
ICWE 2008 Workshops, 7th Int. Workshop on Web-Oriented Software Technologies – IWWOST 2008

Applying Interaction Patterns: Towards a Model-Driven Approach for Rich
Internet Applications Development

Francisco Valverde, Oscar Pastor
Department of Information Systems and Computation

Universidad Politécnica de Valencia, Spain
{fvalverde, opastor}@dsic.upv.es

Abstract

Recently, a wide array of Web Applications has

evolved to Rich Internet Applications (RIAs). This new
application paradigm emphasizes the use of client-side
technologies in order to provide more responsive and
interactive Web Interfaces. The main contribution of this
work is an Interaction Model to specify the new semantics
to deal with the Model-Driven RIA development. This
model is made up of Interaction Patterns that describe,
from a conceptual point of view, a generic solution for
a common user-system interaction. Following the HCI
principles, this model has two views: 1) an Abstract view
made up of Abstract Interaction Patterns that describe the
interaction without taking into account technological de-
tails and, 2) a Concrete view made up of RIA Interaction
Patterns which specify the new interaction and interface
requirements. Applying this Interaction Model within
a Model-Driven software process, a functional RIA can be
obtained. Finally, to illustrate this approach, two RIA
Interaction Patterns are described.

1. Introduction

Latest Web Applications are providing rich interfaces

with a more intuitive interaction experience for the end-
user. The traditional Web Application paradigm implies
that for each user interaction (for instance, a button click)
the client browser must request a new Web Page. In order
to improve the interaction, a reasonable approach is to
request only the new content required and to avoid the full
page refreshing. As a result, from the end-user perspec-
tive, the interaction is automatically performed. The Web
Applications that use this new paradigm are called Rich
Internet Applications (RIAs) [2]. Around the RIAs devel-
opment field have arisen several technologies (Adobe
Flex, Microsoft SilverLight, OpenLaszlo etc.), which use
AJAX, REST Services or JavaScript frameworks. Using
these new development technologies, Web Applications

with richer client UIs have been developed. For instance,
the Google Maps (maps.google.com) application is a well-
known example that uses the RIA paradigm to request on
demand map pictures.

In recent years, Web Engineering Methods [8] have
improved Web Application development applying the
Model-Driven Engineering principles. These methods
have provided promising results to enhance the develop-
ment of traditional Web Applications. However, they do
not properly support the interaction and presentation re-
quirements [1] and the behavior expressiveness [3] re-
quired by RIAs. Firstly, the interaction between the users
and the system, which is mainly implemented in the cli-
ent-side, is not described with the same detail than the
system functionality and navigation. And secondly, there
is not a clear distinction between the interaction, which
describes the set of actions that the user can perform to-
gether with the Web System, and the interface, which
constitutes the graphic elements that support that interac-
tion (buttons, grids, multimedia components, etc.).

Regarding the HCI community, several approaches
have been proposed to specify the interaction between the
user and the system. A common agreement [12] is to de-
fine two abstraction views in order to model the UI: an
Abstract view to describe interaction without taking into
account technological issues and a Concrete view to deal
with the specific technological requirements. This ap-
proach is more flexible than the definition of a single
Presentation Model that has traditionally been proposed
by several Web Engineering Methods.

The main objective of this work is to define a Model-
Driven approach to support the RIA development. Since
the main improvements in RIAs are defined in the Presen-
tation Layer, the models to introduce must address the
RIA interaction specification. Taking into account the
HCI principles, an Interaction Model is proposed that de-
fines the RIA Presentation layer from the user-system
interaction point of view. In order to define this Interac-
tion Model, the Interaction Pattern (IP) concept has been
introduced. An Interaction Pattern describes a solution for

7

ICWE 2008 Workshops, 7th Int. Workshop on Web-Oriented Software Technologies – IWWOST 2008

a common user-system interaction in terms of the Problem
Space (Conceptual Models)

This paper is focused on the Concrete view in which
the semantics to produce RIA interfaces are introduced.
Therefore, a RIA Interaction Pattern describes precisely
an interaction which is used in the RIA domain. Using
these patterns as guidelines, a set of transformation rules
can be defined to produce the RIA interface code. To il-
lustrate this approach, two common RIA Patterns (Auto
Complete and Information Summary) are defined using
the Interaction Model proposed.

The rest of the paper is structured as follows: Section 2
describes the background of this work and the related
work regarding RIA development in the Web Engineering
community. Section 3 presents an overview of the Model-
Driven approach proposed. Next, section 4 describes
briefly the Abstract view of the Interaction Model. Section
5 is focus on the description of the RIA Interaction Model.
Finally, the concluding remarks are stated.

