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Abstract. We propose an automatic region growing technique for the
segmentation of the cerebral cortex and white matter in MRI data.
Our method exploits general anatomical knowledge and uses an itera-
tive multi resolution scheme for the estimation of intensity distributions
to compensate for artifacts within the data. We present a comparison to
segmentation results created by the neuroimaging software Brainvoyager
QX and show advantages of our approach based on a qualitative and
quantitative evaluation.

1 Introduction

A precise segmentation of the cortical grey and white matter in anatomical
MR images is necessary for a large number of medical applications, including
morphometry, visualisation and the analysis of the functional organisation of
the human brain as assessed by anatomical and functional MRI. An automatic
segmentation of the cortex is difficult because the inter–subject variability of the
human brain anatomy restricts the use of anatomical knowledge. Furthermore,
image artifacts, such as noise, partial volume effects and inhomogeneities of the
scans, complicate the separation between grey and white matter regions and also
the identification of the boundaries of the cortex.

Several methods have been applied in recent years to estimate grey and white
matter regions on MRI. The most popular methods separate intensity histograms
which are assumed to be composed of distributions for the different tissue types.
The data is then classified directly[1], or the parameters of the distributions
determine the intensity range for region growing approaches [2]. Other methods
include computationally expensive active contours and surfaces [3, 4, 5]. Here,
the segmentation of thin gyral folds poses a problem due to partial volume effects
and numerical issues (e.g., related with the curvature–based energy terms). In
the presence of magnetic field inhomogeneities traditional region growing as well
as active contours may underestimate, e.g. the upper part of the frontal lobe[6].

Our algorithm resolves the complex task utilising general anatomical knowl-
edge. It combines an iterative region growing with fuzzy labels and estimation
of the intensity distributions of the grey and white matter using a Gaussian
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pyramid of the data. This multi resolution strategy allows to compensate for ar-
tifacts within the data and provides automatic, accurate and fast segmentations
of the grey and white matter regions.

2 Fuzzy multiscale region growing

Our algorithm for separation of the cortical grey and white matter is based on
a region growing, which uses histogram analysis for estimating the probability
density functions (PDF) for the intensity of these different brain tissue types.
The estimates are represented by Gaussian distributions Pρ and Pω, with µω >
µρ, and dynamically updated during a fuzzy region growing. The algorithm
uses multiple scales of resolution of the data until the estimates for the inner
and outer cortical surface (i.e. the grey–white matter boundary and pial surface)
converge. The result of our algorithm is a segmentation in 3D where each voxel
x of the 3D MRI data set is assigned one of three labels. These labels are lω for
white matter, lρ for grey matter and lb for background.

For segmentation we assume that the data sets are AC/PC–rotated such that
pons and corpus callosum can be located in a set of sagittal slices. We further
assume that the white matter is a single connected component, and is surrounded
by the cortical grey matter which has an average thickness of 2.5±0.7mm [7]. For
estimating the cortical grey matter based on the white matter, the cerebellum
which is connected to the cerebrum via the brainstem, has to be removed.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Overview of the Fuzzy Multiscale Region Growing algorithm. (a) sagittal MR
slice containing the interhemispheric fissure, (b) binarised version of (a), (c) histogram
with estimated PDF Pρ and Pω, and threshold θ (arrow), (d) probability mask Pω,
(e) white matter segment W , (f) stripped cerebellum and brain stem, (g) probability
mask Pρ in terms of a normalised distance transform of W , (h) grey matter segment
G.
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2.1 Segmentation of the white matter

We obtain the desired seed points for the region growing within the white matter
by selecting pixels that belong to the corpus callosum and pons (fig. 1(a)).
Therefore, the sagittal slice that is most likely to contain the interhemispheric
fissure is binarised using a threshold θ for separating grey and white matter
(fig. 1(b)). Here, we use the grey value which represents the intersection of the
estimated PDF, Pρ and Pω (fig. 1(c)). Seed points are obtained randomly by
selecting points that survive a morphological erosion of the binarised volume.

Next, we compute a Gaussian pyramid {L(t), t = 0, ..., N} of the data. A
region growing is performed starting at lowest scale of resolution, t = N . The re-
sulting segmentation is then propagated to the next scale in terms of a probability
mask Pω(t), which determines for each voxel the probability of being included
into the white matter region (fig. 1(d)). (Note that Pω(N) = 0.) Therefore, the
parameters µ and σ of the PDF, Pω, are estimated by a histogram analysis at
the current scale of resolution. We let

µ̂ =
1
k

k≤K∑

i=1

higi(x), σ̂ =
1

K − 1

k≤K∑

i=1

hi(gi(x)− ḡ)2, (1)

given that grey value gi occurs with frequency hi. The K = |{x ∈ L(t) = lω}|
samples are obtained by estimating an interval around the white matter PDF
peak in the histogram. Here, we introduce a scaling factor s ∈ R, such that P̂ω

= sPω, and high values for s lead to less fuzzy segmentations of the white matter
region. The result of this step is a binary mask, W (x) = 1 ↔ x = lω (fig. 1(e)).

