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Abstract. Orthogonal polarization spectroscopy (OPS) is a technique
for taking images to finally characterise microcirculation. Current image
analysis algorithms have limitations when applied to image sequences
obtained from the liver. We developed an automatic analysis tool which
enables detection of liver vessels, measurement of vessel diameters, and
determination of blood flow velocities with sparse user interactions. For
validation purpose, data was analysed with our proposed algorithm and
compared with manual results by experienced users. Related to commer-
cial products, the needed time for analysis is reduced from more than 30
minutes to less than 2 minutes with comparable results for accuracy.

1 Introduction

This article covers the problem field of automatic characterisation of blood flow
through the liver, i.e. liver perfusion, which is important for the assessment of re-
generation after parial liver resection [1]. Orthogonal Polarization Spectroscopy
(OPS) is a non-extensive technology, avoiding radiation, enabling high spatial
and temporal resolution. It is useful for noninvasive in vivo measurements of
hepatic microcirculation in small liver vessels (sinusoids) of the same individual
repeatedly [2]. OPS-based commercial products like CapiScope [3] or MicroScan
[4] need continual time-consuming user interactions, e.g. for vessel detection.
Recently, an academic OPS-based system for the analysis of sublingual or car-
diac microcirculation has been published [5], but no experiments were reported
for liver perfusion which would have to cope with higher densities of vessels and
lower signal-to-noise ratios. We aimed at developing an OPS-based tool allowing
an automated analysis of liver perfusion with a minimum of user interactions.

2 Materials and methods

We first describe the sensing device for taking image sequences, then describe the
methods for sinusoid detection, including image preprocessing, foreground/back-
ground separation, and skeletonisation, and finally describe the methods relevant
for velocity measurement in a sinusoid, including also width analysis of sinusoids
and the placing of virtual sensors in sinusoid sections.
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OPS visually records the blood flow in microscopical scale within the liver
tissue at 0.5mm beneath the surface. Polarised green light is sent towards the
target tissue and the reflections are perceived by a CCD camera. At the surface
a part of the light is reflected, within the tissue the remaining light is dispersed
by most of the cells and absorbed by the red blood-cells (erythrocytes). Using
an additional orthogonally oriented polarisation filter, the light from the surface
is suppressed and only the light dispersed from the tissue interior will reach the
camera. A lens is used for magnification leading to a spatial resolution of approx-
imately 450 pixel/millimeter. The flow of erythrocytes appear as moving dark
blobs and surrounding tissue as bright. Typically, image sequences of 375 images
are taken in a period of 15 seconds with a refreshing rate of 50 fields/second.
Problems with image processing originate from low signal-to-noise ratio, unbal-
anced illumination, and motion blur. The latter is due to unavoidable, external
movement of the hand-held camera as well as respiratory and cardiac actions
of the animal. In our work, image sequences from the liver tissue of rats are
analysed in the context of experimental surgery.

Four steps treat the problems with illumination and noise (Fig. 1a). His-
togram equalisation is applied to each image individually in order to increase
the contrast. Then, the mean gray levels of all images are measured, the global
mean brightness is computed, and the mean gray levels of all images are adjusted
to that global mean. Next, noise is removed from each image using a median
filter, that does not affect image structures too much. Finally, different gray
levels in various image parts, caused by unbalanced illumination, are nomalised
using a maximum filter for shading correction.

