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Abstract. Volume representations of blood vessels acquired by 3D ro-
tational angiography are very suitable for diagnosing a stenosis or an
aneurysm. For optimal treatment, physicians need to know the shape of
the diseased vessel parts. Binary segmentation by thresholding is the first
step in our shape extraction procedure. Assuming a twofold Gaussian
mixture model (GMM), the model parameters (and thus the threshold for
binary segmentation) can be extracted by the Expectation-Maximization
(EM) algorithm. The question is whether this GMM threshold gives a
good segmentation. Therefore we compared segmentations induced by
the GMM threshold with segmentations induced by thresholds derived
in a different way. It appeared that a twofold Gaussian mixture model is
not always a correct assumption for the distribution of the gray values.

1 Introduction

Volume representations of blood vessels acquired by 3D rotational angiography
after injection with a contrast agent [1] have a clear distinction in gray values
between tissue and vessel voxels. Therefore, these volume representations are
very suitable for diagnosing a stenosis, a local narrowing of a vessel caused for
example by cholesterol, or an aneurysm, a local widening of a vessel caused by
a weak vessel wall.

For optimal treatment of a stenosis or an aneurysm, physicians need to know
the cross-sectional shape parameters in the neighborhood of the diseased vessel
parts. The starting point for many shape extraction methods is a segmented
volume. Such a segmented volume can be created by thresholding (given further
detail in Section 2.3).

To eliminate inter- and intra-operator variations this threshold should be
extracted automatically from the data. Starting point for automatic threshold
extraction can be a twofold Gaussian mixture model [2, 3, 4]. The question is
whether the threshold derived from such a model results in a good segmentation.
If the threshold is too low, many noise bulges arise; if the threshold is too high,
an undersized vessel surface results.

1.1 Related work

Gan et al. introduced a method for vascular segmentation of 3D rotational
angiography volumes based on MIP images [3]. Applying the Expectation-
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Maximization (EM) algorithm for a twofold Gaussian mixture model, they es-
timate a threshold from a MIP image because the standard deviation of the
individual classes in a MIP image is smaller. This threshold is used to classify
the voxels belonging to this MIP image (i.e. the voxels with the maximum gray
value in the projection direction). After the resulting vessel voxels are labelled
in a corresponding binary volume, their gray values in the original volume is set
to zero, and the procedure is repeated until over fitting of the non-vessel class is
detected. This iterative algorithm is applied in the three axis directions and the
resulting segmentations are combined by minimizing an energy functional for a
spatially smooth result.

1.2 What is new

Since segmentations of our clinical volume datasets by one or more experienced
radiologist were not available, we developed a new method to quantify segmen-
tations on the basis of the gradient information of the gray value volumes (given
further detail in Section 2.4).

Since we apply this method to quantify not only segmentations induced by
the GMM threshold but also segmentations induced by thresholds derived in a
different way (given further detail in Section 2.2), we can assess the segmenta-
tions and thus the GMM threshold.

2 Method

2.1 EM algorithm

Since the Expectation-Maximization (EM) algorithm [5, 6] requires a number of
iterations through the observations (e.g. the gray values), and because of the
large number of observations (e.g. 512x512x512 volumes), the EM algorithm is
very time-consuming. To accelerate the extraction of the parameters of a twofold
Gaussian mixture model (GMM) by the EM algorithm, we use the variant de-
veloped by Bruijns [4]. He applies the EM algorithm on to the histogram of the
observations, requiring a single pass through the volume and a number of itera-
tions through the much smaller histogram. After the parameters of the Gaussian
mixture model are extracted, the GMM threshold is given by the intersection
point of the two Gaussian components.

2.2 Bench mark thresholds

As already told in Section 1.2, we have not only used the GMM threshold for
binary segmentation but also thresholds extracted in a different way from the
gray value volumes. We have used the threshold proposed in [7] (indicated by
”OT”), the threshold proposed in [2] (indicated by ”KI”), the threshold proposed
in [8] (indicated by ”RF”) and the threshold proposed in [9] (indicated by ”GR”).
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2.3 Segmentation

As explained in Section 2.1 of [9], binary segmentation of a gray value volume
with a single threshold gives too much noise. To remove this noise, the gray value
volume is transformed to a segmented volume by a region growing algorithm with
two thresholds [10].

Voxels with a gray value below the lower threshold are classified as tissue
voxels. Voxels with a gray value above the upper threshold are classified as
vessel voxels. Voxels with a gray value between the two thresholds are classified
as potential vessel voxels. A potential vessel voxel is classified as vessel voxel
if it is face connected to a vessel voxel, possibly via a chain of face connected
potential vessel voxels.

The GMM threshold and the bench mark thresholds (Sec. 2.2) are used as
lower threshold. The upper thresholds are derived from the lower thresholds and
the gray value volume similar as in Section 2.2 of [9].

