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Abstract. We present an approach based on self organizing maps to
segment renal arteries from 2D PC Cine MR images to measure blood
velocity and flow. Such information are important in grading renal artery
stenosis and support the decision on surgical interventions like percu-
tan transluminal angioplasty. Results show that the renal arteries could
be extracted automatically. The corresponding velocity profiles show
high correlation (r=0.99) compared those from manual delineated ves-
sels. Furthermore, the method could detect possible blood flow patterns
within the vessel.

1 Introduction

Renal artery stenosis (RAS) is the leading cause of secondary hypertension
caused by the reduced flow triggering the auto-regulation (renin-angiotesin) of
the systemic circulation including the contralateral kidney. By time this may
lead to loss of renal parenchyma in the stenosed kidney and microangiopathy in
the glomeruli of the non-stenosed contralateral kidney. To be successful, a per-
cutan transluminal angioplasty (PTA) should be performed before these changes
have developed past certain limits in flow-reduction, flow velocity, kidney-size
and the overall- and split-renal function. Ignoring these measures may lead to
a wrong selection of patients treated with PTA and might be a reason why im-
provement after PTA has shown to be rather low [1]. Thereby, MRI provides
a good tool for measuring these processes [2]. Cine Phase-Contrast MR (PC-
MRI) blood flow measurements can be used for non-invasive quantification of
renal artery blood flow. During acquisition two images are generated, a mag-
nitude image and a phase image, encoding blood velocity and direction. From
these images the blood flow within the vessel can be quantified and abnormal-
ities in the flow or velocity profiles over the cardiac cycle can be assessed and
RAS can be graded.

Blood flow quantification from PC-MRI acquisition is usually performed by
manual delineations of the vessel area [3]. This is time consuming and subject to
operator dependent variability. Kozerke et al. [4] proposed an active contour ap-
proach for vessel segmentation from PC-MRI. A segmentation approach taking
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the waveform of the velocities into account and applying correlation and thresh-
olding has been proposed in [5] and segmentation by k-means clustering has been
presented in [6]. However, all these approaches still involve manual interaction
during the initialization and thus, operator dependent variability. In the present
approach we utilize self organizing maps (SOM)[7] for the segmentation task.
This technique provides a model free and unsupervised approach to the segmen-
tation task. Similar to [6] it further allows for a functional segmentation, i.e. to
take the velocity profiles into account.

2 Materials and methods

2.1 Data acquisition

Ten subjects (3 healthy volunteers, 7 patients) underwent renal blood flow mea-
surements on a 1.5 T scanner as described in [8]. We used a ECG gated 2D
cine PC-MR sequence with TR=37ms, TE=4ms, FA=30°, VENC=100 cm/s.
Within the cardiac cycle between 20 and 25 images with matrix 256x192 and
spatial resolution 0.9x0.9x6 mm?® were acquired.

2.2 Self organizing maps for PC-MRI analysis

Self organizing maps generate nodes on a two-dimensional grid. The distribution
of these nodes on the grid corresponds to the distribution of the associated node
patterns in feature space. Thereby, a mapping of a high dimensional feature
space onto a 2D grid is reached maintaining the underlying topology of the
feature space. Briefly, each node n on a N x N regular grid a prototype vector
u®, k =1,...,N? is assigned and initialized randomly. Then, a data sample
2(is presented and the best matching or winning node n(*) (BMU) on the grid
is searched:

k= argmin, {|u®) — 2%} (1)