2. Background and Related Work

The use of patterns at modeling level is an approach

that has been previously applied in the context of our re-
search group. For instance, the Presentation Model for the
OO-Method [9] software production method was defined
using the JUST-UI [11] approach. JUST-UI proposes
a language made up of Conceptual Modeling patterns for
the specification of UIs and code generation techniques.
The work presented in this paper, reuses the concepts de-
fined in the JUST-UI approach and previous experiences
in the OOWS Web Engineering method [10], to define the
Abstract View of the Interaction Model. Therefore, the
main contribution of this work is to extend those previous
approaches, with a set of Interaction Patterns to support
RIA development.

Several works in the Web Engineering field have pro-
posed methodological extensions to face the RIA devel-
opment. Firstly, Bozzon et al. [5] extend the WEBML
method to support the RIAs specification. The proposed
extensions allow the definition of which data, operations,
hypertext links and page content must be processed by the
client-side. In the context of the OOHDM method, Urbieta
et al. [6] propose and approach to designing RIA inter-
faces, dealing with the separation of the interface structure
and behavior. This work uses an aspect-oriented perspec-
tive, to combine different concerns related to the interface
composition.

In contrast, several works have addressed the RIA de-
velopment using HCI principles. Firstly, a metamodel for
defining RIA UIs from an Abstract Interface Model is
proposed in [4]. And secondly, the RUX-model [7] pro-
poses how to define at Concrete level the time-related
behaviors (Temporal Presentation) and the event-response

actions (Interaction Presentation) to define RIA interface
components.

The approaches mentioned above, propose mainly so-
lutions for supporting the data synchronization and the
specification of the client-side behavioral aspects. Though
these approaches point out a key issue, our approach must
also address the richer RIA UIs, which are defined using
new graphical widgets, and the complex interactions be-
tween the server and the client rich interface. These new
improvements have widely been described by the RIA
development community using UI Design Patterns [15].
Therefore, the final goal of this work, is to define how the
knowledge from those patterns, can be introduced in
a Model-Driven development process.

3. A Model-driven approach to produce RIAs

When an Information System is specified, the interac-

tion is usually described in different models. For example,
several Web Engineering methods have described naviga-
tional and data retrieval interactions inside the Naviga-
tional Model. However, some aspects related with the
interface of those interactions, are described in a Presenta-
tion Model in where aesthetics requirements (colors, fonts,
etc.) are also included. This approach to define a RIA
Presentation Layer is not flexible enough, because implies
to introduce changes in different models related to differ-
ent concerns. Our approach to model the RIA Presentation
Layer introduces a single model, the Interaction Model, to
define all the interaction requirements.

In the context of this work, the interaction is defined as
the actions that take place between a human user and the
software system in order to perform a task. Therefore, the
interaction comprises both the UI specification (the inter-
face components) and the integration with the system
functionality (the UI-system communication interface). To
model these two requirements, an Interaction Model is
introduced as Fig.1 illustrates. The aesthetic requirements
of the UI are not considered in this model.

The Abstract view of the Interaction Model is made up
of two main elements (Fig. 1 up): tasks and Abstract In-
teraction Patterns (AIPs). The different users have visibil-
ity over a set of tasks that describes the interactions avail-
able. The basic units to specify these tasks are the AIPs.
An AIP models two kinds of user-system interactions:
population retrieval or service execution. It is important to
mention that the specific technological details (UI compo-
nents, events) are not defined with these patterns.

The AIPs are specialized in Concrete Interaction Pat-
terns that define the Concrete view of the Interaction
Model. These Concrete patterns address the technological
details related to the interaction: the specific interface
components, the available events, the communication
mechanisms etc. Different sets of Concrete IPs can be

8

ICWE 2008 Workshops, 7th Int. Workshop on Web-Oriented Software Technologies – IWWOST 2008

defined to specify the requirements of several technologi-
cal platforms. In this work, the RIA Interaction Patterns,
which extend the AIPs with semantics from the RIA do-
main, have been introduced. However, the same approach
can be used to define HTML IPs (as Fig. 1 illustrates) or
Mobile device IPs. This approach is very flexible because
the analyst can firstly describe abstract interactions and
later, those interactions can be specialized in terms of sev-
eral technological platforms.

Figure 1. Model-driven approach overview.

