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René Werner1, Jan Ehrhardt1, Alexander Schmidt-Richberg1,
Florian Cremers2, Heinz Handels1

1Department of Medical Informatics,
2Department of Radiotherapy and Radio-Oncology,

University Medical Center Hamburg-Eppendorf

r.werner@uke.uni-hamburg.de

Abstract. Detailed analysis of breathing dynamics, as motivated by ra-
diotherapy of lung tumors, requires accurate estimates of inner lung mo-
tion fields. We present an evaluation and comparison study of non-linear
non-parametric intensity-based registration approaches to estimate these
motion fields in 4D CT images. In order to cope with discontinuities in
pleura and chest wall motion we restrict the registration by applying lung
segmentation masks and evaluate the impact of masking on registration
accuracy. Furthermore, we compare diffusive to elastic regularization
and diffeomorphic to non-diffeomorphic implementations. Based on a
data set of 10 patients we show that masking improves registration ac-
curacy significantly. Moreover, neither elastic or diffusive regularization
nor diffeomorphic versus non-diffeomorphic implementation influence the
accuracy significantly. Thus, the method of choice depends on the appli-
cation and requirements on motion field characteristics.

1 Introduction

Respiratory motion is a main problem in radiation therapy of lung cancer. Vari-
ous authors emphasize the need of further analysis and quantification of breath-
ing dynamics [1]. At present, such analysis is mostly based on 4D(=3D+t) image
data. Within this field of research non-linear registration has become increas-
ingly important, since it allows to estimate respiratory motion fields between
the 3D images representing the patient’s anatomy at different breathing phases.
The motion fields form the basis of motion analysis and modeling issues. Thus,
motion field estimates are required to be feasible and as accurate as possible.
Though a wide variety of registration approaches has been proposed to estimate
respiratory motion fields in 4D image sequences, there exists a substantial lack
of evaluation and comparison studies for those methods [2].

Representing the few existing studies, in [2], [3], and [4] conceptually dif-
ferent registration approaches are compared in order to estimate inner lung
motion fields (biomechanical modeling, surface models, landmark-based regis-
tration, parametric registration, non-parametric registration). On the one hand,
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our paper aims to complement these studies. On the other hand, we pursue a
slightly different strategy: We focus on a non-linear, non-parametric, intensity-
based registration scheme which we want to optimize in order to estimate inner
lung motion fields. Therefore we define and evaluate different modifications of
the registration scheme.

2 Materials and methods

The study is based on 4D CT data sets of 10 lung cancer patients. Spatial
resolution of the CT data is between 0.78×0.78×1.5 mm3 and 0.98×0.98×1.5
mm3; image sequences consist of 10 to 14 CT images reconstructed at different
breathing phases. Due to memory and computation time restrictions, the 3D
data are downsampled to a spatial resolution of 1.5×1.5×1.5 mm3/voxel. For
evaluation purposes we focus on the breathing phases of end-expiration (EE),
mid-inspiration (MI), end-inspiration (EI), and mid-expiration (ME).

2.1 Registration approaches

Image registration can be seen as finding a transformation ϕ minimizing a dis-
tance between the transformed target image Ij (here: j ∈ {EE, MI, ME}) and
a reference image Ii (here: i = EI) with respect to a desired smoothness of ϕ
(represented by a regularization term). As distance measure we choose an adap-
tation of Thirion’s demons approach, which is suitable for registration of low
contrast structures like inner lung structures; for details see [5, 6]. In previous
studies we used a diffusive approach for regularization, which has the advan-
tage of an efficient implementation (time complexity of O(n) [5]). Though time
complexity is O(n log n), several authors propose elastic regularization in case of
lung motion estimation [3]. This is due to the assumption that lungs behave like
an elastic medium during respiration. Here we compare the diffusive smoothing
approach (method m1) and an elastic regularization (method m2).

Additional requirements arise on deformation field characteristics when faced
with advanced analysis and modeling issues. For instance, the generation of lung
motion atlases and its use for model-based motion prediction requires the motion
fields to be invertible [7]. To ensure invertibility, we adapt a diffeomorphic and
a symmetric-diffeomorphic registration method [6] to our registration scheme
(methods m3 and m4).

