ P and o ∈ O}

 the set of only the triples in A whose subject is in S,
predicate is in P, and object is in set O:
SPO(S,P,O) = {(s

,
p,o) ∈ A | s ∈ S and p ∈ P and o ∈ O}

The function SPO(∅,∅,∅) can be translated into the
following SPARQL query:

SELECT ?s ?p ?o WHERE {?s ?p ?o} .

For the following data:
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a foaf:name "Johnny Lee Outlaw" .
_:a foaf:mbox <mailto:jlow@example.com> .
_:b foaf:name "Peter Goodguy" .
_:b foaf:mbox <mailto:peter@example.org> .
_:c foaf:mbox <mailto:carol@example.org> .

The query above should return all triples. On the other
hand, the function SPO(∅,{foaf:mbox}, ∅) can be translated
into:

SELECT ?s ?p ?o WHERE { ?s ? p ?o. Filter (p = foaf:mbox)} .

And this query returns all triples that have the property
foaf:mbox.

It is important to note that, although in SPARQL we
cannot pass arrays of resources to a query, our SPO
function works with either single resources or sets of
resources.

Set Operations

The model supports the following set operations:
Let V = {s,p,o}; v, v’ ∈ V

Let U

R
 ={x ∈ U

R
 | x ∈ R

v
(M) or x ∈ R

v’
(N) }

U = (M,v) ∪ (N,v’) ≡ SPO(U
R
,∅,∅)

Let I

R
 ={x ∈ I

R
 | x ∈ R

v
(M) and x ∈ R

v’
(N) }

I = (M,v) ∩ (N,v’) ≡ SPO(I
R
,∅,∅)

Let D

R
 ={x ∈ D

R
 | x ∈ R

v
(M) and x ∉ R

v’
(N) }

D = (M,v) – (N,v’) ≡ SPO(D
R
,∅,∅)

The union, intersection and difference operations are
calculated over sets of resources playing a certain role (v or
v’) in a triple. For instance, (M,o) = R

o
(M), i.e., represents

all resources that play the role of object in the M set of
triples. The operation is calculated over these sets and then
resulting on the triples where the resulting set plays the role
of the subject.

A simple example of how this model could be used to
solve the task “find all Russian lakes” is as follows:

SPO(R(SPO(∅,∅,{mondial:Lake}),s),
∅,
R(SPO(∅, ∅,{'Russia'}),s))

or
SPO(R(SPO(∅,∅, { mondial:Lake}),s), ∅, {mondial:Russia})

The following section presents Explorator’s direct
manipulation interface and shows how it keeps the users in
control of their searching, browsing, navigating, and overall
exploration of the RDF database.

EXPLORATOR’S DIRECT MANIPULATION USER
INTERFACE
Direct manipulation is a user-system interaction paradigm
that allows users to point at visual representations of objects
and actions to carry out tasks rapidly and observe the results
immediately [13]. The direct manipulation paradigm mainly
consists of:

 visual presentation of the world of action: show users the
available objects and actions;

 rapid, incremental, and reversible actions;

 selection by pointing, not typing; and

 continuous visual display of status.

In argument for direct manipulation, Shneiderman[13]
states that first time users “are struggling to understand
what they see on the display while keeping in mind their
information needs. They would be distracted if they had to
learn complex query languages or elaborate shape-coding
rules” [13:511].

Shneiderman lists the following high-level tasks for
open-ended browsing of known collections and exploration
of the availability of information on a topic:

 specific fact finding (known-item search), e.g, Find the
country named Russia;

 extended fact finding, e.g., What are the neighboring
countries of Russia?

 open-ended browsing, e.g., Is there information about the
past presidents of each country?

 exploration of availability, e.g., What geographic
information is available for Brazil?

Empirical studies show that users perform better and have
higher subjective satisfaction when they can view and
control the search [9]. This was one of Explorator’s main
goals: to put users in control of their queries, and provide
immediate feedback to their actions. Figure 2 illustrates the
Explorator user interface:

Figure 2. Snapshot of Explorator’s interface.

To empower users in their exploration tasks, Explorator
supports the following operations at the user interface2:

 searching for all resources containing a given string
(using the search box in the toolbar);

 selecting a resource (e.g. Russia), by clicking on it;

 detailing a resource, by double-clicking on it to reveal all
its properties, by showing all the triples where the
resource is the subject;

2 Additional operations are supported, such as faceted
navigation, among others. We present here only the
operations that are relevant to the described studies.

 selecting multiple resources, by ctrl+clicking on them;

 selecting a binary operation over two sets of resources —
union, intersection, and difference—, by clicking on the
corresponding toolbar button;

 assigning a role —S, P or O— to a set of resources in an
SPO query, by clicking on the corresponding toolbar
button;

 calculating the operation result, by clicking on the [=]
toolbar button; and

 changing the visualization of a set of resources, e.g.
grouping them by one of the roles (S, P, O), expanding or
collapsing all the triples in the set, and so on. These
changes in visualization are made by clicking on toolbar
buttons on the corresponding set pane.