The set of sinusoids is defined as foreground and the remaining tissue as
background. Apart from clearly visible sinusoids there are additional sinusoids
which are hardly detectable in a single image. But the motion of erythrocytes
encodes additional information concerning presence of sinusoids. This finding is
included in the binarisation process which consists of five steps. a) All images
of the sequence are combined into one aggregated image using a special me-
dian filter that operates on corresponding pixels in the temporal context (rather
than spatial). b) The resultant aggregate image is binarised using local his-
tograms for adaptive thresholding. c) Artefacts at the image border, caused by
the limited aperture, are removed by image clipping to a circular shape. d) Salt-

(a) (b) (c) (d)

Fig. 1. (a) Original image with unbalanced illumination. (b) Binarised image of sinu-
soids and some artefacts. (c) Removal of artefacts and skeletonisation. (d) Rectangular
sinusoid areas for placing virtual sensors.
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and-pepper noise is removed by morphological opening and closing operations:
e) Non-sinusoid regions are detected and removed, using morphological hit-or-
miss operations which consider the region shapes and the local background. The
remaining regions are candidate areas for sinusoids (Fig. 1b).

A further hit-or-miss operation is applied repeatedly for a skeletonisation of
this candidate regions, leading to curved center lines. Occasionally, this basic
procedure will remove important parts of the network of lines, which in turn
have to be recovered again. The line end points are detected and Gestalt laws
like smooth continuation and neighborhood are applied. Further methods are
responsible for treating splitting, converging, or crossing lines (Fig. 1c).

By counting the number of iterations during skeletonisation, also the width
of the sinusoid regions can be obtained. For the subsequent method of analysing
velocities, so-called virtual sensors are placed into sinusoid sections. A virtual
sensor is a small area (e.g. square) of pixels from which the gray levels are
recorded. Two such sensors are treated as pair and placed at a certain offset
in the sinusoid. Rectangular areas are embedded into sinusoid sections, wherein
to place the sensor pairs and thereby making sure that both sensors are nearby
and from the same sinusoid. From the skeleton curves, straight line segments of
maximal lengths are constructed respectively, whose end points lie on the curve
and whose intermediate points lie completely within the width of the considered
part of the sinusoid region. These straight line segments are used in combination
with the stored diameters to create the rectangular areas (Fig. 1d).

The flow of erythrocytes in sinusoids is observable as movement of dark
blobs surrounded by slightly brighter pixels. However, the gray values of the
pixels in the image sequence are exposed to intense noise. An explicit blob
extraction would be unreliable and time-consuming and is therefore avoided.
Instead, the gray values of a virtual sensor area are combined to a scalar value
using an adequate filter (e.g. median or Gaussian), and recorded in the course
of time, leading to a one-dimensional signal. From a pair of sensors in a sinusoid
section we obtain two similar, time-shifted signals. Based on normalised cross-
correlation of the two signals we compute the time-shift more reliably. It is
obtained as maximum correlation value for a certain time-shift value. Auto-
correlation is used for normalisation.

For increasing the reliability of velocity measurement the following strategy
is applied: a) Based on prior experiments the optimal sensor configuration is
chosen in the rectangular area of a sinusoid. b) A cross-correlation value related
to a sensor pair is only accepted if a certain threshold is exceeded. c) The
percentage of accepted cross-correlation values must exceed a further threshold,
and these set of values are fused alternatively by two types of algorithms, i.e.
computing the mean or the median (MeanCCA or MedCCA).

3 Results

The automatic detection has been validated with measures of precision ( TP
TP+FP )

and recall ( TP
TP+FN ), which consider true positives (TP ), false positives (FP ),
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Sequ. TP FP FN Precision Recall
1 10500 2800 3100 78,95% 77,21%
2 11200 1200 2800 90,32% 80,00%
3 10500 1700 3600 86,07% 74,47%
4 10500 2600 3300 80,15% 76,09%
5 mean value 83,87% 76,94%
6 standard deviation 9,19% 4,03%

Table 1. Results for sinusoid de-
tection, including precision and re-
call values for four image sequences,
mean values and standard deviations.

and false negatives (FN). TP is the number of pixels of the skeleton curves
of sinuisoids both extracted automatically and manually, FP is the number of
pixels extracted only automatically, FN is the number of pixels extracted only
manually. Fig. 2 shows exemplary an overlay of automatic and manual sinusoid
detection (green for TP , red for FP , blue for FN). The precision value should
exceed a certain threshold, otherwise too many measurements are taken in non-
sinusoid areas. Also the recall value must exceed a certain threshold, otherwise
too many sinusoids are not considered for velocity measurements. In average,
precision and recall is about 84 % and 77 % with a standard deviation of 9%
and 4%, respectively (Tab. 1).

