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Abstract. In non-parametric image registration it is often not possible
to work with the original resolution of the images due to high process-
ing times and lack of memory. However, for some medical applications
the information contained in the original resolution is crucial in certain
regions of the image while being negligible in others. To adapt to this
problem we will present an approach using tensor grids, which provide
a sparser image representation and thereby allow the use of the high-
est image resolution locally. Applying the presented scheme to a lung
ventilation estimation shows that one may considerably save on time
and memory while preserving the registration quality in the regions of
interest.

1 Introduction

One possible way to assess lung ventilation is to evaluate the result of non-
parametric image registration of thorax CT scans at different stages of the
breathing cycle [1]. For this evaluation a dense deformation vector field is needed
that maps one phase of the breathing cycle onto another, providing information
about the motion of the lung and therefore about the gas exchange. However,
finding this deformation field in a non-parametric registration approach is a chal-
lenging task mainly due to the size of the images. For a typical thorax CT scan
of size 5122×141 voxels a linear system of equations with more than 10 million
unknowns needs to be solved in each iteration step inducing a challenge in both
time and memory.

A general approach to speed up computations is to embed the registration
algorithm into a multi-level setting, which in addition enhances the likelihood
of bypassing local minima. By omitting the highest level(s) of resolution the
problem of memory can be solved as well. Often, results on a lower level are
satisfying. However, Cook et al. [2] stated that the impact of the image resolu-
tion on the registration result depends locally on the anatomy. For ventilation
studies the information contained in diseased regions (e.g. trapped-air regions)
is especially important but often lost after the first downsampling. Thus an
approach using adaptive grids should be favored.

An adaptive scheme based on octrees has been presented by Haber et al. [3].
Here the computational grid is automatically chosen based on image gradient
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information, leading to a sparse but computationally tricky representation of the
problem. Papenberg et al. [4] developed a multi-level approach, where the field
of view becomes smaller with every level, hence focusing only on a certain region
and not the entire lung.

In this contribution we will introduce an approach using tensor grids, which
are straightforward to implement and offer a sparse but meaningful representa-
tion of the images. These grids are fine in user chosen regions of interest (ROI),
while being coarser in the remaining image domain, yielding a deformation field
for the complete field of view. To our best knowledge, tensor grids have not been
used in a registration framework before.

2 Materials and methods

2.1 Material

For the evaluation the POPI-Data provided by Vandemeulebroucke et al. [5] were
used. The dataset consists of 10 breathing related 3D thorax CT images covering
the whole breathing cycle. The images were acquired on a Philips Brilliance CT
Big Bore Oncology with an isotropic in-slice resolution of 0.98 mm and a slice
thickness of 2 mm. Furthermore, the CT images are equipped with 41 landmarks,
37 of which are located in the lung and were used for evaluation. The landmarks
were annotated by medical experts.

2.2 Elastic registration

The non-parametric registration algorithm [6] applied here uses a standard varia-
tional approach. The aim is to minimize a functional J consisting of a regularizer
S and a similarity measure D. For D the sum of squared differences is chosen,
since monomodal images are used. The regularizer is based on the Navier-Lamé
equation. Taking the Gâteaux-derivative of J results in the following system of
non-linear partial differential equations

µ∆u + (µ + λ)∇∇·u = ∇Tu(R− Tu), (1)

where R and Tu stand for the reference and the deformed template image, u is
the deformation vector field and µ and λ are material properties appearing in
the Navier-Lamé equation that characterize the elastic behavior.

(e) on level 3 (f) on level 2 (g) on level 1

Fig. 1. Tensorgrid pyramid with three levels. In this example only two levels of reso-
lution are allowed. The ROI chosen for the refinement is shown as a dashed rectangle.
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Eq. 1 is discretized by a finite difference scheme with Neumann boundary
conditions, which will be explained in more detail in the next section. The
discretized system is solved using a time-marching algorithm and the method of
conjugate gradients (CG). The method applies a multi-level strategy combined
with an affine pre-registration.

2.3 Tensor grid

The tensor grid of a three dimensional image is defined by vectors x1, x2, x3

containing the coordinates of the voxel centers in the three dimensions. The grid
is constructed by forming the tensor product of these vectors.

For the multi-level setting the tensor grid is built by starting on an equidistant
grid on the coarsest level and bisecting the grid elements on each level where the
grid lines pass through one of the ROIs. Depending on the application the tensor
grid can be further refined. Since we are aiming for a rather good deformation
of the whole image, only three consecutive levels of resolution are allowed in one
image, thus on higher levels the regions outside the ROI will be refined as well.
An example of a tensor grid for a multi-level setting can be seen in Fig. 1.