From both the Abstract and the Concrete view of the
Interaction Model, a set of model-to-code transformations
generate the final client UI. This code can be divided into
two parts: 1) the final RIA Interface implemented using
a JavaScript UI framework (EXT-JS, Google Web Tool-
kit) or a RIA technology (Adobe Flex, Open Laszlo, etc.)
and 2) a business façade which communicates with the
server- side by means of XML Messages using AJAX and
REST Services. Nevertheless, some interoperability code
should be added to the business façade.

In order to integrate this approach with the Information
System two requirements must be satisfied:

1. The Information System must have been described

using a Conceptual Model that represents the under-
lying functionality.

2. The Business Logic must be accessible by means of
an interoperable XML API.

In the OO-Method development process these two re-

quirements have been fulfilled. Firstly, the OO-Method is
made up of a set of Conceptual Models from which the
system functionality can be generated. And secondly, be-
cause an approach to produce XML Web Services from
those models [17] have been proposed. Therefore, using

this Interaction Model inside the OO-Method develop-
ment process, a final functional RIA can be obtained.

4. The Abstract Interaction Model

Each type of user has a set of tasks that describe the

available interactions. For instance, in an e-commerce
application, the tasks available may be ‘Log in to the sys-
tem’ or ‘Checkout the order’ among others. These tasks
are defined in the Interaction Model using an Interaction
Map associated to each user. This map is a directed graph,
whose nodes represent the tasks available, and whose arcs
represent the transitions between tasks. The two main ob-
jectives of the Interaction Map are:

• To define which interactions are available for each

user, or in other words, to restrict the access to spe-
cific interactions.

• To provide a global view, very close to a Naviga-
tional Map, about how the user can access to the sys-
tem.

From the analysis of several UIs in different platforms

and devices, we have detected a set of generic interactions
which can be abstracted as technologically-independent
patterns. The different tasks can be described as an aggre-
gation of one or more of these Abstract Interaction Pat-
terns (AIPs). Therefore, the main objective of AIPs is to
provide a detailed description of each task defined in the
Interaction Map. An AIP describes the interaction in terms
of two main communication flows between the users and
the Information System: a) a population retrieval flow,
that provides information from the system to the user, and
b) a service execution flow started by the user, which per-
forms a change of the state of the Information System.
Considering both flows, two main AIPs can be defined:
• Population AIP: it represents an information retrieval

from the system. The Population AIP is defined as
a view over the model that represents the system data
entities, for example an UML Class Diagram.

• Service AIP: it abstracts a service (for example
a Class method or a Web Service operation) that
modifies the state of the system. The Service AIP is
defined as a view over the arguments from one ser-
vice. For each argument from the service signature,
an Input Argument AIP is created to insert the corre-
sponding value.

Since all the interaction specification with a system
cannot be defined using only the Population and the Ser-
vice AIPs, auxiliary AIPs are introduce to constraint the
behavior and/or to refine more accurately this two main
interactions. Two examples are:

9

ICWE 2008 Workshops, 7th Int. Workshop on Web-Oriented Software Technologies – IWWOST 2008

Figure 2. Metamodels for the RIA Interaction Patterns.

• Filter AIP: By default, a Population AIP retrieves all

the information that is defined by the interaction.
This pattern defines a well-formed formula that re-
stricts the information to be retrieved.

• Defined Selection AIP: this pattern defines a set of
values associated to an Input Argument AIP. Hence,
the user can only choose, from the provided list, one
value to fill the input.

Currently, ten AIPs which can be consulted in [16]

have been detected. These patterns define an abstract pat-
tern language to model the interaction. From this Abstract
Interaction Model a preliminary and functional UI can be
generated. For example, a direct transformation from
a platform-independent model (PIM) [10] can be applied
to generate a Web Application interface. Nevertheless, to
take advantage of the rich features provided by the RIA
development technologies, a RIA Interaction Model is
recommended.

5. The RIA Interaction Model

The Web Development Community [15] and the UI
design literature [13] have defined several patterns to im-
prove the RIA development. These patterns are validated
solutions because they have been applied in real-world
examples. The proposal of this work is to apply the
knowledge described in these patterns in order to define
a Concrete view for the Interaction Model: the RIA Inter-
action Model. As the Abstract view, this model is made up
of Interaction Patterns but fitted into the RIA domain.

RIA Interaction Patterns are defined as a specialization
from an AIP, with the aim of extending the interaction
semantics required for RIA development. In these pat-
terns, technological concepts related to the RIAs are in-
troduced; for example the client-request and server-
response flow or which widget implements the interaction.
In addition, an AIP can be specialized to different RIA

Interaction Patterns that extends the same abstract interac-
tion: for instance, a Population AIP can be represented as
a data table, as several dynamic text items or as an edit-
able grid. For that reason, the analyst must select for each
AIP, the RIA Interaction Pattern more suitable for the
interaction to be modelled.