2.4 Evaluation

The true boundary between vessels and tissue is located at (a subset of) the po-
sitions {pmax} of the maxima of the gradient magnitude ||g(p)|| in the direction
of the gradient vector n(p). These positions are given by the following relation:

||g(pmax + n(pmax) ∗ dt)|| < ||g(pmax)|| (1)

Since the high gray value gradient ridge voxels (Section 2.3.2 of [9]) are
located close to the maxima of the gradient magnitude, these voxels are used as
reference boundary for a quantitative evaluation of the segmentations.

Since the Manhattan distance transform [11] with regard to the high gray
value gradient ridge voxels gives the Manhattan distance between every voxel
and its closest high gray value ridge voxel, and since the Manhattan distance
transform is faster to compute than the Euclidian distance transform, we have
used these Manhattan distances to indicate the segmentation performance. We
have computed per volume the following characteristic numbers from the Man-
hattan distances of the border vessel voxels (i.e. vessel voxels with a tissue voxel
as neighbor):

1. The fraction of border vessel voxels with a Manhattan distance greater than
zero (i.e. the border vessel voxels not located on the high gray value ridges).
This fraction is indicated by “border off ridges”.

2. The average Manhattan distance of the border vessel voxels (indicated by
“avg dist2ridges”).

3. The maximum Manhattan distance of the border vessel voxels (indicated by
“max dist2ridges”).
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Table 1. Median MD, mean MN and maximum MX of the three characteristic
numbers.

“border on ridges” “avg dist2ridges” “max dist2ridges”

MD MN MX MD MN MX MD MN MX

GMM 0.3839 0.4253 0.9854 0.4345 1.0924 20.9937 7 12.1938 93

OT 0.3394 0.3522 0.8499 0.3516 0.6760 19.6738 4 7.3718 91

KI 0.3692 0.3887 0.8875 0.4022 0.4501 1.8899 6 8.1125 35

RF 0.3770 0.3988 0.9352 0.4016 0.4738 2.1754 6 9.6296 46

GR 0.3176 0.3274 0.6537 0.3479 0.3707 1.7681 4 5.5988 33

2.5 Remarks

1. When the gradient ridges are used for extraction of the lower threshold
(Section 2.3.3 of [9]), faultless detecting of all gradient ridge voxels at all
vessel-tissue boundaries is not required. Better a number of gradient ridge
voxels at the vessel-tissue boundaries ruled out than a number of voxels
at possible artefacts included. But, when the gradient ridges are used for
quantitative evaluation of segmentations, it is better that a number of voxels
at possible artefacts are included, than that a number of gradient ridge voxels
at the vessel-tissue boundaries are ruled out. Indeed, a significant loss of
gradient ridge voxels at the vessel-tissue boundaries result in overestimated
characteristic numbers.

2. In case of a“perfect segmentation”the vessel boundary is coincident with the
high gray value gradient ridges. In this case all border vessel voxels are lo-
cated on the high gray value gradient ridges. So “border on ridges” closer to
0.0 is better, “avg dist2ridges” closer to 0.0 is better, and “max dist2ridges”
closer to 0.0 is better.

3 Results and discussion

We have applied the variants for extraction of the thresholds to 81 clinical vol-
ume datasets (24 of them with a resolution of 256x256x256 voxels, the rest
128x128x128 voxels), acquired with the 3D Integris system [12]. The voxel size
varies between 0.2 and 1.2 millimeter.

The median MD, mean MN and maximum MX of the three characteristic
numbers (Sec. 2.4) of the 81 clinical volume datasets are given in Table 1.

The following conclusions can be drawn from the results and the experience
gained:

1. Since the GR threshold is derived from the gray values of the gradient ridge
voxels, the GR threshold gives the best (i.e. lowest) results. But, since the
GR threshold is a global threshold (as all thresholds used for segmentation of
the 81 clinical volume datasets) and since the gray values of the gradient ridge
voxels vary considerably (Fig. 5 of [9]), the median, mean and maximum are
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still not close to zero. So, a better segmentation is probably only possible
by local thresholds.

2. The OT threshold gives compared to the GMM, KI and RF thresholds
good results except for the maximum (MX) of the characteristic numbers
“avg dist2ridges” and “max dist2ridges”. However, it was not possible to
extract an OT threshold for three of the 81 clinical volume datasets.

3. The KI threshold and the RF threshold give more or less the same results.
However, it was not possible to extract an KI threshold for one of the 81
clinical volume datasets.

4. The GMM threshold gives the worst results, especially for the mean (MN)
and the maximum (MX) of the characteristic numbers “avg dist2ridges” and
“max dist2ridges”. This indicates that a twofold Gaussian mixture model is
not always a correct assumption for the distribution of the gray values.
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