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Abstract. To ensure precise tumor irradiation in radiotherapy a stable
breathing pattern is mandatory as tumors are moving due to respiratory
motion. Consequentially, irregularities of respiratory patterns have to
be detected immediately. The causal motion of tissue also differs due
to different physiological types of respiration, e.g., chest- or abdominal
breathing. Currently used devices to measure respiratory motion do not
incorporate complete surface deformations. Instead only small regions of
interest are considered. Thereby, valuable information to detect different
breathing patterns and types are lost. In this paper we present a system
that uses a novel camera sensor called Time-of-Flight (ToF) for auto-
matic classification and verification of breathing patterns. The proposed
algorithm calculates multiple volume signals of different anatomical re-
gions of the upper part of the patient’s body. Therefore disjoint regions
of interest are defined for both, the patient’s abdomen and thorax. Us-
ing the calculated volume signals the type of respiration is determined
in real-time by computing an energy coefficient. Changing breathing
patterns can be visualized using a 2-D histogram, which is also used to
classify and detect abnormal breathing phases. We evaluated the pro-
posed method on five persons and obtained a reliable differentation of
chest- and abdominal breathing in all test cases. Furthermore, we could
show that the introduced 2-D histogram enables an accurate determina-
tion of changing breathing patterns.

1 Introduction

Improving cancer treatment in radiotherapy is an important topic. To minimize
damnification of healthy tissue during treatment sessions techniques like gating
or tumor tracking [1, 2] are applied. For so called external gating an adaptive
surrogate respiratory signal is used to represent the patient’s breathing over time
as there is a correlation between the actual tumor movement and the patient’s
respiration [3].

Independent of the type of an external surrogate signal, there are always
uncertainties in the correlation between external surrogates and internal target
positions during respiratory cycles. This is mainly caused by the variation of this
correlation due to changing breathing patterns and different types of respiration,
e.g., chest- or abdominal breathing.



258 Müller et al.

Khamene et al [4] present a method to establish the correlation between a
surrogate signal and an internal target prior to the treatment session. Using this
method it is possible to compute a mapping between a known reference breathing
cycle and the current breathing of a patient. Once the patient changes his type
of respiration in any way a new mapping has to be established. Breathing
can change in various ways, e.g. chest vs. abdominal breathing or in speed or
depth. Detecting all these changes in a respiratory signal requires a fast real-time
surface-based method to measure respiratory motion.

Nowadays a common way to acquire a breathing signal is to use a pressure
sensor integrated into a belt to generate a 1-D respiratory signal [5]. Another
approach is to observe the patient’s surface either with or without markers to
obtain information about respiration [5, 6]. Unfortunatly most of these systems
do not provide the required properties to perform analysis including the just
mentioned issues. Recently, a system using an emerging technology called ToF
was proposed to measure respiratory motion [7]. Such a system enables marker-
less real-time surface monitoring for respiratory motion gating. Furthermore,
there are already several other applications within medical imaging where ToF
sensors are suggested to improve medical procedures, like 3-D endoscopy or
patient positioning [8, 9].

Using a ToF camera it is possible to acquire a 3-D point cloud containing
more than 25k points in real-time with 50 Hz and above. ToF cameras emit light
in the near infra-red range which is reflected by the surface of an object, e.g.,
a patient’s body. The emitted signal is modulated by a cosine-shaped signal of
frequency f . By calculating the phase shift φ of both the outgoing and incoming
signal, the distance to the camera can be calculated in the following way, where
f denotes the modulation frequency of the camera and c is the speed of light:

d =
c

2f
· φ

2π
(1)

Current available ToF cameras operate at a modulation frequency of about 20
MHz. Thus, the unambiguousness for observable distances of the camera systems
is approx. 7.5 m, which is sufficient for respiratory motion tracking.

2 Materials and methods

In the following we will give a brief overview how a ToF sensor enables surface-
based respiratory motion classification and verification of multidimensional res-
piratory signals. Please note, that in the following indices can be considered to
be integer values. We denote P as the K ×L 3-D points of interest acquired by
a ToF camera.

P = [pi,j ] , i ∈ {0, 1, ..,K − 1}, j ∈ {0, 1, ..L− 1} (2)

Furthermore we assume, the ToF camera is rigidly mounted above the patient
table. To reduce the amount of data we segment the upper part of the patient’s
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body using the method described in Schaller et al [9]. As a result for further
computations only relevant 3-D points P̂ ⊆ P (⊆ denotes a subset of points)
have to be considered after the segmentation.