Considering a sinusoid, the ground truth of velocity of blood flow has to be
compared with the results of automatic estimation. However, the ground truth
is initially unknown and will be estimated manually. For this purpose a graph-
ical user interface is used to place a dynamic black-white pattern in the image
near to a real sinusoid and then to adjust the velocity of the movable black
squares to finally be synchronous with the velocity in the sinusoid (Fig. 3). For
the automatic estimation several measurements from different pairs of sensors
are combined by computing the mean or median cross-correlation. For velocity
estimation, several image sequences were treated, several sinusoids were consid-
ered therein, the manual estimations of the experienced users were logged, and
the algorithm with median cross-correlation was applied (Tab. 2). Ground truth
estimation is done by 10 users leading to a coefficient of variation 0.22. For the
results produced by the algorithm this coefficient is 0.37.

Fig. 2. Overlay of automatic and man-
ual sinusoid detection.

Fig. 3. Sinusoid section, dynamic pat-
tern to estimate velocity ground truth.
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Table 2. Typical velocity estimations for
four image sequences by an experienced
user and by the two types of the algorithm.

Sequ. Manually MeanCCA MedCCA
[mm/sec] [mm/sec] [mm/sec]

1 0.60 0.60 0.50
2 0.65 0.75 0.70
3 0.30 0.35 0.25
4 0.40 0.45 0.40

4 Discussion

The algorithm automatically detects sinusoids, selects the relevant and reliable
ones, and estimates the blood flow velocity therein. For the purpose of repro-
ducibility we refer to the theses of Keimling and Lang [6] for details like binari-
sation thresholds, morphological structure elements, correlation thresholds, and
other parameters. Evaluations have shown acceptable precision and recall values
(84% and 77%) for sinusoid detection. Concerning velocity estimations, man-
ual and automatic responses are similar, but the coefficient of variance is still
larger for the algorithm (0.37 versus 0.22). Due to the automatisation of sinusoid
detection and selection, the liver perfusion can be characterised in less than 2
minutes, as opposed to more than 30 minutes by formerly used systems [3, 4].
Currently, we conduct more systematic experiments and evaluations in order to
find out the degree of acceptability by relevant medical experts. Future work
may be devoted to a further improvement of the accuracy of velocity estimations,
and to the automatic selection of unblurred sections in image sequences.

References

1. Fogli L, Gorini P, Cappellari L, et al. Effect of partial hepatectomy and liver
regeneration on portal pressure in rats. Surgical Research Comm. 1990;6:159–166.

2. Puhl G, Schaser K, Vollmar B, et al. Noninvasive in vivo analysis of the human
hepatic microcirculation using OPS imaging. Transplantation. 2003;75:756–761.

3. KKTechnology. Cam1 and CapiScope User Manual. Honiton, Devon, England; 2004.
http://www.kktechnology.com/help/book1.html, visited 02.01.2009.

4. MicroVisionMedical. MicroScan. Amsterdam, Netherlands; 2007.
http://www.microvisionmedical.com/images/microscan2.pdf, visited 02.01.2009.

5. Dobbe J, Streekstra G, Atasever B. Measurement of functional microcircularity
geometry and velocity distributions using automated image analysis. Medical and
Biological Engineering and Computing. 2008;46:659–670.

6. Keimling R, Lang S. Bildfolgenanalyse in der Transplantationsmedizin am Beispiel
der Leberperfusion mit orthogonaler Polarisationsspektroskopie. Lehrstuhl Intel-
ligente Systeme, Universität Duisburg-Essen. Duisburg; 2008. Diploma Theses,
http://www.uni-due.de/is, visited 02.01.2009.