The u(%)’s prototype vector is then updated according to its distance to the
training sample. In addition, the neighbors’ prototype vectors on the grid are
updated, too. This update process is controlled by a iteratively decreasing learn-
ing rate €(t) and is described by the Kohonen’s learning rule [7]

uP(t+1) = uP (1) + €(t) exp(—%)(w“)(t) —u®(t)) (2)

where d;; is the distance between nodes 7 and j determined by the neighborhood
relation. ¢? is an operating parameter, €(t) exp(—i"{) is one for ¢ = j, namely
the BMU, and decreases when the distance becomes large. For flow analysis, the
sequence of phase images were transformed into a 2D matrix of size # pixels x
time points and then processed using the SOM toolbox [9]. Critical parameters
of the SOM are the number of node N x N, the initial and final neighborhood
size (04,0¢) and the number of iterations v. Following [10] we set v = 103 x N2,
a linear decrease of o; = N to oy = 0.2+ N , and a linear decrease of €(t). The
size of the grid was varied from N=2 to N=8.
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2.3 Evaluation

To evaluate the influence of the grid size on the segmentation of the vessel
within the phase images the quantization error and the topology error derived
from the trained maps was calculated. The quantization error depicts the average
distance between each data vector and its BMU. The topology error describes the
proportion of all data vectors for which first and second BMUs are not adjacent
units. Furthermore, to evaluate the clustering, our approach has been compared
to the k-means segmentation presented in [6] and to available manual delineated
vessel lumen. Here, the correlation between the velocity profiles derived by the
different methods was investigated.

3 Results

Twenty data sets (10 subjects) were analyzed by the SOM. Fig. 1 shows the
results of varying the number of nodes, i.e. grid size. Whereas the quantization
error steadily decreases, the topology error mainly keeps constant for different
values of N.

Fig. 2, as an example, depicts the results of the SOM algorithm for one data
set. Each node on the grid subsumes a certain amount of pixels with similar
velocity time profiles (VIP). The prototypes are given in Fig. 2¢. Similar colors
represent close nodes, i.e. possible super cluster structures (Fig. 2 a, b). Here, the
yellow color node represents the vessel lumen (white round region in Fig. 2 d).
From the analysis, four clusters could be identified (yellow, red, blue, and green).
Figure 3 depicts the comparison of the derived VTP from the segmentations of
the same data set depicted in Fig. 2. The k-means has been initialized by four
classes. The manual delineation however could only provide two classes. The
correlation between the VTP of the clusters representing the vessel lumen by
each method is high (r=0.99).
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Fig.1. Quantization and topology error for all subjects for the given range of grid
sizes. Error bars depict the standard deviations within the 20 data sets.
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4 Discussion

In this contribution an approach to segment and analyze 2D PC-MRI examina-
tions using SOMs was presented. The SOM method could automatically segment
the vessel from the images. From Fig. 1 a grid size of N = 2—5 seems reasonable.
For a lower N the topology of the underlying feature space is more preserved,
however, the quantization error is higher since also feature vectors that are more
far away from the BMU are subsumed. For larger N the topology error increases
because data samples with lower similarity are assigned to different (probably
nearby) nodes. Thus, the quantization error is reduced while the topology error
increases. However, for higher N, the beneficial property of the SOM to form
super clusters could be exploited. By visualizing the similarities within nodes on
the grid (here via color coding) the relation between sub and super cluster could
be assessed (Fig. 2). Such merging could also be automatized, e.g. by applying
hierarchical clustering of the SOM. In contrast to other proposed techniques like
k-means [6] or to Alperin’s work [5], no operator given initialization is needed.
Comparing the velocity profiles derived from SOM, k-means, and manual delin-
eation a high correlation is yielded suggesting a valid segmentation. In summary,
by using SOM as a tool to analyze PC-MRI flow and velocity data a flexible and
automated approach is available.
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Fig. 2. Results of SOM analysis. Here a 4 x 4 hexagonal lattice has been used. a)
depicts the similarity between neighboring nodes, b) shows a 2D projection of the
prototypes onto the grid, c¢) prototypes associated by the nodes, and d) labeled image
according to the best matching node. In a)- ¢) colors are corresponding.
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Fig. 3. Comparison of velocity profiles by different methods for one data set. Solid
black curve: derived by k-means clustering, gray curve: derived by manual delineation
of vessel lumen, dashed curve: results by SOM algorithm.
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