From a perspective of physiology, discontinuities in respiratory motion be-
tween the lung surface and the chest wall occur [4]. One approach to handle
the discontinuities is to restrict force computation to the lungs by applying lung
segmentation masks (here: segmented lungs at EI). The impact of masking on
inner lung registration accuracy is therefore also evaluated here.

2.2 Evaluation methods

As two quality measures of the deformation fields, we determine the number of
voxels with negative values of the Jacobian and analyze the symmetry properties
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of the fields. Voxels with negative values of the Jacobian indicate unwanted sin-
gularities of the field (deformation locally non-invertible). Analyzing symmetry
means to check ϕi→j→i := ϕi→j ◦ϕj→i which is ideally the identity vector field.
To obtain ϕj→i, the registration is performed with target and reference image
being interchanged when compared to the computation of ϕi→j .

Quantitative evaluation of the registration accuracy is based on 80 inner lung
landmarks identified by a medical expert in each CT data set considered. To
gain insights to strengths and weaknesses of the different registration methods
we differentiate landmarks located in the middle of the lung (40 landmarks), near
the lung borders (30 landmarks), and close to the tumor (10 landmarks). The
landmark displacements between EI and the target image breathing phase (MI,
EE, ME) as observed by the expert are compared to the landmark displacements
obtained by applying the motion field estimates to the EI CT data and the
EI landmark positions, respectively. Then, we determine the mean difference
between the observed displacements and the displacements predicted by the
model (mean target registration error, TRE). To check whether two registration
approaches behave equivalently we apply a paired t-test [2].

2.3 Study design

Before applying the registration to the 10 patient data sets considered for this
study, parameters (such as the regularization weight and step size) are optimized
in order to achieve a good trade-off between a minimal number of voxels with
negative Jacobian values and a small TRE. Optimization is based on a separate
data set. The study itself consists of three steps where each step is a competitive
study between different registration methods or adaptations of a method:

1. masked vs. non-masked registration: Masked and non-masked registration
are compared with each other using method m1 as registration technique
and focusing on the TRE. If it cannot be shown that masking improves
registration accuracy significantly, registration applied in steps 2 and 3 will
be unmasked because this is the commonly used registration approach.

2. diffusive vs. elastic regularization: The influence of the regularization ap-
proach on registration accuracy and qualitative measures is evaluated using
methods m1 and m2. If elastic regularization does not improve motion field
estimation significantly, we will choose the diffusive approach in step 3 due
to lower computational costs (Sec. 2.1).

3. diffeomorphic vs. non-diffeomorphic registration: The diffeomorphic regis-
tration approaches m3 and m4 are compared to the corresponding non-
diffeomorphic registration m1 or m2 (depending on step 1 and 2 results).

3 Results

Registrations are performed using a bi-processor system with 3 GHz Intel Xeon
dual-core processors and 16 GB RAM. Computation times for a 3D-3D registra-
tion are approximately 1

2 h for m1, 11
2 h for m3, and 3 h for m2 and m4. Sub-

sequent TRE values should be compared against the mean landmark motion of
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6.82±5.42 mm (EI-EE registration), 5.02±3.48 mm (EI-MI), and 2.55±1.97 mm
(EI-ME), and the intraobserver variability of approx. 1 voxel.

3.1 Evaluation of the estimated motion fields

In Step 1 (masked vs. non-masked registration), masking of force computation
turns out to improve the registration accuracy. Averaged over all landmarks, the
mean TRE decreases from 2.07± 2.32 mm for unmasked to 1.55± 1.26 mm for
masked EI-EE registration (EI-MI: 1.68±1.20 to 1.57±0.98 mm; EI-ME: 1.46±
0.94 to 1.45±0.92 mm). This is mostly due to an increased registration accuracy
for landmarks close to the lung borders (see fig. 1). The improvement can be
shown to be significant (e.g., p<0.05 for all patients for EI-EE registration).

