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Abstract. The tracking of individual cells in time-lapse microscopy fa-
cilitates the assessment of certain characteristics of different cell types.
Since manual tracking of an adequate number of cells over a consider-
able number of frames is tedious and sometimes not feasible, there is a
vital interest in automated methods. We present a rather minimalistic
approach for the tracking of unstained cells in cell culture assays. The
proposed approach comprises background subtraction, an object detec-
tion method based on discrete geometrical feature analysis together with
a validation of the resulting graph-structures. The main advantage of
this approach lies in its computational efficiency.

1 Introduction

A proper way of understanding biological systems necessarily incorporates not
only spatial organisation but also their dynamic development. Therefore, ex-
periments assessing the spatio-temporal aspects of a biological system provide a
promising way to unravel the underlying organisational principles. It is natural
to extend the established methods of microscopy by taking a series of images
in order to assess the temporal development. This so called time-lapse imaging
will become a valuable tool in biological and medical research. The potential
benefits are discussed in the review found in [1] and an overview of the technical
aspects of time-lapse imaging and object tracking in a biomedical context can
be found in [2].

A variety of different approaches to the analysis of time-lapse image data
exists, where three main classes of approaches to object tracking can be dis-
tinguished according to [3]: (i) correspondence-based, (ii) transformation-based
and (iii) contour-based methods. The latter two classes could also be subsumed
into one. Correspondence-based methods base upon the detection of objects in
a frame-by-frame manner. The correspondences between the detected objects
are subsequently established. Transformation- or contour-based techniques fo-
cus on tracking the changes of initial objects over time. Here the contour-based
aproaches became very popular over the last years [4, 3, 5, 6], especially in
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biomedical applications. Similar to [7], we decided to take the first approach of
correspondence-based tracking since such methods are usually computationally
more efficient. This is in particular true for cases when a great number of objects
needs to be tracked.

We are interested in analysing the migration and proliferation of unstained
cells in a cell-culture assay. The cells are not stained to rule out the effects of the
staining agents on the behaviour of the cells. Usually phase-contrast microscopy
is the common method of choice with the known drawbacks e.g. the typical
halos and differences in the visual appearance of normal and mitotic cells [4].
Thus, we decided to use transmitted light microscopy and enhance the visibility
of the cells by exploiting the effect, that slightly defocussed cells appear as rather
bright objects (Fig. 1(a)).

The experiments are desgined to assess the behaviour of hematopoietic stem-
cells (HSCs) in vitro. The cells are cultured on a 3D silicone-substrate consist-
ing of microcavities of different diameter, coated with certain molecules like
fibronectin, heparin, collagen etc. to model the interactions between cells and
extracellular matrix. The aim is to analyse the effects of these parameters (differ-
ent proteins, spatial structure) on the behaviour of the cells. We are in particular
interested in analysing the frequency and location of cell-divisions, different as-
pects of cell motility and also the structure of the obtained cellular genealogies
(e.g. [1, 7]).

2 Materials and Methods

The main problem of tracking unstained cells is the low signal-to-noise ratio.
As can be seen from the image histograms, there is no clear distinction between
the gray-level distribution of the cells and the background. This problem is
further complicated by the visible structures of the substrate. As an example
the gray-level profile along two different line is shown for a sample image in Fig
1(b). To alleviate this problem we subtract the background from every frame.
The mean background image can be either obtained by taking a series of images

(a) Original image (gray-level pro-
files were taken at the the two lines)

(b) Corresponding gray-level pro-
files

Fig. 1. Example of an image and its characteristic gray-level profiles
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before the cells are applied on the substrate or, if this is not possible, the mean
intensity for every pixel must be estimated from the data. This simple approach
to background estimation is computationally more efficient compared to more
sophisticated methods (e.g. Gaussian mixture modelling, eigenbackgrounds etc.)
and is sufficiently robust under the given image characteristics.