Eq. 1 is discretized on this grid using standard stencils for the elastic regu-
larizer. Note that since the grid is not equidistant the grid spacing has to be
included in the stencil, so that neither the stencil nor the resulting matrix is
symmetric. However, this matrix can be symmetrized by multiplying each row
with a factor that depends on the grid spacing, so that Eq. 1 can still be solved
with the CG-method.

3 Results

The maximum-inhale and -exhale phase (i.e. phase1 and phase7) were chosen
for a first demonstration of the algorithm. In regions with distinctive structures
that can still be well distinguished on lower resolution levels we do not expect
the tensor grid approach to be superior to the standard approach. The ROI was
therefore placed in the lower left lung enclosing six of the landmarks. A coronal
view of phase7 together with the landmarks and the ROI can be seen in Fig. 2.

Fig. 2. Coronal view of the lung together with the ROI and the landmarks (left). Same
view of the tensor grid used for the computations on level 3 (right).
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Table 1. Landmark error in mm before and after registration using the two different
grids. The values are in the order: mean±std (max).

landmarks before registration using equidistant grids using tensor grids

all (37) 5.7±2.5 (14.0) 1.8±1.2 (6.0) 1.7±1.3 (5.6)

in ROI (6) 6.4±1.9 (8.1) 1.3±0.5 (1.9) 0.9±0.6 (1.7)

not in ROI (31) 5.5±2.6 (14.0) 1.9±1.3 (6.0) 1.8±1.3 (5.6)

The registration of the two phases was run twice, once with the tensor grid
approach and once with the same implementation but using equidistant grids.
The computation using the tensor grid was performed up to level 1 (image
size: 352×288×128), while the equidistant grid stopped on level 3 (image size:
88×72×64). For the computations an Intel Dual Core with 2.4GHz and 2GB
RAM was used. The algorithms were implemented in Matlab and are not yet
optimized for speed.

The landmark error before and after registration using the tensor grid (tg)
and the equidistant grid (eg) can be seen in Table 1. The error outside of the
ROI is approximately the same for both grids since the coarse region of the
tensor grid on level 1 has the same resolution as the equidistant grid on level
3. Inside the ROI the landmark error for the tensor grid is smaller due to the
higher resolution.

Using the tensor grid approach the image size is reduced by up to 95%. This
allows for computations on higher levels as can be seen in Table 2.

The ventilation V is evaluated using the Jacobian of the deformation [1]:

V (x) = det(∇(x + u(x)))− 1. (2)

A comparison of the ventilation images obtained with the registration using the
two grids is given in Fig. 3. The tensor grid yields a result with more details
within the ROI and its tails, which have been missed by the equidistant grid.

Fig. 3. Ventilation images computed from the registration result using the equidistant
grid (left) and the tensor grid (right). Medium gray corresponds to volume preservation,
while dark and light gray colors indicate contraction and expansion, respectively.
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Table 2. Comparison of the processing time in minutes for each level given the number
of voxels and the number of iterations. Level 1 is the original resolution.

eg: #voxels #iterations time tg: #voxels #iterations time

level 1 12976128 - - 943056 100 86.80

level 2 3244032 - - 164395 100 13.92

level 3 405504 100 9.91 23250 100 1.90

level 4 50688 92 0.65 4046 97 0.26

4 Discussion

In this paper we present an approach using tensor grids for non-parametric
image registration. The advantage of this approach over equidistant grids is the
possibility to use the highest resolution in user chosen regions of interest while
keeping the original field of view. The sparser image representation results in
a lower memory demand and a faster algorithm on each level of the multi-level
setting. Considering the landmark error it turns out that the algorithms using
the two different grids perform similar in the regions outside of the ROI while
the tensor grid is reaching a better result within the ROI.

The tensor grid is especially useful for ventilation studies where an accurate
registration of the complete lung is needed. Due to the size of the images the
highest level of resolution is often omitted and thus details in diseased regions
are easily lost. Furthermore, the tensor grid approach can be used for any
application where one is interested in both a good registration of the complete
image and certain regions in detail. It is also possible to define several ROIs in
one image, which will be processed at once.

This first result of the new approach is very promising and will be followed
by further tests using different datasets to proof its advantage. Moreover, more
equally distributed landmarks in the lung need to be identified to allow a pro-
found testing of the algorithm using different ROIs.
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