Whereas the actual result of any of the above operations is a
set of triples, the visual presentation is a set of resources.
This is achieved by grouping these triples by one of the
roles (S, P, O), and hiding the other triple elements until the
user expands the corresponding interface widget (Figure 3).

Figure 3. Two views of the resource Country: collapsed on the

left, expanded on the right.

Sample Scenario
Let us now illustrate the usage of Explorator. Suppose a
geographer called David needs to find all the lakes
contained exclusively in Russia (and not in any other
country). There are several possible ways to achieve this
task; on possible way would be as follows:

1. Find all the lakes in the database;

2. Find Russia, the country;

3. Find all the lakes in Russia obtaining a set we will call
LR;

4. Find the countries that share a boundary with Russia
(Russia’s neighbors);

5. Find all the lakes in Russia’s neighbors, obtaining a set
we will call LN; and

6. Build the set of the lakes contained exclusively in
Russia by calculating the difference between the
previous sets: LR-LN

 5

To find all the lakes in the database, David first searches for
“lake”:

He locates the Lake class in the resulting set, and gets the
set of instances of the Lake class by clicking on the
Instances link, to obtain all the lakes in the database:

Next, to find Russia, he searches for “Russia” and locates
the resource Russia in the resulting set:

To make sure he has the right resource, David views the
resource details:

Next, to find all the lakes LR in Russia, he selects the set of
all lakes and sets it as the subject of his query by clicking
on the [S] toolbar button:

Continuing to build the query, he selects the resource
Russia and sets it as the object of his query:

He executes the query to obtain the set of all lakes in
Russia:

Next, to find the countries that share a boundary with
Russia, he views the details of the Russia resource and
locates the neighbor property in Russia, thereby finding its
neighboring countries:

To find all the lakes in Russia’s neighbors, he selects the set
of Lakes in Russia and sets it as the subject of his next
query:

He selects the set of Russia’s neighbors and sets it as the
object of his query:

He then executes the query to find all lakes in Russia’s
neighboring countries:

Finally, to build the set of the lakes contained exclusively in
Russia, he needs to calculate the difference between the set
of lakes in Russia and the set of lakes in Russia’s neighbors.
To do this, he selects the first set and the difference
operator:

Finally, he selects the second set (containing the lakes in
Russia’s neighbors) and executes the difference operation
by clicking on the equal sign [=] toolbar button, thereby
obtaining the desired result:

 7

USER TESTING
We have conducted a pilot study and a small-scale
experiment with Explorator to better understand the role,
benefits and challenges of such a general-purpose semantic
data exploration tool.

Pilot study

Six users were recruited who knew some basic concepts of
the semantic web and RDF, such as the representation in
<S,P,O> triples. They were provided an instructions script
containing a few examples illustrating the tool usage to
perform simple queries.

After going through the script, users were asked to
perform a set of tasks using Explorator. Tasks 1 and 2 were
performed on a database of cell phone handsets, whereas
tasks 3 and 4 were performed on a database of geopolitical
data, similar to the “CIA World Factbook”.

 Task 1: form the set of all handsets made for Latin
America that also have a WAP 2.0 browser, using the
faceted navigation mechanism offered by Explorator.

 Task 2: Same as task 1, but without the faceted
navigation, i.e., using the query-building mechanisms.

 Task 3: form a set with the names of the capital cities of
neighboring countries of Tanzania.

 Task 4: form a set with the name of all lakes which are
entirely contained within Russia.

Having completed each task, they were asked to grade the
following sentences in a 5-point Likert scale:

1. I have perfectly understood the task I had to perform.

2. I found it too easy to use this tool to perform this task.

3. This kind of system would be very useful in my day-to-
day activities.

4. I perfectly understood how the system works.

5. I found the interface very easy to use.

6. I noticed I could have performed this task in several
alternative ways in this system.

7. For each action I took in the system, I obtained exactly
what I expected.

When tabulating the results, we grouped the 2 most positive
answers as “agree”, and the 3 most negative answers as
“disagree”, obtaining the averages depicted in the following
table:

Question Agree Disagree
1 90.91% 9.09%
2 36,36% 63,64%
3 90.91% 9.09%
4 50.00% 50.00%
5 40.91% 59.09%
6 86.36% 13.64%
7 50.00% 50.00%

In parallel with the pilot study, we inspected the
Explorator’s user interface. As a result of this inspection,
we have decided to make some changes in the user
interface, to make it more consistent and less cluttered. The
resulting user interface is the one reported in this paper, and
is also the version used in the experiment described next.
Regarding the study planning, the pilot study revealed that
it was too early to collect opinions about the system as in
the proposed Likert scale. Consequently, we revised the
study methodology to adopt a more qualitative approach in
which we are able to gain more insight on the underlying
motives of the users’ actions, leaving a more quantitative
study for later stages in the research.