The pre-processed images are then segmented by thresholding and detection
of connected foreground-components. Different geometrical features are calcu-
lated for the obtained objects to further remove falsely detected background
structures. The most important features used here are the area, the largest and
smallest object diameter as well as the discrete compactness and solidity of the
objects. Deviations from typical values of compactness and solidity are used to
detect objects that are likely to correspond to partially occluding or touching
cells. Such objects are subsequently splitted into smaller structures. By taking
the endpoints of a graph-based description of the objects [8] we obtain the center
points to find a suitable splitting.

The results are depicted in Fig 2. The described method scales linearly with
the number of foreground pixels. Thus, it is not as sensitive to the number of
cells in the image as an approach based on active contours (e.g. [5]).

After object detection, the correspondence between consecutive frames needs
to be established. To achieve this, we calculate the overlap of the objects in the
previous and in the current frame. Ambiguities arise when an object overlaps
with more than one object in the next frame. These cases are solved by detecting
one-to-one mappings, removing the corresponding objects and then re-analysing
the remaining objects. Such an approach critically depends on whether or not
the sampling-theorem is met by image acquisition (for a detailed discussion see
[2]). However, in some cases this requirement is not met and hence, errors in
the cell correspondences can occur. In these cases we relax the requirements and
allow correspondences between two objects that are a distance of not more than
twice of the object diameter away. Furthermore, cells can be lost, in particular
at the corners of the substrate structures. Thus, we need to keep track of such

(a) Original image (zoom) (b) Image with mean back-
ground removed

(c) Segmented objects

Fig. 2. Image preprocessing and segmentation
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lost cells. If a cell cannot be detected in the current frame, its position is stored
and it is re-considered in the next frames for a certain period of time.

Sometimes cells overlap and consequently are falsely detected as a single
object. If the fused object cannot be splitted as described above, the object
is marked. When the cells eventually diverge, the correspondence is calculated
between these newly seperated objects and the objects before the fusion.

3 Results

This work is still in progress, so presently only some preliminary, qualitative
results are available to illustrate our propsed method. As an example an image
sequence consisting of 4000 frames (examples shown here) taken every 60 sec is
analysed. Here we were in particular interested in the detection of cell divisions.
Fig 3(b) shows the places, where cell divisions were detected. All of the mitotic
events that occured during the observation time were successfully found. There
was only one false positive detected cell division. It can be seen, that most
of the cell divisions took place in the cavities or near the border structures of
the substrate. The migrating behaviour of the cells was also analysed. In Fig
3(a) two examples of reconstructed cell tracks (over a period of 4000 frames)
can be seen, showing different characteristics of migration patterns. In Fig 3(b)
all places are marked, where a cell has been detected in the analysis. Here a
tendency of the cells to move towards the upper left corner is apparent, which is
most likely due to an incline of the petri-dish. And in Fig 3(c) a visualisation of
reconstructed spatio-temporal cell-tracks is shown, where the track of one cell is
marked in white showing both the migration pattern over time and the division
events in a tree-like structure.

4 Discussion

We presented an approach to the problem of the spatio-temporal tracking of
unstained cells in vitro. The results on the testing sequences are very promising

(a) Example tracks of two cells (b) All places of detected mi-
totic events (black spots)

(c) Example of a
reconstructed spatio-
temporal trajectory
(shown in white)

Fig. 3. Examples of information to be extracted from the time-lapse data
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and allow for an automated (or at least semi-automated) analysis of a variety
of features of the spatio-temporal behaviour of the hematopoietic stem-cells in
the presented culture-assays, which otherwise would not be feasible. The main
advantage is that the presented approach is computationally attractive, thus
allowing for an analysis in real-time. One important drawback is its sensitivity
to segmentation errors and the resulting complications for object-linking. Some
of the problems might be alleviated by a contour-based approach, which on
the other hand would considerably increase the computational costs. As a next
step, an objective validation of the method is needed as e.g. in [9] to evaluate the
robustness of the method with respect to several parameters (e.g. cell density). It
is to be expected that human interaction will be needed to correct for inevitably
occuring errors during tracking, so a crucial point will be the optimisation of
these interactions in order to obtain reliable results from the large amounts of
data. Last but not least further measures for analysing the spatio-temporal
trajectories need to be assessed.
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