According to previous works [14], [11], the Interaction
Patterns have been defined using a pattern template with
these sections: 1) Problem: the problem that the pattern is
intended to solve, 2) Context: in which scenario is rec-
ommended to use the pattern, 3) Solution: a brief descrip-
tion of the proposed solution and, 4) Example: a real sce-
nario to show how the pattern can be applied.

However to apply these patterns in a Model-Driven de-
velopment process, a more precise description is required.
For that reason, three more sections are introduced to the
pattern template:

• Metamodel: it defines using a metamodelling lan-

guage the concepts that the pattern abstracts (See
Fig 2.). This representation must be used to create
specific instances of the pattern.

• Metamodel Specification: it describes the different
entities, relationships and properties defined in the
metamodel. Specific constraints about the metamodel
must be explained here.

• Interaction semantics: it specifies precisely the inter-
action expected when the pattern is applied. There-
fore, it describes the interface components, the inter-
face events and the communication with the business
logic. Additional models, as UML Interaction dia-
grams, can be used to explain the semantics.

Using this template, the RIA Interaction Patterns can

be applied as guidelines to define a Model-Driven code
generation process. On the one hand, the metamodel de-
scribes the conceptual primitives from which the trans-
formation rules must be defined. On the other hand, the

10

ICWE 2008 Workshops, 7th Int. Workshop on Web-Oriented Software Technologies – IWWOST 2008

interaction semantics provide the translation from the
metamodel to the expected code. To better illustrate the
concepts presented here, two RIA Interaction Patterns are
described next.

5.1. Auto Complete Pattern

Problem: the user must select or introduce a text value

from a huge defined list.
Context: there is a huge list of possible text values to be

chosen by the user and it has to introduce one without
mistakes.

Solution: as the user writes the text, a dropdown list
shows the values from the list that match with the intro-
duced characters. Then, the user selects the desired value
or, considering the reported information, he introduces the
correct text value.

Example: in a form for uploading an academic paper,
the user must input the author’s full name that is stored in
the system. The user knows the first name but he does not
remember the last name. Applying the Auto Complete
pattern, all the system authors that match with the first
name introduced by the user will be shown. The figure
below shows the expected UI.

Figure 3. UI for the Auto Complete Pattern.

Metamodel Specification: this pattern is specialized
from an Argument Input AIP (see Fig. 2 left). To define
this pattern a Defined List AIP linked to a Population AIP
is needed to constraint all the possible values that the user
can introduce. These values are represented by the only
attribute associated to the Population AIP. When the user
types a set of characters, a Filter AIP establishes auto-
matically a string-like condition over the defined Popula-
tion AIP. The filtering result defines the available values
for the Defined List AIP.

Interaction semantics: the widget that is used for in-
serting the text value (an input textbox), must raise an
event to detect that the user has introduced a set of charac-
ters. When this event is detected by the client interface, an
interaction requesting the population values is sent to the
server. Next, the client receives the data and renders the
received values as a drop-down list widget. If the user
introduces more characters, the values are filtered in the
client interface and no new request is needed. However, if

the user deletes the first set of characters, the population
request interaction must be performed again.

5.2. Information Summary Pattern

Problem: the user receives high amount of information

but he only wants to focus on a single piece of informa-
tion.

Context: the data shown to the user is composed by
several pieces of information with a high density (for in-
stance, large texts). However, the user wants to see only
one piece of information at the same time.

Solution: provide a brief summary, i.e. a single text
line, for each piece of information. When the user selects
this summary, the rest of the information is displayed. If
the user selects another summary, the previous informa-
tion is hidden again.

Example: the user wants to find the latest news about
computer technology. Since there are a huge amount of
news, to simplify this task only the headlines are shown.
When the user selects a particular headline the rest of the
information is displayed. The Fig. 4 illustrates this pattern.

Figure 4. UI for the Information Summary Pattern.

Metamodel Specification: this pattern extends a Popu-
lation AIP (see Fig. 2. right) that must have two attributes
defined at least: one for describing the summary and an-
other for recovering the detailed information. To specify
the summary information, a new relationship (DefinedBy)
is required between the pattern and an attribute from the
Population AIP. A DetailEvent property is added to define
which UI event will trigger the display of the detailed in-
formation.

Interaction semantics: The client side must request all
the information defined by the Population AIP. This in-
formation is stored and, for each information item re-
trieved, only the summary attribute is shown. When the
user triggers the event attached to the summary text, the
rest of the information will be shown without any addi-
tional request. When the user selects another summary,
the previous information item must be hidden again.