Small-scale experiment

Due to the necessarily exploratory nature of the study at this
stage, we have conducted a more in-depth qualitative study
[1] with the revised user interface. We asked users to
perform the same set of information exploration tasks using
Explorator as in the pilot study. The users’ interaction with
the system was recorded using screen capture software, and
their oral remarks were recorded in audio.

We have asked users to think aloud while carrying out
the tasks, so as to give us insight on their thought processes
[4]. At the end of the interactive session, we quickly
interviewed users and posed the following questions:

 Which aspects of the user interface and interaction
confused you or made you feel insecure about what you
were doing and the results you were getting?

 What would you like to change in Explorator?

 What did you like the best in Explorator?

Four (4) users were recruited who knew some basic
concepts of the semantic web and RDF, such as the
representation in <S,P,O> triples.

Results

During the experiment, we noticed that the participants
faced two separate problems in carrying out tasks. The first
problem was related to the domain exploration itself, or
how to discover the domain properties. The second problem
was related to the participants’ interaction with the user
interface and with the new widgets proposed.

Regarding the first issue, we noticed that all users
needed to find out the relations between classes and
instances to be able to formulate their queries properly. In
that process of domain exploration, all participants tried to
retrieve the properties of the instances from their class. For
example, some participants expanded the class Country
expecting to obtain the properties of the instances of
Country. However, the semantics of this operation in the
tool is to display all the triples where the resource is the
subject. This might work for some ontologies in which
“domain” and “range” properties are declared, but this was
not the case in the examples.

There was a recurring situation in which the
participants made an intersection between a class and a set
of instances. Ex: Lake – intersection – {Baikal, Caspian,
New York, Ness, London, Paris}. When asked about what
they expected, the participants said that they hoped to
obtain the lakes related to those instances.

During the process of learning about the domain, some
participants formulated queries such as: SPO(Russia, rdfs:

property,?). When asked about this query, the participants
said that they hoped to obtain all the properties of Russia.
There was another recurring situation, in which the user
thought in Portuguese and literally tried to translate what
they had in mind into the SPO operation. A query that
indicated this type of reasoning was: SPO(Lake, locatedIn,

Russia). Note, in this case, that the implemented semantics
is different from the one desired by the user.

Most participants had difficulties in obtaining the
properties to formulate their queries. We conclude that it is
vital to have a shortcut in the user interface to obtain the list
of class properties. Note, however, that there actually is a
widget in the interface where the user can view all the
properties of an instance. Nevertheless, this widget was not
accessed, perhaps because this information was not
conveyed to the user in the instructions script.

Regarding the second issue, we noticed that some
visual elements were not intuitive to the participants. They
tended to associate the most common interface operations,
such as maximize and minimize, with icons that are used
today in the Windows OS, as the following testimony
shows: “It would be better if the icon were equal to that of
Windows” (P1). Also note that we did not provide any
instructions to the participant about these newly introduced
icons.

Additional observations were as follows:

 All participants began the task 1 searching for a known
term. Ex.: “browser”, “wap 2.0”, “Latin America”,
“Nokia”, etc. We have noticed that the user tends to use
the search when looking for a known item.

 Some participants did not realize they could select the set
as a whole.

 Users constantly referred to classes when intending to
refer to their instances, as illustrated by the following
query: SPO (Lake, locatedIn, Russia). By Lake here the
users actually meant the set of lakes, and not the class
itself.

 The participants expected to be able to scroll horizontally
as new sets were created. However, the current scroll is
vertical and this confused the participants.

 Despite the color coding of classes and properties,
participants recurrently used a class instead of a property
in SPO queries. However, by the end of the experiment,
all participants acknowledged such differences and said
to have made such mistake due to a lack of attention.

 The participants did not identify some clickable elements
in the screen. One of them said, “I did not click here
because the hand cursor for the mouse did not appear”
(P2). We noticed that the mental model of all users
reflected their familiarity with the Windows interface.
Therefore, we noticed that the Explorator’s widgets need
to be explained to users so they can use them correctly.