Step 2 (diffusive vs. elastic regularization) shows that elastic and diffusive
regularization (here: masked registration) behave almost equivalently in terms
of registration accuracy and motion field quality measures. For m2, i.e., elastic
regularization, the mean TRE values are 1.55±1.21 mm (EI-EE), 1.51±0.91 mm
(EI-MI), and 1.46 ± 0.94 mm (EI-ME). TRE differences between m1 and m2

are significant for none of the patients (EI-EE), 4 patients (EI-MI; m2 better
in each case), and 2 patients (EI-ME; m1 better). Mean symmetry errors are
0.88±0.24 mm, 0.55±0.11 mm, and 0.30±0.07 mm for m2 vs. 0.94±0.33 mm,
0.62 ± 0.11 mm, and 0.34 ± 0.04 mm for m1. For both m1 and m2 the number
of voxels with negative Jacobian is negligible (¿ 0.01% of the lung voxels).

Step 3 (diffeomorphic vs. non-diffeomorphic registration) is based on diffusive
regularization due to the preceding results. The mean TRE is 1.57 ± 1.26 mm
(EI-EE), 1.58 ± 1.00 mm (EI-MI), and 1.46 ± 0.99 mm (EI-ME) for m3, and
1.59± 1.28 mm, 1.57± 1.00 mm, and 1.46± 0.97 mm for m4. Comparison of m3

and m1 yields that TRE differences are statistical significant for 4 patients (EI-
EE; 3× m1 better than m3, 1× vice versa), 2 patients (EI-MI, 1× m1 better, 1×
m3 better), and 1 patient (EI-ME, m1 better). m1 shows a significantly decreased
TRE compared to m4 for 4 patients (only in EI-EE registration). TRE values
of m3 are significantly lower than for m4 for one data set (EI-ME). In short,
registration accuracy is almost the same for m1, m3, and m4. For the diffeomor-
phic implementations no negative Jacobian values are observed. In terms of the
symmetry error the symmetric-diffeomorphic registration is superior to the non-
diffeomorphic and the diffeomorphic implementation; the mean symmetry errors
for m4 are 0.36± 0.10 mm, 0.20± 0.04 mm, and 0.10± 0.02 mm. Corresponding
values for m3 are 1.18± 0.48 mm, 0.67± 0.13 mm, and 0.35± 0.04 mm.

4 Discussion

In summary, neither the elastic or diffusive regularization nor diffeomorphic vs.
non-diffeomorphic implementation can be shown to influence registration accu-
racy significantly. For the given application diffusive regularization tends to
be superior to elastic regularization due to a better time complexity. Further-
more, the symmetric-diffeomorphic registration tends to be superior to the other
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Fig. 1. Left: Landmark motion and TRE values for registration of IEI and IEE. Right:
Visualization of the arc differences between EI-EE motion field estimates for patient
02 obtained by method m1 with and without masking of force computation.

methods since it minimizes the symmetry error. However, computational costs
of symmetric-diffeomorphic registration are higher. Thus, if computing time is
a crucial issue, non-diffeomorphic or diffeomorphic diffusive registration can be
considered as better choices (depending on whether invertibility is required).

As an essential result we show that masking significantly improves regis-
tration accuracy. This demonstrates that integrating a-priori knowledge about
physiological processes (here: behavior of pleura and chest wall during breath-
ing) to registration schemes has potential to improve registration accuracy.

Acknowledgments: This work is supported by German Research Foundation
(DFG, HA 2355/9-1). We thank D. Low and W. Lu from the Washington Uni-
versity School of Medicine, St. Louis (USA), for providing the CT data.

References

1. Li XA, et al. Point/counterpoint: Respiratory gating for radiation therapy is not
ready for prime time. Med Phys. 2007;34(3):867–70.

2. Sarrut D, et al. A comparison framework for breathing motion estimation methods
from 4-D imaging. IEEE Trans Med Imaging. 2007;26(12):1636–48.

3. Vik T, et al. Validation and comparison of registration methods for free-breathing
4D lung-CT. Procs SPIE. 2008;6914:2P1–10.

4. Werner R, et al. Validation and comparison of a biophysical modeling approach and
non-linear registration for estimation of lung motion fields in thoracic 4D CT data.
Procs SPIE. 2009.

5. Modersitzki J. Numerical Methods for Image Registration. Oxford University Press;
2003.

6. Vercauteren T, et al. Symmetric log-domain diffeomorphic registration: A demons-
based approach. Procs MICCAI. 2008.

7. Ehrhardt J, et al. Generation of a mean motion model of the lung using 4D-CT
image data. Procs VCBM. 2008; p. 69–76.