11

ICWE 2008 Workshops, 7th Int. Workshop on Web-Oriented Software Technologies – IWWOST 2008

6. Concluding Remarks

In this work, a Model-Driven approach to improve the

RIA development has been presented. This approach in-
troduces an Interaction Model, with uses the concept of
RIA Interaction Pattern to capture the new semantics re-
quired. The use of Interaction Patterns provides two ad-
vantages:

• Since they have been defined using real world exam-

ples, the analyst is dealing at modeling level with
concepts close to the final UI.

• They provide a mechanism to interaction knowledge
reuse. Hence, an abstracted interaction can be im-
ported to another Model-Driven approaches.

With the goal of using industrially the described RIA

Interaction Patterns, a Model-based tool to define the In-
teraction Model and to generate the RIA related code is
needed. Further work, will define the tool support for
building the Interaction Model presented as well as the
model transformation rules. Once the proposed environ-
ment has been developed, it should be validated by means
of several case studies. These case studies will provide an
interesting feedback about the most suitable patterns to
implement RIAs.

The final step is to include the proposed Interaction
Model inside the OO-Method software generation proc-
ess. As a result a complete RIA, which satisfies the ex-
pected interaction requirements, can be generated.

Acknowledgements

This work has been developed with the support of
MEC under the project SESAMO TIN2007-62894.

References

[1] J. C. Preciado, M. Linaje, F. Sánchez, and S. Comai, "Ne-

cessity of methodologies to model Rich Internet Applica-
tions," in 7th IEEE International Symposium on Web Site
Evolution Budapest, Hungary, 2005.

[2] J. Duhl, " White Paper: Rich Internet Applicattions - IDC
Report," 2003.

[3] S. Comai and G. T. Carughi, "A Behavioral Model for
Rich Internet Applications," in 7th International Confer-
ence in Web Engineering Como, Italy, 2007.

[4] F. J. M. Ruiz, "A Development Method for User Interfaces
of Rich Internet Applications" DEA Thesis. Université ca-
tholique de Louvain, 2007.

[5] A. Bozzon and S. Comai, "Conceptual Modeling and Code
Generation for Rich Internet Applications," in 6th Interna-
tional Conference on Web Engineering (ICWE) California,
United States, 2006.

[6] M. Urbieta, G. Rossi, J. Ginzburg, and D. Schwabe "De-
signing the Interface of Rich Internet Applications," in
Fifth Latin American Web Congress (LA-WEB) Santiago
de Chile, 2007.

[7] M. Linaje, J. C. Preciado, and F. Sánchez-Figueroa, "Engi-
neering Rich Internet Application User Interfaces over
Legacy Web Models," IEEE Internet Computing, pp. 53-
59, 2007.

[8] G. Rossi, O. Pastor, D. Schwabe, and L. Olsina, Web En-
gineering: Modelling and Implementing Web Applications:
Springer, 2008.

[9] O. Pastor and J. C. Molina, Model-Driven Architecture in
Practice. A Software Production Environment Based on
Conceptual Modelling: Springer, 2007.

[10] F. Valverde, P. Valderas, J. Fons, and O. Pastor. A MDA-
Based Environment for Web Applications Development:
From Conceptual Models to Code. in 6th International
Workshop on Web-Oriented Software Technologies. 2007.
Como (Italy).

[11] P. J. Molina, S. Meliá, and Ó. Pastor, "JUST-UI: A User
Interface Specification Model" in Proceedings of Com-
puter Aided Design of User Interfaces, Valenciennes,
Francia., 2002

[12] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L.
Bouillon, and J. Vanderdonckt, A Unifying Reference
Framework for multi-target user interfaces. Interacting
with Computers, 2003.

[13] J. Tidwell, Designing Interfaces: O'Reilly Media, 2005
[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

Patterns: Elements of Reusable Object-Oriented Software:
Addison Wesley, 1995.

[15] Yahoo Design Pattern Library.
http://developer.yahoo.com/ypatterns/

[16] F. Valverde, J. I. Panach, and Ó. Pastor, "An Abstract In-
teraction Model for a MDA Software Production Method,"
in 26th International Conference on Conceptual Modeling
(Posters). Auckland, New Zeland, 2007.

[17] M. Ruíz, F. Valverde, and V. Pelechano. Desarrollo de
servicios Web en un método de generación de código diri-
gido por modelos. in II Jornadas Científico-Técnicas en
Servicios Web. 2006. Santiago de Compostela, Spain.

12