 The participants successfully understood the set metaphor
at the user interface, i.e., they understood that each box at
the interface represented a set of resources.

CONCLUDING REMARKS
The preliminary studies have shown encouraging results.
Users with only basic knowledge of RDF were able to
elaborate nontrivial queries with Explorator.

We detected that the user confused the way classes and
the instances were handled at the user interface. From their
comments, however, we have realized they had the right
intention, but in this case the user interface got in the way.
This problem led us to a redesign to make it explicit
whether the selection of an element at the user interface
refers to the instances of the class or the class itself,
maintaining the reference to the instances as the default.
However, new experiments must be conducted to verify the
efficiency of this proposed solution.

We also realized that the Explorator’s performance had
a negative impact on the user experience. It may be the case
that users explored less because of the time it took to
compute the queries. This issue is of the utmost importance
and is being addressed for future versions.

As expected, the experiments showed us that
Explorator is better suited to advanced users who have solid
knowledge about RDF. Nevertheless, the experiments were

 9

brief, so we cannot yet draw any conclusions about
Explorator’s learning curve.

The next step in our study will be to investigate the use
of Explorator as an epistemic tool, for users to understand
more about the represented data domain, as opposed to
performing predefined tasks and answering specific
questions. In particular, an open hypothesis is the adequacy
of the RDF model to match the user’s mental models –
some of the collected evidence suggests that it might be too
low level, which means suitable abstractions might have to
be introduced.

Additional larger-scale experiments should be
conducted to compare different user interface alternatives
and interaction paradigms to better support both novice and
expert users in exploring the semantic web. To do so,
Explorator can be instrumented to remotely capture the
users’ actions at the user interface and on the underlying
processing model.

ACKNOWLEDGMENTS
Daniel Schwabe and Simone Barbosa were partially
supported by grants from CNPq.

REFERENCES
1. Araujo, S. & Schwabe, D. “Explorator: a tool for

exploring RDF data through direct manipulation.”
Submitted to WWW 2009.

2. Carmel E., Crawford S. e Chen H. 1992. Browsing in
Hypertext: A Cognitive Study. IEEE Transactions on
Systems, Man, and Cybernetics, vol. 22. no. 5, Sep/Oct
1992.

3. Denzin, N.K.; Lincoln, Y.S. 2005. Introduction: The
Discipline and Practice of Qualitative Research. In N.K.
Denzin & Y.S. Lincoln (eds.) The SAGE Handbook of
Qualitative Research, 3rd edition. Thousand Oaks:
SAGE Publications.

4. Ericsson, K.; Simon, H. (1987). Verbal reports on
thinking, in C. Faerch & G. Kasper (eds.): Introspection

in Second Language Research. Clevedon, Avon:
Multilingual Matters, 24–54.

5. Explorator tool: http://www.tecweb.inf.puc-
rio.br/explorator/demo (this version may already have
evolved from the one reported in this paper).

6. Koenemann, J.; Belkin, N.J. 1996. A Case For
Interaction: A Study of Interactive Information Retrieval
Behavior and Effectiveness. Proceedings of CHI 1996,
pp. 205-212.

7. Lakoff, G. 1987. Women, Fire, and Dangerous Things:
What Categories Reveal about the Mind. The University
of Chicago Press.

8. Lima, F.; Schwabe, D. 2003. Application Modeling for
the Semantic Web, Proceedings of LA-Web 2003,
Santiago, Chile, Nov. 2003. IEEE Press, pp. 93-102,
ISBN (available at http://www.la-web.org).

9. Marchionini G. 2006. Exploratory search: From finding
to understanding. Communications of the ACM, 49(4),
2006.

10. Oren, E.; Delbru, R.; Decker S. 2006. "Extending
faceted navigation for RDF data". 5th International
Semantic Web Conference, Athens, GA, USA,
November 5-9, 2006, LNCS 4273

11. Rossi, G.; Schwabe, D.; Lyardet, F. Patterns for
Designing Navigable Spaces. Proceedings of PLoP98
(Tech Report TR #WUCS-98-25, Washington
University, St. Louis, MO, USA), Monticello, Illinois,
USA, August 1998.

12. Schwabe, D.; Rossi, G. 1998. An object-oriented
approach to web-based application design. Theory and
Practice of Object Systems (TAPOS), Special Issue on
the Internet, v. 4#4, October, 1998, 207-225.

13. Shneiderman, B. 1998. Designing the User Interface:
Strategies for Effective Human-Computer Interaction,
3rd edition. Reading, MA: Addison-Wesley.