2.2 Segmentation of the cortical grey matter

First, we use the AC/PC points to introduce a plug for separating the brainstem
(truncus cerebri) and cerebellum from cerebrum using region growing (fig. 1(f)).

Based on a dilated version Wd of the white matter segmentation W , we
calculate an approximated grey matter segment G = Wd − W , from which a
random set of seed points is obtained for segmentation of the cortical grey matter.
Here, we include a simplified model of the cortex thickness reported in [7] into
the algorithm and use a normalised distance transform w.r.t. the grey–white
matter boundary to initialise the probability mask Pρ (fig. 1(g)). (Initially, the
outer cortical surface is allowed to deviate by 4mm from the grey–white matter
boundary.) Again, the parameters µ and σ of the PDF Pρ are estimated by a
histogram analysis based on samples from G, i.e. K = |{x ∈ L(t) = lρ}| in
equation 1. A fuzzy region growing based on these parameters results in the
final grey matter segment, G(x) = 1 ↔ x = lρ (fig. 1(h)).

3 Results

We evaluated the above algorithm using 20 MR data sets with (2563) 1mm
iso–voxels acquired on a 3 Tesla scanner. The quality of the data varied w.r.t.
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signal–to–noise ratio and intensity inhomogeneities. For of a subset of 10 data
sets, results of our algorithm have been compared with segmentations created
by Brainvoyager QX (BVQX), a commercial software for the analysis of MRI
(http://brainvoyager.com). These segmentations have been created with inter-
action by an experienced user and are more exact than an automated segmenta-
tion using BVQX. Segmentation includes rotation of the data into the AC/PC–
plane, inhomogeneity correction, isolation of the cerebrum by applying standard
masks, spatial smoothing, region growing (using a user–specified threshold θ)
and morphological operations[2]. Note that our algorithm was also applied to
the AC/PC–rotated data to allow for a comparison of both methods.

Examples of segmentation results using both algorithms are given in figure
2. A visual inspection by neurobiologists suggests that the grey–white matter
boundary found by our algorithm is usually more exact, especially in regions of
low contrast, e.g. the lower temporal lobe (figs. 2(g), 2(h)) and occipital lobe.
Overall, the BVQX segmentations underestimate the white matter and miss
white matter of gyri which can be easily identified (figs. 2(e)-2(h)). Since the
outer cortical surface given by the commercial software is simply an estimate
based on a the grey–white matter boundary and average cortex thickness of
3mm, the results are usually inexact. Again, a visual inspection proved the
correctness of our results.

For a quantitative analysis we used a set of manually labelled landmarks
in visual and auditory regions as ground truth. These anatomical landmarks

(a) BVQX (b) FMG (c) BVQX (d) FMG

(e) BVQX:1 (f) FMG:1 (g) BVQX:2 (h) FMG:2 (i) BVQX:3 (j) FMG:3

Fig. 2. Comparison of segmentation results using BVQX and our proposed algorithm
(FMG). Note the underestimation of the white matter in the BVQX results. Differences
in the resulting inner cortical surface (a-b) are visible in the enlarged areas within the
frontal (1) and lower temporal lobe (2) in (e-h). While our algorithm actually segments
the cortical grey matter, BVQX computes an estimate by constant dilation of the white
matter segmentation. The resulting outer cortical surfaces (c-d) are usually less exact
for the BVQX segmentations, as visible in the frontal lobe (3) in (i).
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contribute to the inner cortical surface, λi (voxels within the grey matter that
border white matter) and outer cortical surface, λo (background voxels that
border grey matter). Our segmentations identified at average an absolute dis-
tance of δ = 0.37 ± 0.74mm and a maximum distance of d = 5.91mm to the
ground truth λi (BVQX: δ = 1.3± 1.18mm, d = 8.37mm), and δ = 1.15± 1mm,
d = 5.83mm for the ground truth λo (BVQX: δ = 1.43± 1.3mm, d = 7.07mm).

Our algorithm requires no user interaction, and due to the multi resolution
strategy the same set of parameters (s = 1.0, N = 5) could be used for all
data sets without the need for further pre–processing, e.g. inhomogeneity cor-
rection. A visual inspection of segmentation results in 10 uncorrected MR data
sets suggests that even in the presence of strong magnetic field inhomogeneities
our algorithms gives satisfactory results. In contrast, using the BVQX soft-
ware, small variations in the parameter values led to significant alterations in
the segmentations, while segmentation failed in the uncorrected data sets. The
computational time of our algorithm on a data set is about 68 seconds (3GHz
Core2Duo, 4Gb RAM), which clearly outperforms the semi–automatic segmen-
tation process with BVQX.

4 Discussion

We presented a region growing approach for the accurate and fast segmentation
of cortical grey and white matter in MRI data. The proposed algorithm does
not require any user interaction, and utilises an iterative multi resolution scheme
which makes parametrisation of the region growing more robust. A visual in-
spection by neurobiologists and quantitative evaluation confirmed the accuracy
in the estimated cortical surfaces.
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