We want to compute a certain region of interest I ⊆ P̂ and partition this
region into n sub-regions I = {S1 ∪̇ S2 ∪̇ .. ∪̇ Sn} and Sq ∩ Sw = ∅, where
q ∈ {0, 1, .., n − 1}, w ∈ {0, 1, .., n − 1}. Using these n regions of interest we
can compute anatomical adaptive respiratory signals of the patient’s chest and
abdomen. We assume that the coarse orientation of the patient is known and ap-
ply a Karhunen-Loève-Transformation to all remaining 3-D points P̂. Resulting,
the origin of the coordinate system is placed in the center of gravity of the point
cloud P̂ and the axis are aligned with the axial, sagittal and coronal plane of the
patient. By applying this transformation an accurate and stable computation of
the volume signal can be assured.

To calculate accurate volume signals for each sub-region Sk (k ∈ {0, 1, .., n−
1}) each point pi,j ∈ Sk has to be clipped against the 2-D border lines of Sk.
This algorithm is necessary to compute the exact volume of each sub-region as
the borders of each region intersect the 3-D points arbitrary. We are using the
Cohen-Sutherland clipping algorithm to perform this task [10]. By using this
approach the partition is always consistent and independent from the patient’s
position. To calculate the volume of Sk we take a triangle of three neighboring
points pi,j , pi,j+1, pi+1,j ∈ Sk and the distance between the segmentation
plane [8] and the mean z-coordinate of these three points to calculate the partial
volume. If one or more triangle points are not present in Sk points computed
by the clipping algorithm are used. All particular triangle volumes are summed
up to obtain the whole volume value for a specific subregion Sk. By plotting
the volume values for each subregion Sk over time n respiratory graphs can be
generated.

We now can use the computed volume signals to distinguish between chest
and abdominal breathing. Therefore the signal energy Ek of each subregion Sk

is calculated over a certain timespan T , where Ak(t) denotes the volume values
of subregion Sk.

Ek =
0∑

t=−T

|Ak(t)|2 (3)

After computing the energy for every subregion an energy coefficient α is calcu-
lated. Therefore the signal values of the subregions assigned to the chest area
Echest and the signal energy of the subregions assigned to the abdominal area
Eabdominal are summed up. The relation α of the energies is achieved by dividing
the abdominal energy by the overall computed energy Eall. For the classification
an appropriate border λ has to be set:

Abdominal Respiration : α > λ | Chest Respiration : α ≤ λ (4)

Furthermore, we analyse the minima and maxima of each volume signal. A
2-D histogram where the time between two minima, which equals the duration
of one breathing cycle is plotted on one axis and the maximum amplitude of the
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Table 1. α values (in percent) of classification with volume signals for chest and
abdominal respiration of five test persons using data acquired by a SR-3000 ToF camera
from MESA Imaging.

1 2 3 4 5

α (chest) 65, 74 37, 62 39, 14 42, 59 64, 77

α (abdominal) 92, 85 91, 40 87, 11 89, 10 81, 30

same breathing cylce on the other axis is computed. Using this visualization,
one can immediately detect a variation in the type of breathing of the patient,
which is illustrated in more detail in the following.

3 Results

To evaluate the algorithm each part starting with the volume computation was
gradually evaluated. Therefore a box with known geometry was placed in front
of the camera and was observed from different positions with a distance of 80 cm.
We could show, that the difference between the original size of the volume and the
computed volume only differs marginal, preconditioned the segmentation prior
to the calculation was performed accurately. The real volume of the box was
16368 cm3, where the computed mean volume was 16501 cm3 with a standard
deviation of 35 cm3.

Second, the reliability of the classification of chest or abdominal breathing
was tested. We computed the signal energy over a time span of 8 sec. Five
people were introduced to breath firstly with the thorax and thereafter with the
abdomen (Tab. 1). By choosing λ = 0.7 a distinction between both breathing
types in all cases can be achieved.

Finally, a test candidate was advised to perform four different types of
breathing, including deep-slow, deep-fast, shallow-slow and shallow-fast breath-

Fig. 1. Left: 2-D histogram showing the cluster formation. right: corresponding
breathing cycles for the two left clusters.
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ing. While observing the respiration of the test candidate, the above introduced
2-D histogram was successively computed. Figure 1 shows that it is possible
to differentiate certain types of breathing. It can be observed, that for regular
breathing a clustering in the histogram occurs.

4 Discussion

We introduced a new method to acquire and analyze a respiratory curve using a
ToF Camera. The algorithm uses multiple volume signals in order to distinguish
between chest and abdominal breathing. Furthermore, using the introduced 2-D
histogram, a simple and intuitive way to classify changes in the respiration is
introduced. Prospective, further algorithms will be developed to extract more
information out of the introduced tools.
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